N
N

N

HAL

open science

Automatic Differentiation for Adjoint Code (eneration
Christele Faure

» To cite this version:

Christele Faure. Automatic Differentiation for Adjoint Code Generation. [Research Report] RR-3555,

INRIA. 1998. inria-00073128

HAL 1d: inria-00073128
https://inria.hal.science/inria-00073128
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073128
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Automatic Differentiation for adjoint code
generation

Christéle Faure, Ed.

N° 3555
Novembre 1998

THEME 2

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Automatic Differentiation for adjoint code generation

Christéle Faure*, Ed.

Théme 2 — Génie logiciel
et calcul symbolique
Projet SAFIR

Rapport de recherche n° 3555 — Novembre 1998 — 56 pages

Abstract: This document is a compilation of extended abstracts presented at the Au-
tomatic Differentiation session entitled “Automatic Differentiation for adjoint code
generation”’ which has been held within the IMACS Conference on Applications of
Computer Algebra held in Prague (Czech Republic) in August 1998. This is the second
Automatic Differentiation session organized within IMACS’ACA conferences.

List of contributors :
e Isabelle Charpentier, 9
e Ralf Giering and Thomas Kaminski, 31

e Marco Mancini, 39

Uwe Naumann, 47

Mohamed Tadjouddine, 15

Yannick Trémolet, 23

Key-words: Adjifor, Odyssée, Padre 2, Tamc, reverse mode, adjoint code, automatic
differentiation, computational differentiation, fortran, program transformation.

* Email : Christele.Faure@sophia.inria.fr, URL : http://www.inria.fr/safir/WHOSWHO/Christele.Faure
f This session was partially supported by INRIA through the INRIA cooperative research action called
MIO. We want to thank also the IMACS ACA’98 organizers for asking us to organize such a session.

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Génération de code adjoint par Différentiation

Automatique
Résumé : Ce document est le recueil de résumés étendus présentés 4 la session de Differen-
tiation Automatique intitulée Automatic Differentiation for adjoint code gemeration?
qui faisait partie de IMACS Conference on Applications of Computer Algebra (IMACS

ACA’98) qui a eu lieu & Prague (République Tchéque) en Aoat 1998. C’est la deuxiéme ses-
sion sur le théme de la Différentiation Automatique organisée dans le cadre des conférences

IMACS’ACA.

Liste des contributeurs :
e Isabelle Charpentier, 9

o Ralf Giering and Thomas Kaminski, 31

Marco Mancini, 39

e Uwe Naumann, 47

Mohamed Tadjouddine, 15

Yannick Trémolet, 23

Mots-clés : Adjifor, Odyssée, Padre 2, Tamc, mode inverse, code adjoint, différentation
automatique, fortran, transformation de programme.

¥ Cette session a été partiellement financée par 'INRIA dans le cadre de I’action de recherche cooperative
MIO. Nous voulons aussi remercier les organisateurs de IMACS ACA’98 pour nous avoir donné la possibilité
d’organiser cette session.

Automatic Differentiation for adjoint code generation 3

List of contributions

1. An introduction to Automatic Adjoint code generation, 5
Christele Faure

2. Generation of the Adjoint Code of Meso-NH, 9
Isabelle Charpentier

3. Reduction of Storage of Variables in Adjoint Codes, 15
Mohamed Tadjouddine

4. Writing the adjoint of a parallel model using Odyssée, 23
Yannick Trémolet

5. Comparison of automatically generated code for evaluation of
first and second order derivatives to hand written code from
the Minpack-2 collection, 31
Ralf Giering and Thomas Kaminski

6. A Hierarchical approach in automatic differentiation, 39
Marco Mancini

7. The cross-country elimination problem in computational graphs, 47
Uwe Naumann

RR n° 3555

Christéle Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 5

An introduction to Automatic
Adjoint code generation

Automatic differentiation is a set of techniques aimed at differentiating functions based on
a program that computes its values at arbitrary points. For an introduction to automatic
differentiation theory and techniques refer to the proceedings of the main conferences on
this subject : “Automatic Differentiation of Algorithms: Theory, Implementation, and Ap-
plications” (see [27]) and “Computational Differentiation: Applications, Techniques, and
Tools” (see [3]). The method differs from finite differences in that the value of derivatives
are computed exactly (up to rounding errors) and generally in a more efficient way. This
is particularly true when gradients (sets of partial derivatives) are to be computed. In this
case, the reverse automatic differentiation can be viewed as a method for generating discrete
adjoint codes automatically.

Modeling and forecasting of complex physical phenomena require the computation of
derivatives. In optimal design or data assimilation for example these derivatives are pri-
marily gradients. For that purpose discrete adjoint codes are widely used in the different
communities.

The reverse mode of automatic differentiation is functionally equivalent to hand written
discrete adjoint codes. Several automatic differentiation tools enable the user to avoid the
time-consuming and error prone task of developing adjoint code by hand. For a survey
of the existing tools and their functionalities, visit the web page of the Computational
Differentiation Project at Argonne National Laboratory at URL [4]. The three main source
to source tools in which the reverse mode has been implemented are: Odyssée (see [18]),
Padre2 (see [33]), TAMC (see [20]). A new system to be called called Adjifor is under
development (see [9]).

Whereas automatically generated reverse codes work well on small and medium sized
problems they typically need to be tuned and optimized on really large applications. Of
particular concern is the management of the potentially very large memory requirement.

The knowledge of the physical problem being modeled, which is exploited in hand writing
discrete adjoint codes, cannot usually be extracted from the code by automatic tools. It also
should be noted that programmers in communities where adjoints are widely used adhere to
certain coding conventions, which are not yet exploited by automatic differentiation tools.

RR n° 3555

6 Christéle Faure, Ed.

On the other hand, AD developers have studied new trade-off between memory and execution
time requirements which may be used to help adjoint developers.

The practical knowledge of discrete adjoint developers added to the technical knowledge
of AD developers may lead to great improvements in the two approaches.

In this document, we show different research directions that aim at making the reverse
mode of automatic differentiation applicable to really large codes. This document is a
compilation of extended abstracts presented at the automatic differentiation session entitled
Automatic Differentiation for adjoint code generation!, which was held within the
IMACS Conference on Applications of Computer Algebra held in Prague (Czech Re-
public) in August 1998.

Each paper emphasizes a different aspect of current research activities. The three first
contributions are purely dedicated to the reverse mode and show some research directions
in this field:

checkpointing This method leads to an optimal trade-off between storage and recompu-
tation of the variables modified within a loop. The related extended abstract (see
contribution 1 page 9) shows some results obtained with the discrete adjoint of a
meteorological code called Meso-NH automatically generated.

program analysis Some program analysis methods can be applied within automatic dif-
ferentiation translators to optimize the generated code. For example the array region
analysis (see contribution 2 page 15) can be applied to diminish the amount of storage
necessary in reverse mode.

parallelization Since real applications of adjoint models require a lot of computational
power and memory, in the past few years many models have been developed for dis-
tributed memory parallel computers. An example of automatic generation of adjoint
code from an operational parallel model is shown in contribution 3 page 23.

The three other contributions show how the direct and reverse modes of differentiation
can be mixed to get more efficient codes, or can be combined to get second order derivatives:

cross-country elimination This approach is intended to generalize the chain rule beyond
the pure forward or reverse modes of automatic differentiation. The related contri-
bution (see contribution 4 page 47) shows the main theoretical aspects of such an
application of the chain rule.

hierarchical approach This methodology is based on the idea that the associativity of
the chain rule allows derivative propagation to be performed at arbitrary levels of
abstractions. The corresponding contribution (see contribution 5 page 39) presents
one implementation of this new technology based on the AIF internal representation.

1This session was partially supported by INRIA through the INRIA cooperative research action called
MIO. We want to thank also the IMACS ACA’98 organizers for asking us to organize such a session.

INRIA

Automatic Differentiation for adjoint code generation 7

second order derivatives The first goal of generating automatically adjoint codes having
been achieved, the goal of getting second order derivatives can be addressed. One way
of getting second order derivatives of a scalar function is to apply forward differentia-
tion to an adjoint code (see contribution 6 page 31).

RR n° 3555

Christéle Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 9

(Generation of the Adjoint Code of
Meso-NH

Isabelle Charpentier?

Isabelle.Charpentier@imag.fr

Projet IDOPT,
51 rue des mathématiques, BP 53,
F-38041 Grenoble Cedex 9.

The mesoscale meteorological model Meso-NH is able to simulate atmospheric events
ranging from mesoscale down to micro-scale. The MesODiF package was generated to
complete Meso-NH with both a tangent linear code and an adjoint code. The differentiation
work, realized with respect to the state variables, is done on the adiabatic part of the code,
physical parameterizations are not yet taken into account. The linearized codes are efficient
in term of time and memory consumptions.

2.1 Introduction

Meso-scale models are designed to capture mesoscale phenomena with spatial scales of a
few kilometers and time scales of a few minutes. For example these models facilitate the
study of hurricanes, thunderstorms and tornadoes, and urban air pollution events when
coupled with atmospheric chemistry models. Studies such as sensitivity analysis, calibration
of a model, or variational data assimilation may require some gradients computations, the
reader is referred to papers [36] and [35]. Nowadays these applications are attainable with
the Meso-NH model ([34], [37]) through the use of the MesODIF library ([10]).

The MesODiF package contains the Meso-NH model (version 2.4), and both the tangent
linear code and the adjoint code of the adiabatic part of the model. Physical parameteri-

2This work was supported by the INRIA action for Operative Inverse Mode, the CEMRACS’97 and the
IDRIS computational center.

RR n° 3555

10 Christéle Faure, Ed.

zations, that are discontinuous, are not yet included. The automatic differentiator Odyssée
[18] is employed to perform the linearization work in order to avoid the tedious and error
prone task of differentiation. Post-processing steps described in [12], [11] are then used to
improve the performances of the adjoint code.

The layout of this paper is the following. A simplified geophysical equations system and
its adjoint system are described in Section 2. Section 3 briefly describes the differentiation
work whereas Section 4 presents the most interesting improvements realized for the adjoint
code. Numerical results are displayed in Section 5 and Section 6 concludes on the usability
of the MesODiF package.

2.2 Gradients computations

Gradients computations become an important tool in scientific computing, this is especially
true for geophysical applications where sensitivity analyses or variational data assimilation
techniques allow for model validations, identifications of parameters, forecasting experi-
ments,...

2.2.1 Optimal control for geophysical equations

When studying the atmospheric circulation, the main goal to achieve has always been the
weather forecasting: one aims to predict the state of the atmosphere after time T'. In order to
be able to forecast, one has to work with a good numerical meteorological model and to know
a “good” approximation of the state of the atmosphere at time 7. The data assimilation
method proposed by F.-X. Le Dimet and O. Talagrand [35] solves the forecasting problem
as follows.

Let © be an open bounded domain of the atmosphere, [0, T] interval of time and X the state
variable belonging to the set X' of the admissible states of the atmosphere in 2 x [0,T]. The
governing equations of the atmosphere defining the direct model are written below:

% — F(X)in Q x [0,T], X(0) = X, in Q, +Boundary Conditions, ~ (2.1)
where F' is a nonlinear differentiable operator describing the dynamics and X is the initial
state. System (2.1) is supposed to have a unique solution in X'. Then one introduces observed
data X5, € X, into the numerical model by the mean of a cost function J : RN — IR
such that

1 (T
J(Xo) = 5/ ICX = Xop|[2dt, 2.2)
0
the observation operator C maps X to X,s. It is obvious that the solution X of the
minimization problem (2.3) is the initial state such that the solution X of (2.1) fits at best
the observed data in [0,T7].

Find Xj such that VJ(X,) =0 (2.3)

INRIA

Automatic Differentiation for adjoint code generation 11

There exists two methods for the computation of the gradient of J appearing in (2.3), we
restrict our purpose to the adjoint method.

2.2.2 Reverse mode of differentiation

Let the adjoint variable X be the solution of the adjoint system

*

dX [oF s :
E a_X(X) X=C (CX—XOZ;S) in Q x [O,T], (24)
)/(\'(T) =0 in 2, + Boundary Conditions,
then one proves [35] that the gradient of J is given by
VJ=-X(0). (2.5)

From a computational point of view, the adjoint code is integrated backward in time
along a trajectory which is formed of all the values of the variables of the direct code. Hence
a first run of the direct code that enables to supply a trajectory may be done before for the
adjoint integration.

2.3 Differentiation of Meso-NH

Meso-NH is differentiated with respect to the state variables including 3 wind velocity com-
ponents, dry potential temperature, turbulent kinetic energy, mixing ratios of water, N
passive source terms, and the pressure. The model is evaluated using explicit finite differ-
ences schemes in both time and space.

We choose to differentiate the code with the automatic tool Odyssée [18] because it
enables us to generate the adjoint source code of a fortran source code, the differentiation
work is described in [12]. However the size of the executable file of the adjoint code generated
by Odyssée is sometimes so large that it cannot be run. This problem is essentially due to the
management of the trajectory which is locally computed and saved in intermediate variables.
In order to improve the codes generated by Odyssée one proceeds to several changes:

- detection of the linear parts of the direct code, this reduces the amount of storage required
for the trajectory;

- storage of trajectories on files. This allows to avoid the redundant computations generated
by the automatic differentiator.

In order to easily maintain the MesODiF package, we decide to manage a direct/tangent
code according to three arguments:

- only state variables are stored every time-steps in the main routine;

- local variables are recomputed at each time-step.

RR n° 3555

12 Christéle Faure, Ed.

2.4 Special issues of the differentiation of MESO-NH

2.4.1 Checkpoints schemes for the storage of trajectories

When the trajectory occupies a too large amount of memory, a solution lies on the im-
plementation of algorithms such as the Griewank’s checkpoints method [25]. In that case
the calculation of the adjoint code is split and done part by part from restart points called
checkpoints. For a general purpose the user’s arbitration is essential to choose between time
and memory consumptions since the choice of a checkpoint scheme depends on the computer
model, the computer and the aim of the simulation. This becomes a crucial problem for
operational (real time) weather forecasts. To overcome the problem we propose the TwiCe
algorithm [11].

2.4.2 Differentiation of a Leap-Frog scheme
See [11].

2.4.3 Linear solver

The Fast Fourier Transform routine (in Meso-NH) is a linear self-adjoint operator that does
not require differentiated routines. Arguments to avoid the differentiation of the solver are
given in [23] and [17].

2.5 Numerical results

2.5.1 Performances of the differentiated codes

The “mountain wave" two dimensional simulation takes place on a computational domain
(180 kmx 15 km) containing a bell shaped mountain with a height of 500 m and a half width
of 10 km (Figure 3). The domain is discretized by 91 points in the horizontal plane that are
duplicated 60 times in the vertical plane. The duration of the simulation is of 2000 s with
a time-step of 20 s.

direct code tangent code adjoint code
ratio (./CD) 1 1.99 2.02

Table 2.1: Time ratios for the differentiated codes of Meso-NH

The ratios presented in Table 3 are lower than the theoretical bounds [31]. However most
of the trial meteorological simulations described in [34] do not run without a checkpoints
scheme. Fortunately suitable checkpoints algorithms exist, for example the ratio between
the CPU time of the calculation of one gradient with the adjoint code of Meso-NH and the
CPU time of the evaluation of the direct model is equal to:

INRIA

Automatic Differentiation for adjoint code generation 13

e 3 when the amount of memory is sufficient to store all the trajectory,
e 4 when TwiCe is used,

e 5.6 for the 3D simulation described in [34] when using the Griewank’s Treeverse sub-
routine.

2.6 Conclusions

Meso-NH is now designed for gradients computations that enable sensitivity analyses, fore-
cast experiments and parameters identifications. The linearized codes are efficient in term of
time and memory consumptions. For example a run of the adjoint code only requires 3 times
the time required for a run of the Meso-NH model as soon as the trajectory is entirely stored
in memory. Otherwise, check-points algorithms are used and simulations with a physical
meaning can be tackled. In particular, an adjoint integration computed with the TwiCe
scheme is only 4/3 more expensive than an adjoint integration realized in a straightforward
manner.

Acknowledgments: This work was supported by the INRIA action for Operative Inverse
Mode, the CEMRACS’97 and the IDRIS computational center.

RR n° 3555

14

Christéle Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 15

Reduction of Storage of Variables
in Adjoint Code

Mohamed Tadjouddine

Mohamed.Tadjouddine@sophia.inria.fr

Projet Safir, INRIA
2004, Route des Lucioles BP 93
06902 Sophia Antipolis France

The computation of derivatives by automatic differentiation in reverse mode requires
storage or recomputation to transpose the computational graph. One of the methods consists
in storing all the modified variables. However, this method is costly in terms of memory
requirement. An extra knowledge on the code, for instance a given loop is parallel, may lead
to avoid the storage of some modified variables. The program analysis appears like a way
for automatically generating more efficient code.

To avoid useless storages, we propose to use array region analysis. This analyze relies on
the fact that it might useful to store a variable that is Written after Read (WaR) according
to the control-flow of the program. In order to refine this criterion, we analyze individual
elements of array variables. Our method consists in computing and handling Read and
Write regions of arrays along the hierarchical control flow graph of the program. Obviously,
this array region analysis is conservative. It enables us to extract, from the input program,
information on access array regions or flow between statements or procedures. But, this
analyze is not sufficient. An additional information must be associated to each potential
region of array to be stored. This information determines if a WaR variable is really used
in the derived code.

RR n° 3555

16 Christéle Faure, Ed.

3.1 Introduction

Adjoint models are used in many fields of science such as meteorology or oceanography.
Optimizing a model in order to fit consistent model prediction and Sensitivity analysis are
two examples of applications of adjoint models. As discussed in [22], if we consider a physical
model, its adjoint model can be constructed from:

e The analytical equations by using analytical adjoint operators,

e The discrete model equations by using Lagrange Function and Euler-Lagrange opera-
tors,

e The numerical program of the model developed in a programming language by using
Automatic Differentiation (AD).

In short, AD is a solution to get fast and accurate derivatives of a function represented as
a program. The AD technique is based on two fundamental principles : any program can
be seen as a composition of elementary functions and can then be differentiated using the
chain rule. There are 2 modes of AD, both having predictable complexity:

1. The forward mode in which the intermediate derivatives are computed in the same
order as the program computes the composition.

2. The reverse mode in which the intermediate derivatives are computed in the reverse
order. The reverse mode is optimal for computing gradients because its complexity is
independent from the number of input variables [27].

Suppose a physical phenomenon is modeled by a numerical code in a high level program-
ming language such as Fortran or C. The adjoint model is obtained by differentiating the
original program by the reverse mode of AD. Actually, the reverse mode of AD uses the
adjoint operator (transposition) to inverse the computational graph of the program. There-
fore, the Write variables become Read variables and vice versa. This method consists of two
phases: The first one where the trajectory is computed is straightforward. The second one
consists in computing the derivative quantities in the reverse order as the original program
does.

The construction of adjoint code is done by 2 ways: Operator overloading or Source-to-
source transformation code. Here, we use the second technique over Fortran 77 programs.
A way of computing the trajectory is to save all the modified (written) variables. However,
this method is costly for actual applications in terms of memory requirement. OQur aim is
to reduce the storage requirement by avoiding useless storages. For that account, we use
an array region analysis, which permits us to safely determine the set of indices of an array
program that may be stored.

INRIA

Automatic Differentiation for adjoint code generation 17

3.2 A motivating example

Suppose we want to compute the derivative of the following piece of code by the reverse
mode of Automatic Differentiation:

s = 0.
do i=1, 10

s = s+x(1)*y (i)
end do

If we store all the modified variables, we will generate for example the following derivative
code:

C Trajectory
sl =s
s =0.
do i=1, 10
s2(i) = s
s = s+x (1) *y(1)
end do
C Transposed linear forms
do i=10, 1, -1

s = s82(i)
xcl(i) = xcl(i)+sclxy(i)
ycl(i) = ycl(i)+scl*x(i)
end do
s = sl
scl = 0.

We observe that we did not need to save the values of the variable s because they are not
used during the transposition of the computational graph. To determine the Write variables
that may be stored, we use the criterion below:

Criterion 3.2.1 A wvariable may be stored if it is Written after Read (WaR). In other words,
there is a flow dependence from the Read to the Write of the variable.

The following example (a straight line code) shows that we have only to save the Write

variable x just before the second statement:
C Trajectory

y =)2(*:2 y = Xk%kD

X = 2.+z -
i . s1 X

y = zxe. x = 2.4z

X =2.-2 y = z2.

X =2.-z
In the preceding example, the variables are scalar. However, what may be happen if the
variables of the program are arrays?

RR n° 3555

18 Christéle Faure, Ed.

3.3 Array region analysis

The array region analysis is motivated at least by two reasons: First, Fortran 77 works only
on static allocation. Second, many numerical codes operate on sparse matrices. Then, it is
useful to analyze access regions of arrays to avoid useless storages. To analyze access regions,
we use the Hierarchical Control Flow Graph (HCFG) [14]. Figure 1 shows an example of
HCFG:

Figure 3.1: Example of HCFG

> HEADER
ENDDO

This graph looks like the abstract syntax tree of the program but contains more infor-
mations. A node represents a basic block, which is a sequence of atomic instructions. An
edge represents a control dependence between two basic blocks. With this graph, we can
get informations about enclosing loops of a statement or still bounds of a given loop.

3.3.1 Approximations

Because of high complexity or undecidability, we cannot always compute exact regions. We
use conservative approximations. In other words, we compute exact regions and we switch
to approximate regions when necessary. To give the semantic of array regions, let us consider
the following notations:

by is the set of memory stores
o(Z%) is the set of parts of Z¢
(7% is a set such that p(Z%) C $(Z%) and @,Z% € H(Z9)

INRIA

Automatic Differentiation for adjoint code generation 19

For a d-dimensional array accessed by a statement .S, the semantic function of its region is
defined as follows (see [13]):

R:S5—(X— p(Zd))
For our application, we need over-approximate region whose the semantic is the following:

R:S— - ﬁ(Zd))

3.3.2 Simple regions

We consider a class of codes consists of DO-loops with affine loop bounds, whose bodies
consist of accesses to scalars and arrays with affine subscripts. We define simple region as a
way to represent the set of indices of arrays accessed by the program.

Definition 3.3.1 A simple region is a Cartesian product of regular intervals. A simple
region S is denoted by X7_,[l; : u; : p;] where [l; : u; : p;] is the integer set going from I; to
u; by increments of p;.

All other forms of subscripts of arrays are over-approximated by the size authorized by the
declaration. With the help of simple regions, we describe an access region R of an array as
follows (see [44]):

R ::= Simple region | RNR | RUR

Of course, these expressions are evaluated for integer bounds and simplified for symbolic
bounds.

3.3.3 Operators

In order to summarize the effects of the program on the arrays, we use the operators Union
and Intersection. These operators are used by the array region analysis itself.

Union: Because the set of simple regions is not closed under Union (U), we need the over-
approximate Union (U). This over-approximate operator relies on the following operations:

e [[:u]Ul':u]=[min(l,!") : max(u,u)]
e a+bZUc+ dZ = min(a,c) + ged(b,d,a — ¢)Z

The operator Union allows us to summarize access regions along the control flow of the
program.

Intersection: Intersection is an internal operator that is exact in the set of simple regions.
We compute the intersection of 2 simple regions by using the following operations:

o [[:u] N [I':v]=[max(l,") : min(u,u)]

e a+bZ N c+dZ = p+lem(b,d)Z where p = a+bxy = c+dyo with (z9,%0), a solution
of the diophantine linear equation a + bz = ¢ + dy.

Intersection enables us to test the dependence between two regions of the same array.

RR n° 3555

20 Christéle Faure, Ed.

3.4 Applications

In order to point out the WaR criterion, we use a classical abstraction encountered in
dependence analysis [49]. This is the dependence distance. The dependence distance between
iterations I and I' is defined as the difference d(I,I') = I' — I. With the help of this
abstraction, we may safely determine if an occurrence of an array is executed before an
other one. The WaR criterion between a Write A(I) and a Read A(/J) is satisfied if A(I) is
executed before A(J) and the access regions of A(I) and A(J) have common elements.

To measure the performance of the WaR criterion, we have compared it with a standard
strategy, which consists in saving all the modified variables by treating arrays as atoms, over
some examples. Suppose A, B, and C are declared as nmax X nmax-dimensional arrays, v
a nmax vector, and the programs Py, P», P3, and P, are built by the following formulas in
which n < nmax:

P:p = Hv(i)

P Cij = Oéaij+ﬁbij§ 1<4,5<n
n

Py:ocij = Y awxby; 1<ij<n
k=1
n

Py:oaij = Y amxby; 1<i,j<n
k=1

Actually, n can be less than the half of nmaz in real examples. Table 1 shows us that,
for certain codes, the WaR criterion can reduce dramatically the memory requirement. It
avoids some useless storages and then reduces the sizes of declarations during the derivative
code generation by AD.

Table 3.2: Comparison WaR/Standard

Programs Size of Declaration | Number of Storages
Standard WaR Standard ~ WaR
P nmax n n n
P, nmaxz> 0 n? 0
P nmax? 0 nd 0
Py nmaz® ns nd nd

INRIA

Automatic Differentiation for adjoint code generation 21

3.5 Conclusion

This array region analysis relying on conservative approximations allows us to reduce the
cost of adjoint code in terms of memory requirement. However, the WaR criterion used
here, sometimes causes to save useless storage. Extra informations can be used such as the
detection of non linear forms of expressions in the program.

RR n° 3555

22

Christéle Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 23

Writing the adjoint of a parallel
model using Odyssée

Yannick Tremolet

Yannick.Tremolet@noaa.gov

Environmental Modeling Center
National Centers for Environmental Prediction
W/NP2, WWB, Room 207, NOAA
5200 Auth Rd
Camp Springs, MD 20746, USA

Adjoint models are the basis for variational data assimilation both in meteorology and
oceanography. Since these applications require a lot of computational power and memory,
in the past few years many models have been developed for distributed memory parallel
computers. We will present the methodology used at NCEP to derive the adjoint of the
parallel spectral model which was written using a message passing library.

We will describe the impact of the parallelism in the code on the derivation of the
adjoint and show how to obtain the adjoint of a code containing explicit message passing
instructions, including point to point communications and group or global communications.
We will then show how the automatic differentiation tool Odyssée can be used for that
purpose. Finally, we will give some validation results of the derived code.

4.1 Introduction

Adjoint models are the basis for variational data assimilation both in meteorology and
oceanography. But, until the recent years, variational data assimilation algorithms have
not been used operationally because of its computational cost. In the past few years many
models have been developed for distributed memory parallel computers [16, 38]. Our aim in
this paper is to show how to obtain the adjoint of a code containing explicit message passing

RR n° 3555

24 Christéle Faure, Ed.

instructions, including point to point communications and group or global communications.
The results presented here can be applied to any code written using a message passing
library such as MPI or a machine dependent library such as SHMEM.

Variational data assimilation consists of minimizing the discrepancy between observations
of the atmosphere or of the ocean and the solution of the model for a period of time where
observations are available. In order to perform the minimization, we need the gradient of the
cost function which measures this discrepancy, the adjoint model is used for that purpose
[35].

A description of the NCEP global spectral model which was used in this experiment can
be found in [42]. The parallel version of the model described in [46] is written in Fortran
77, the communication subroutines have been encapsulated for portability reasons and are
available in two versions using MPI or SHMEM. The code uses BLAS and FFT libraries
and approximately 30000 lines of code have to be differentiated. The current operational
resolution is T126 with 28 levels. Table 4.3 gives typical values of the number of degrees of
freedom (active variables) memory and computational requirements for that resolution and
other resolutions of interest. This table shows the size of the problem to be solved and the
necessity of using parallel supercomputers.

Spectral truncation T62 T170 T254 T340
Vertical resolution 28 32 48 64
Grid size 192x94 512x256 768x384 1024x512
Active Variables 455 616 | 3 794 148 | 12 599 040 | 29 971 854
Processors 28 128 480 512
Memory/Proc. (Mb) 6 18 26 59
Performances (Gflops) 1.1 7.7 29 42

Table 4.3: Requirements and performances of the NCEP global spectral model on Cray
T3E-600.

4.2 Adjoint of a parallel code

The adjoint of the computational parts of a parallel code are obtained using the same
techniques as in a sequential code. In this section we will show how to transpose the parallel
instructions a code may contain.

4.2.1 Point to point communication

The simplest function a parallel code may use is sending a data from one processor to
another. Consider a code in which processor A sends the value of the variable x to processor
B which receives it in the variable y, this may be written as:

INRIA

Automatic Differentiation for adjoint code generation 25

Processor A Processor B
Instruction(i-1) Instruction(j-1)
Send (x,Proc_B) EE—— Receive(y,Proc_A)
Instruction(i+1) Instruction(j+1)

In a more concise form, we can also write:
y[B] = x[A]

where the bracketed letter represents the processor which owns the variable. The adjoint of
this operation would be:

x[A] = x[A] + y[B]

This means the value of y[B] has to be sent from processor B to processor A and added to
x[A]. This gives the code:

Processor A Processor B
Adjoint (i+1) Adjoint (3+1)
Receive(buffer,Proc_B) ~— Send (y,Proc_A)
x «—— x + buffer Adjoint (j-1)

Adjoint(i-1)

The adjoint of sending the value of a variable from one processor to another is to send the
value of the adjoint of this variable in the other direction. More precisely, the adjoint of a
receive instruction is a send of the same variable (if we apply the usual rule of keeping
the name of a variable for its adjoint and giving another name to the initial variable) to the
same processor. The adjoint of a send instruction is a receive instruction from the same
processor and the addition of the received value to the variable which was sent.

4.2.2 Group communications

We can also determine the adjoint operations corresponding to the usual group communi-
cations that may be used in a parallel code: broadcast, reduction, scatter and gather.
Consider a code which contains a reduction operation, i.e. each processor owns a variable
x, all those values have to be combined, the result being stored on one processor Py. In
such a code, each processor P; would compute its own x, then all processors call the reduce
function and finally the processor P, uses the result of this reduction. For example, the
reduce function can be a sum: .
s = Z X;.
i=1

We know that the adjoint of this operation is:

DO i=1,n
x(i) = x(1) + s
ENDDO

RR n° 3555

26 Christéle Faure, Ed.

Thus in the adjoint code Py would compute s (adjoint of P, uses s), then each processor
would add this value of s to its own x and finally each processor would use its x (adjoint of
computing x). The adjoint of

Broadcast (Proc_0, s)
X=x+s

Reduce_sum(Proc_0, x, s) is

Another way of obtaining the same result would be to consider that each processor sends
its value of x to Py which performs the sum and uses it. We already know how to transpose
a single data transmission and the result is easy to obtain. But this approach supposes a
particular implementation of the reduce operation while others are possible (using a binary
tree for example). Following the same model, we can deduce the adjoint of the other usual
group operations, table 4.4 gives the results.

Operation Direct Code Adjoint Code
Send Send (x, Proc) Receive(buffer,Proc)
X +—— x + buffer
Receive Receive(x,Proc) Send(x,Proc)
Synchronization | Synchro(List_Proc) Synchro(List_Proc)

For Proc € List_Proc
Broadcast Broadcast(x,List_Proc) Receive(buffer,Proc)
X «— x + buffer

For Proc € List_Proc
Reduction Receive(buffer,Proc) Broadcast (x,List_Proc)
X «— x + buffer

Gather (buffer,P_0,List_Proc)

Scatter Scatter (X,P_0,List_Proc)
X «— X + buffer

Table 4.4: Adjoint of message passing operations.

One interesting result shown in this table is that the quantity of data exchanged by two
given processors is the same in the direct and adjoint codes, only the direction changes.

4.3 Application using Odyssée

4.3.1 Writing the code

The manual development of the adjoint of the previous version of the model took approxi-
mately two years. To avoid this long and error prone task we decided to use the automatic

INRIA

Automatic Differentiation for adjoint code generation 27

differentiation tool Odyssée [18], even though it cannot yet produce adjoints of parallel codes.
Since all the communications in the model are encapsulated in a relatively small number of
subroutines, it is possible to create manually entries for these subroutines in the Odyssée
data base. This information allows the system to perform a correct dependency analysis.
The same methodology is used to provide information about the library calls for which we
don’t have a source code. The adjoints of the communication subroutines and library calls
are then added manually in the code produced by Odyssée.

The results presented in this paper were obtained by differentiating a simplified version
of the model with no physics. The model solves the dynamics equations using a semi-implicit
time integration scheme. The number of degrees of freedom is the same as in the diabatic
model and allows to perform significant experiments.

Resolution T62-28 | T170-32 | T254-48 | T340-64
Non linear code 6 18 26 59
Linear (Odyssée) 9 27 39 83
Adjoint (Odyssée) 1100 6200 5700 24700
Adjoint (Optimized) 9 27 39 83

Table 4.5: Memory requirements in Mb per processor for the codes generated by Odyssée
and then optimized manually.

Odyssée produces a Fortran 77 source code for the adjoint but because of memory re-
quirements, it was, at first, impossible to run that code. Table 4.5 shows that, even for
a low resolution, it would require too much memory. The examination of one subroutine,
the subroutine computing the non linear terms in the dynamics equations, shows that the
adjoint code generated by Odyssée contains almost 5 times more lines than the non linear
subroutine (see table 4.6). A more detailed examination of the code shows that it contains
unnecessary computations and saves many variables which are not re-used later in the pro-
gram. It is necessary to remove these lines manually, this almost reduces the number of
lines by a factor of two and reduces the amount of required memory to less than twice the
memory used in the non linear code.

4.3.2 Validation

After removing these lines and inserting the adjoint of the communication and library sub-
routines, the code can be validated. The tangent linear model is tested by comparison with
a finite difference computation using the non linear model. Table 4.7 shows that the tangent
linear model is correct given the precision of the machine. The adjoint is validated using
the following property:

(z,L*Lz) = (Lz, Lz)

RR n° 3555

28 Christéle Faure, Ed.

Subroutine Number of lines
Non linear 137
Linear (Odyssée) 289
Adjoint (Odyssée) 622
Adjoint (Optimized) 348

Table 4.6: Code complexity using Odyssée version 1.6 for one subroutine.

where L represents the linear model and L* the adjoint model. This test was correct up to
the 14th digit at the resolution of T62 with 28 levels integrated over a 6 hours period which
is in agreement with the precision of the computer.

o [F(X+a.s XD[-[[FCO]
al|dF (X6 X)||
1.E+01 | 2.0085639584235575
1.E-01 | 1.0081838481942076
1.E-03 | 1.0000816532699321
1.E-05 | 1.0000008164164176
1.E-07 | 1.0000000017818156
1.E-09 | 0.9999994058365377

Table 4.7: Test of the linear model (T62-28) with 28 processors.

4.4 Conclusion

Using Odyssée to write the adjoint of a numerical weather forecast model is not yet fully
automatic. Some steps have to be carried out manually such as the description of the
communication subroutine for which the system cannot perform the dependency analysis
and the removal of unnecessary computations and saving of variables. For the computational
part of the code, Odyssée can perform the dependency analysis and can reliably reverse the
order of the lines and transpose each line, which are very long and error prone tasks. It is
interesting to note that Odyssée generates correct calls to the adjoint of the communication
and library subroutines, only the adjoint subroutines have to be provided.

The adjoint obtained with Odyssée is currently being used to test some minimization
algorithms in order to implement a four dimensional variational data assimilation algorithm.
The adjoint of the physics packages of the model has to be included in this code, since these
subroutines are long and evolve often, Odyssée should bring even more to the process of
developing and testing their adjoint. In the same time, strategies for storing or recomputing
the trajectory and the performance of the generated code on a parallel computer have to be
evaluated.

INRIA

Automatic Differentiation for adjoint code generation 29

Some other tools may be useful for the development of the adjoint of large codes such
as the possibility to include different strategies for saving or recomputing the trajectory,
recognizing linear computations in the generation of the adjoint and the removal of unnec-
essary code. But this experiment shows that the adjoint of a parallel code can be developed
relatively easily using the latest automatic differentiation tools. This allows scientists to
experiment with 4DVAR algorithms using the most powerful computers available and to
focus on the important aspects of the problem rather than writing the adjoint line by line.

RR n° 3555

30

Christéle Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 31

Comparison of automatically
generated code for evaluation of
first and second order derivatives
to hand written code from the
Minpack-2 collection

Ralf Giering and Thomas Kaminski

ralf@trough.mit.edu

Center for Global Change Science
Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA.

kaminski@dkrz.de

Max-Planck-Institut fiir Meteorologie
Bundesstr. 55, 20146 Hamburg, Germany

Adjoint models are increasingly being used in computational fluid dynamics (CFD), in
particular in meteorology, oceanography, and climate research. Typical applications are
data assimilation, model tuning, and sensitivity analysis. Both data assimilation and model
tuning derive a set of control variables that achieves an optimal degree of consistency be-
tween simulated and observed quantities. Thereby the degree of consistency is quantified
by a scalar valued misfit or cost function, which is defined trough the (usually large and

RR n° 3555

32 Christéle Faure, Ed.

complex) numerical model of the system under consideration. The cost function can be
minimized most efficiently by use of powerful iterative gradient algorithms [24], if first order
derivatives can be provided. Applying the reverse mode of automatic differentiation (AD)
adjoint code evaluates this first order derivative or gradient (see introductory section). To
analyze the uncertainties in the inferred optimal values of the control variables, second order
derivates of the scalar valued cost function are of interest. Since, usually, the number of
control variables is large, evaluation of the full second order derivative, i.e. the Hessian
matrix, is prohibitively expensive. However, Hessian vector products are relatively cheap
and provide a module to evaluate certain properties of the Hessian matrix. For example the
best constrained directions are the leading eigenvectors of the Hessian matrix and can be
determined iteratively by Lanczos type algorithms.

In practise, these adjoint applications are based on models that have been previously
developed and applied for simulation of the system under consideration, i.e. the designers
of these models did not necessarily have adjoint applications in mind. Typically these
models are written in Fortran, more precisely some Fortran dialect in between Fortran 77
and Fortran 90, with a recent tendency towards Fortran 90. These models typically run on
super computers close to the limit of resources in terms of both memory and CPU time.
Since the abovementioned applications (except for sensitivity analysis) require multiple runs
of the adjoint models, it is obvious that efficient use of computer resources by the adjoint
code is a necessary condition for executing the generated adjoint models.

During the eighties and early nineties adjoints of CFD models have been hand coded.
This task, however, is extremely error prone and time consuming. Furthermore the strategies
that have been used made the adjoint code inflexible to changes in the model code. As a
consequence, development of adjoint models was rare and usually limited to simplified models
[47, 41]. The adjoint of the atmospheric model applied for (4d-var) data assimilation at the
ECMWF constitutes an exception: it has been constructed and is maintained by hand.
However construction of the adjoint seems to have taken almost a decade and has started
before AD tools were well enough developed to tackle this challenge. Code for evaluation of
second order derivatives, as a consequence of its even larger degree of complexity, has not
been hand written for large scale applications [6].

Recently a number of AD tools are being developed that are capable of generating adjoint
code (Odyssée [40], GRESS [29], TAMC [20], see also other contributions to this document).
Other tools operating in reverse mode are employing operator overloading capabilities of
C*+ or Fortran-90 (ADOL-C, AD01, ADOL-F, IMAS, OPTIMA90) [4].

TAMC (Tangent linear and Adjoint Model Compiler, [20]) is a source-to-source translator
for Fortran programs to generate derivative computing code operating in forward or reverse
mode. The internal algorithms are based on a few principles suggested e.g. by Talagrand [45].
These principles can be derived from the chain rule of differentiation [21]. TAMC applies a
number of analyses and code normalizations similar to those applied by optimizing compilers
(constant propagation, index variable substitution, data dependence analysis). In addition,
given the top-level routine to be differentiated and the independent and dependent variables,
by applying a forward/reverse data flow analysis TAMC detects all variables that depend

INRIA

Automatic Differentiation for adjoint code generation 33

on the independent variables and influence the dependent variables (active variables). This
is in contrast to operator overloading based tools, where the user has to determine active
variables and to declare them to be of a specific data type. TAMC can handle all but very
few relevant Fortran 77 statements and an increasing number of Fortran 90 extensions, check
the latest manual version on the TAMC home page [19] for the current state of development.

Recently, TAMC has been successfully applied to generate the adjoint codes of an in-
creasing number of large and complex CFD codes [32, 43, 48, 15]. A mayor challenge of
adjoint code is providing intermediate results required, e.g. to evaluate derivatives of non
linear operations. Efficient adjoint code uses a combination of recalculating and restoring
from a tape written previously; both strategies can be applied by TAMC. For generation
of recalculations a reverse data flow analysis is applied, and, as far as possible, only state-
ments being absolutely necessary are inserted into the adjoint code. Concerning this key
issue for generation of efficient derivative code, TAMC is unique among the AD tools. For
the abovementioned applications checkpointing schemes have been implemented semi au-
tomatically by TAMC. The checkpointing technique allows to use the available resources
for storing intermediate results more efficiently at the cost of an additional model run and
is indispensable for these large applications [25]. For some applications even a multi level
checkpointing is necessary. Depending on the level of checkpointing, the run time of the
adjoint code is in between a factor of 3-6 of that of the model. Thereby the pure derivative
code (without the additional model evaluations) is in between a factor of 1-3 of that of the
model. See the TAMC home page [19] for more details on the adjoints of these models.

TAMC generates code to compute second order derivates operating in the so-called for-
ward over reverse mode (FOR), i.e. the first order derivative is computed in reverse mode
and the second order derivative in forward mode. The constructed code computes Hessian
times vector products or the full Hessian. Alternative approaches use the forward over for-
ward mode (FOF) or Taylor series expansion (TSE) [1]. For scalar valued functions FOR
is much faster, and the relative run time is independent of the number of control variables,
while the cost of FOR and TSE increases with this number. In theory, a relative run time
below 10 should be attainable [26].

Although for the abovementioned applications, in theory, adjoint models also could have
been hand coded, probably, in practise, without AD none of these applications would have
been possible. This means in particular that there exist no hand coded counterparts to
compare the automatically generated adjoint code to in terms of efficiency. Hence, for
this purpose we employed the Minpack-2 test problem collection [2]. For each problem the
collection contains hand written code to compute a scalar valued function, its gradient, and
the product of its Hessian times a vector. The number of independent variables can be
chosen arbitrarily.

We selected six problems that are representative of small to medium scale optimization
problems arising from applications in superconductivity, optimal design, combustion, and
lubrication. Table 5.8 gives the list of problems and their number of Fortran code lines.

The code for function evaluation has been differentiated by TAMC to generate code for
evaluation of the gradient (adjoint code). The comparison has been carried out on two

RR n° 3555

34 Christéle Faure, Ed.

name | lines | short description |

ept 51 | elastic-plastic torsion

ssC 54 | steady state combustion

pjb 61 | pressure distribution in a journal bearing

gll 70 | Ginzburg-Landau (1-dimensional) superconductivity
msa 90 | minimal surface area

gl2 111 | Ginzburg-Landau (2-dimensional) superconductivity

Table 5.8: Names of Minpack-2 problems and their number of code lines

machines, a Sun Ultra-1 and a Cray C90. To allow a fair comparison on the Cray C90,
the performance of the hand written code has been improved by inserting vectorization
directives and moving conditional statements out of the inner most loop. The codes have
been compiled by the vendors Fortran compiler with the precision and compiler options
given in Table 5.9.

| platform | precision | Fortran command line |

Sun Ultra-1 | double precision | f90 -O2
Cray C90 double precision | f90 -O inline3,scalar3,vector3,task0

Table 5.9: Precision and compiler options used on platforms.

The results for evaluation of the gradient codes are depicted in Fig. 5.2 for Sun Ultra-1
and in Fig. 5.3 for Cray C90. For every test problem the relative run time, i.e. the run time
of the gradient code compared to the run time of the function code, has been calculated for
different numbers of independent variables. On Sun Ultra-1 the hand written code is in four
cases slower than the TAMC generated code (GL2,SSC,GL1,EPT). However, a remarkable
difference can only be seen for the GL2 problem, in all other cases differences are small.
A nested loop in the function computing code of GL2 is split into three loops in the hand
written gradient code: one for interior points of the domain and two for boundary points.
This has been common practice in hand written adjoint codes. In contrary, TAMC does
not split the loop; instead interior and boundary points are handled simultaneously as is
implied by strict application of the rules TAMC is based on [21]. In all cases, the changes
of the relative run time with the dimension of the problems (the number of independent
variables) are very small. On a Sun Ultra-1 performance is compromised by cache misses.
Their number depends mainly on the memory needed for all variables in a loop compared
to the cache size. For non-linear operators, this ratio is different for function and gradient
code. This explains the spikes at certain problem sizes.

The differences in relative run time are also small on a Cray C90, except again for the
GL2 problem. Here, in most cases, the relative run time increases slightly with the problem

INRIA

Automatic Differentiation for adjoint code generation 35

gradient to function time ratio (gl2 on sun) gradient to function time ratio (ssc on sun)

25 1.25
2 1 T
i) o
g g
] 1 TASfe - m L o= =]
1 11
0 05 1 1.5 2 25 0 0.5 1 1.5 2 25
dimension [1.e5] dimension [1.e5]
gradient to function time ratio (pjb on sun) gradient to function time ratio (gl1 on sun)

0 0.5 1 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]

gradient to function time ratio (ept on sun) gradient to function time ratio (msa on sun)

\ —— hand coded
TAMC

ratio

7~ - _ - -

05 . 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]

Figure 5.2: Relative run time of gradient code on Sun Ultra-1 (x-axis is the number of
control variables).

size.

Some recalculations in the adjoint code are independent of the problem size. If they,
for small sizes, constitute a mayor part of the whole calculations the ratio is almost one.
For large sizes the run time of the adjoint code is dominated by updating adjoint variables.
Thus, the ratio depends on the complexity of the non-linear operations in the corresponding
function code. On vector machines like the Cray C90 run time depends mainly on the
efficient use of vector pipes. For these test problems the effective vector length increases
with the number of independent variables. Thus, on a Cray C90, in contrary to the Sun
Ultra-1, the abovementioned transition to dominance of updating adjoint variables is at
higher problem sizes.

The Hessian times vector code has only been compared on the Sun Ultra-1. The results
depicted in Fig. 5.4 show the relative run time of the Hessian times vector code compared to
the run time of the original function code. Only in one case (GL2) is the TAMC generated

RR n° 3555

36 Christéle Faure, Ed.

gradient to function time ratio (gl2 on cray) gradient to function time ratio (ssc on cray)

25

ratio

0 05 1 1.5 2 25 0 0.5 1 1.5 2 25
dimension [1.e5] dimension [1.e5]
gradient to function time ratio (pjb on cray) gradient to function time ratio (gl1 on cray)
18
o e |r~e-77 T
< gLy
1 L L L L 1.4 L L L L
0 05 1 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]

gradient to function time ratio (ept on cray) gradient to function time ratio (msa on cray)

2 — 2
sl 70 4 '
= ’ .
— 7
8 .
1 ///
1.4 —— hand coded
,’ - - TAMC
0.5 . . L . 1.2 L N
0 0.5 1 15 2 25 0 0.5 1 15 2 2.5
dimension [1.e5] dimension [1.e5]

Figure 5.3: Relative run time of gradient code on Cray C90 (x-axis is the number of control
variables).

code faster than the hand written code. As for the gradient code, the hand written version of
the Hessian times vector code for the GL2 problem splits a nested loop into three loops. But
the run time penalty for this splitting is much more pronounced: the TAMC generated code is
about a factor 2 faster! For the other problems, the TAMC generated code is slower, because
TAMC generates some initializations of adjoint variables to zero that could be omitted by
combining them with subsequent assignments to the same variable. Although humans can
easily detect these cases, automatization can become arbitrarily complex, because it might
involve comparison of array subscript expressions.

In summary, the efficiency of TAMC generated adjoint code and Hessian times vector
code is comparable to that of their hand written counterparts. In detail, the results depend
on particular features of the computer and on the compiler that are used and also on details
of the implementation of both the particular function to be differentiated and the hand

INRIA

Automatic Differentiation for adjoint code generation 37

hessvec to function time ratio (gl2 on ultral0) hessvec to function time ratio (ssc on ultral0)
25 T T T T T T T 1.8 T T T T - - T
—— hand coded
20 ”& 16 - TAMC fw-rv 1
) R il
*§ 15 1 1.4 1
Of-~=_ o ______ E 1.2
5 1 N
0 0.2 0.4 0.6 0.8 1 12 1.4 16 0 0.2 0.4 0.6 0.8 1 12 1.4 1.6
hessvec to function time ratio (pjb on ultral0) hessvec to function time ratio (gl1 on ultral0)
3 T T T T T T T 3 —— —_— - .
T A S p——
p
25 PR -~] -
e S - - -~ T~ 25

2

15 /_/\—_J \//_\/__

ratio

1 15
0 0.2 0.4 0.6 0.8 1 1.2 14 16 0.2 0.4 0.6 0.8 1 1.2 1.4 16
hessvec to function time ratio (ept on ultral0) hessvec to function time ratio (msa on ultral0)
3 4.5
2
o
§ 4
1
0 35
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
dimension [1.e5] dimension [1.e5]

Figure 5.4: Relative run time of Hessian times vector code on Sun Ultra-1.

written derivative code. TAMC is available through its home page [19] or by electronic mail
to its designer (ralf@sea.mit.edu).

RR n° 3555

38

Christéle Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 39

A Hierarchical approach in
automatic differentiation

Marco Mancini

mancini@parcolab.unical.it

Parallel Computing Laboratory
Department of Electronics, Computer Science and Systems,
University of Calabria
87036 Rende (CS) - Italy

Automatic Differentiation (AD) of computer programs is based on the systematic ap-
plication of the chain rule; the associativity of the chain rule allows derivative propagation
to be performed at arbitrary levels of abstractions (i.e., scopes of differentiation), such as
binary operations, assignment, basic block, The higher is the scope of differentiation,
the more efficient could be the code for computing derivatives.

Several techniques have been proposed to exploit the program structure and the asso-
ciativity of the chain rule. Among them, the hierarchical approach to AD [7] seems to
be a powerful methodology to design efficient AD algorithms. In this paper, we present a
hierarchical approach to AD, based on the following features:

e The program graph is partitioned in extended basic blocks (EBB), where each EBB
consists of assignments and if statements. For each block, information about the data
flowing in and out is collected at compile time.

e Each EBB is differentiated ignoring surrounding computations and the EBB derivative
sparsity patterns are exploited in order to reduce the derivative code complexity. The
chain rule is used at this level of granularity to propagate the global derivatives with
respect to the inputs of the program.

e A context-sensitive strategy has been used to choose between approaches working at
different scopes of differentiation (assignment level, EBB level).

RR n° 3555

40 Christéle Faure, Ed.

We have implemented the above approach by using AIF [8], a language-independent
intermediate format that makes it easier to experiment with new differentiation algorithms.
The computational results show performance gains of the proposed techniques compared
with existing approaches.

6.1 Introduction

For a general function f : R™ — R™, the reverse mode and the forward mode are not
necessarily optimal strategies for generating its derivatives. The optimal strategy depends on
the program structure and on the memory and time constraints. The hierarchical approach
(HAD) described in [7] defines a methodology to exploit the program structure for generating
more efficient derivative codes.

The HAD is based on partitioning the program graph at several levels of abstraction;
for each “differentiation partition”, the derivatives of this program fragments are computed
ignoring surrounding computations and applying the chain rule at this level of granularity.

Whenever we can identify a piece of program whose number of input arguments is smaller
than the number of independent variables for differentiation (i.e., interface contraction [30]),
the independent differentiation of these program pieces is likely to decrease the derivative
complexity in a global forward-mode approach. Context-sensitive strategies play a crucial
role in order to detect an interface contraction.

Several information must be provided in order to apply an HAD strategy; the following
information could be obtained by using data flow and dependence analysis (or by user
directives):

e The number of variables that pass in and out of a program fragment; we denote by I
the set of the input variables and by O the set of the output variables of a program
segment.

e The number of floating-point operations, the degree of derivative sparsity of a program
segment. This information is useful to estimate the derivative costs and to propagate
derivatives.

For each code fragment, the HAD propagates derivatives following these two steps:

[é]

Step 1: Preaccumulation of local derivatives : We compute the derivatives ag‘_’ , Vo, €

O,Vv; € I, considering the variables belonging to I to be independent.

Step 2: Accumulation of global derivatives : The global gradients of each v, are ac-
cumulated. When using the forward mode for global propagation of derivatives, this
is done as follows:

v,
Vi, = 3 5V, Y, € 0
v, el

INRIA

Automatic Differentiation for adjoint code generation 41

Stmtl vl = a;

Stmt2 if (flag) vl = bx2;
Stmt3 v2 = c*c;

Stmt4 w = vixv2 + c;

Stmts Z = v2%*a;

Figure 6.5: Example code.

In order to establish whether a preaccumulation strategy is convenient, we can use an
adaptive strategy that, based on a computational model, estimates the derivative cost, which
depends on the particular structure of the program segment and on the number of global
derivatives to be computed.

6.2 A HAD Algorithm

As an explanatory example of our HAD augmentation strategy, we consider the extended
basic block in Figure 6.5, which we assume to be one partition of a more general program.

The sets representing the data flow information related to this program segment are the
following;:

e {a,b,c}: set of input variables.
o {w,z}: set of output variables.
e {v1,v2}: set of temporary variables whose value is not used thereafter.

Our strategy is based on a global forward mode approach. The local derivatives are
computed by differentiating each assignment statement being in the extended basic block
(e.g., they can be propagated by using the forward-reverse mode, such as in ADIC [§8]) and
then the global derivatives are propagated by using the chain rule in the forward mode.

During the preaccumulation of the local derivatives, we exploit the derivative sparsity
patterns. Likely, most of the temporary variables and output variables of the code segment
depends only on a subset of the input variables.

Taking into account the flow data dependences among the variables (the data dependence
graph of the EBB in Figure 6.5 is reported in Figure 6.7), we can just propagate the deriva-
tives that are not “zero”. When if-statements are in the EBB, conservative assumptions are
made during the data dependence analysis. Referring to the example code in Figure 6.5, the
variable v1 can depend on b, according to the value of flag. If the value of flag is known

vl
only at run-time, we assume that v1 depends on b; thus, we propagate 55 even if it can

be zero at run-time.

RR n° 3555

42

Christéle Faure, Ed.

/* Stmtl Preaccumulation Step */
ovi

== =y
Oa
ot _ .
Ob ’
vl = a;
/* Stmt2 Preaccumulation Step */
if (flag)
{
ovil
= = o;
Oa
ovi
_ " = 2;
Ob
vl = b*2;
}

/% Stmt3 Preaccumulation Step */
ov2

dc

V2 = c*c;

= 2%c;

/* Stmtj Preaccumulation Step */

@ = 2*% .
Oa v fa’
@ = 2*% .
T T
ow Ov2
& = 1+V1*_8c B

w = vi*v2 + c;

/* Stmt4 Accumulation Step */

Ow

1 — 1=
if (6b 1= 0)

Vu = %*Va+%*Vh+%*Vc
else

Oow Oow

Vu = 5;*Va+52*Vc
/* Stmt5 Preaccumulation Step */
Oz
5; = v2;
Oz ov2
— = ak——;
Oc Oc
z = v2*a;

/% Stmts Accumulation Step */
Vz = %*Va + %*Vc;

Oa Oc

Figure 6.6: Derivative code obtained by augmenting the example code in Figure 6.5 via a

hierarchical approach.

INRIA

Automatic Differentiation for adjoint code generation 43

Stmt5

w z

Figure 6.7: Data dependence graph of the variables for the example code in Figure 6.5.
Following the paths from the input variables to each of the other variables we can figure out
the derivative sparsity patterns.

The derivative code reported in Figure 6.6 is obtained by augmenting the code fragment
in Figure 6.5 by using the approach outlined above.

The following two considerations have motivated the use of the if-statement related to
the Stmt4 Accumulation Step (see Figure 6.6):

e if flagis true then the variable v1 depends on b. This means that Vw must be updated
taking into account the contribution of Vb.

o if flag is false then the variable v1 does not depend on b. In this case, for updating
Vw it is necessary to not consider the contribution of Vb.

The above considerations are necessary for the correctness of the derivative code. Let us
assume that b is defined before the EBB only if flag is true. In this case, also Vb is defined
only if flag is true. Thus, we must update Vw without taking into account Vb in order to
generate a correct derivative code when flag is false.

ow
In order to distinguish between the two cases at run-time, we check whether 5p 18 zero.

If it is not zero, we are sure that w depends on the variable b and in this case flag is true.
Instead, if it is zero, then either w does not depend on b (flag is false) or there has been
numerical cancellations during the preaccumulation step; in any case, without taking into
account the contribution of Vb, we obtain a correct derivative code. Moreover, we can note

0z
that since z does not depend on the variable b, the value of — is not checked since it is

always zero. The last optimization has been possible due to the exploitation of the derivative
sparsity patterns during the preaccumulation step.

RR n° 3555

44 Christéle Faure, Ed.

6.3 Implementation Issues

In order to implement the strategy described in the preceding section, we have adopted a
source-to-source transformation approach.

The main advantage of this approach is to provide great flexibility in implementing
sophisticated algorithms, since the entire program context is available at compile time; thus,
it is possible to exploit the program structure and the associativity of the chain rule.

The main drawback is that the development of robust source transformation tools re-
quires a substantial effort. In order to make it easier to experiment with AD algorithmic
techniques, the AIF [8], Automatic Differentiation Intermediate Form, was developed. AIF
acts as a “glue layer” between a language-specific front-end and a language-independent
transformation module that implements AD transformations at high level of abstractions.
The AIF-based module, implementing the hierarchical approach, has been developed follow-
ing schemes similar to ones reported in [1] and has been interfaced with the ADIC front-end.

6.4 Numerical Test

In our computational experiments, we have considered the Flow in a Driven Cavity function
belonging to the MINPACK-2 test problem collection [2]. Since the code implementing the
function is written in Fortran, it has been converted in C before augmenting it.

We have compared three methods for the computation of the Jacobian of the test func-
tion:

o the forward-reverse mode of ADIC (ADIC);
e the hierarchical approach without exploiting sparsity (HAD-FM);

e the hierarchical approach by exploiting sparsity (HAD-SFM).

The related results are reported in Figure 6.8.

The computational results show that methods based on a hierarchical approach are more
effective than monolithic approaches, when they lead to an interface contraction. The HAD-
FM method is less efficient than the ADIC approach when the number p of global derivatives
is less than 10. Indeed, for p < 10, HAD-FM leads to an interface expansion.

On the other hand, the HAD-SFM method outperforms the ADIC approach even for
p = 1, showing the benefits that could be achieved by using context-sensitive differentiation
strategies.

INRIA

Automatic Differentiation for adjoint code generation 45

60.0
—— ADIC
HAD-FM
g —-— HAD-SFM
£
5
2 400 ¢ 1
>
©
>
[N}
c
S
B
c
Z
£ 200 g
3
I R -
& T T
N e
0.0 ‘ ‘

0.0 20.0 40.0 60.0 80.0
Number of Directional Derivatives

Figure 6.8: Results of application of hierarchical approaches to flow in a driven cavity
problem.

RR n° 3555

46

Christéele Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 47

The cross-country elimination
problem in computational graphs

Uwe Naumann

naumann@math.tu-dresden.de

Institute of Scientific Computing
Technical University Dresden.

The chain rule can be applied to computational graphs representing a vector function
F : R" D D — IR™ in any arbitrary order resulting in different operations counts for
the calculation of the Jacobian matrix J. The minimization of the number of arithmetic
operations, which are required for the computation of J, leads to a computationally hard
combinatorial optimization problem. The Jacobian matrix can be expressed as a chained
matrix product with factors representing the local extended Jacobians associated with each
single intermediate variable. A dynamic programming algorithm can be used for the mini-
mization of the cost of computing this product.

7.1 Objective

The calculation of derivatives of a vector function F(z)
by automatic differentiation is based on the application
of the chain rule, which can be employed in various ways.
Two special interpretations of this rule will lead to the
well-known forward and reverse modes of automatic dif-
ferentiation. In general, it serves as the basis for the
so-called cross-country elimination approach, which mo-
tivates the research leading to the results desribed in this

paper.

Cij * Cjs
Cij * Cjr

Figure 7.9: Edge (F)

RR n° 3555

48 Christéle Faure, Ed.

Based on the graph representation of F(z) we re-
quire a method of transforming the computational graph
CG(F) in a way that we get an equivalent representa-
tion of J(x). In fact, this can be done by successively eliminating all vertices representing
intermediate variables in the underlying evaluation program for F(z), which is equivalent
to eliminating all edges having either an intermediate vertex as source or having such a
vertex as target or both, i.e. all intermediate edges. Thus, we get to a stage where the
computational graph corresponding to this evaluation program represents a subgraph of the
complete bipartite graph K, ,, and the labels

cji = for 1 =0,..,n and j=0,....m

9.
61‘1' Yi

on the edges connecting the minimal vertices (representing the independent variables) with
the maximal ones (dependent variables) are exactly the non-zero entries in J(z).

7.2 Tools

Let the global extended Jacobian for a computational graph CG(F) of a vector function F
evaluated at the argument x, € IR be defined as

B’U' .
L € P
R(ntptm)X(ntptm) 5 J.(F) = (c)i with ¢;; = < 9% (o) ‘
0 otherwise

where ¢;; is the local partial derivative labeling the edge

which connects vertices v; with v; in the computational Q @)
graph. Here, CG(F') contains p intermediate vertices for
agiven F : R" O D — IR™. P; [S;] denotes the set of

Cij * Cks

indeces of vertices preceding [succeeding] v; in CG(F).
Obviously, J. is a square upper triangular matrix pro-
vided the numbering of the vertices in CG(F') induces a
topological ordering with respect to dependency.

The process of calculating the complete Jacobian may
be regarded as a combined intermediate vertex-edge elim-
ination procedure on CG(F') with an analogous transfor- Figure 7.10: Edge (R)
mation process of J.(x). The elimination of an intermedi-
ate vertex v; from the computational graph is performed by connecting each of its predeces-
sors with each of its successors (provided they have not been connected before as we do not
allow multiple edges) followed by updating the existing or generating the new elementary
partial derivatives labelling the edges and, finally, the deletion of v;. An edge (¢,7) which
connects two intermediate vertices v; and v; is forward [backward] eliminated by connecting
all predecessors [successors] of v; [v;] with v; [v;]. Again, we update the local sensitivities

¢y + ¢ij - ¢y

INRIA

Automatic Differentiation for adjoint code generation 49

correspondingly and remove (i, j) from the graph. This may lead to the vanishing of v; (v;)
if (i,7) was its only outedge [inedge].

As mentioned above, there is an equivalent for each of the three actions in the computa-
tional graph in terms of a transformation on J.(z).

e Forward elimination of an edge (i,j) (Figure 7.9)
Je:=J. +ejel Jeese] (Jo —I)
=J. + eje;‘réiCi — eje;‘-FJeeie;fF
e Reverse elimination of an edge (¢, j) (Figure 7.10)
Je:=Je+ (Jo — Ieje] Jeeie]

~ T T T
=J.+C;Cieie; — eje; Jeeie;

e Elimination of a vertex v; (Figure 7.11)
Je:=UI—- e,-eiT)(Je + éiCi)(I - eieiT)
= (I —e;el)J(I + e;el J)(I — ezel)
= (I —eie])(I + Jeeiel) J.(I — esel)
The extended local [adjoint] Jacobian C; [C;] contains the sensitivities of v; with respect

to each of its predecessors [the successors of v; with respect to v; itself]. I is the (n+p+m) x
(n + p + m)-identity matrix and e; denotes the corresponding i-th cartesian basis vector.

7.3 Problem

So far, we have introduced our goal in the form of an
equivalent for the Jacobian matrix and we have described v
three basic actions for getting to this stage. However, v
which problem arises from the above setup?

Let us denote the number of edges leading into [ema-

nating from| a vertex v; by |P;| [|S;|]. Then the elimina- ,; & G ¢y - ¢js
tion of an intermediate vertex v; involves exactly | P;|-|.S;]

multiplications each one possibly followed by an addition. v,

Thus, the above product, which we will refer to as the /
Markovitz degree, is a characteristical value for ev- vr

ery vertex describing the cost of eliminating it from the
computational graph. Analogous, one observes that the
forward [backward] elimination of an edge (3, 5) takes |P;| [|S;|] multiplications, again, each

Figure 7.11: Vertex

RR n° 3555

50 Christéle Faure, Ed.

of them possibly followed by an addition. This leads to the definition of the forward [back-
ward] Markovitz degree of an edge. Notice, that the Markovitz degree is not a static
value but changes with the ongoing elimination of vertices and edges.

Building on work of Rose and Tarjan [39] Herley showed in an unpublished paper that
the computation of a vertex elimination sequence minimizing the number of newly generated
edges (fill-in) in the computational graph of a vector function is an NP-hard combinatorial
optimization problem. Although, there is no proof for it so far we expect the same property
to hold for the closely related problem of minimizing the number of multiplications required
to accumulate the complete Jacobian matrix of a general vector function F(z).

The successive elimination of edges from the computational graph defines the so-called
metagraph M = M(CG) = (Vu, En) the vertices of which represent all different com-
putational graphs that can be obtained by applying the general edge elimination strategy.
If there are p > max{m,n} intermediate vertices in CG(F') then an upper bound for the
number of vertices in M (although not a very good one for practical cases) is given by 2(5).
Denoting the number of egdes in the transitive closure of CG by E* we get 2/Z°| as a tighter
upper bound for the number of vertices in the metagraph M. The task is to solve a short-
est path problem in the metagraph, which can be done using for example the algorithm by
Bellman and Ford in a time that is proportional to O(|Vas|, |Ea|)- The difficulties arise from
the fact that both the number of vertices
and the number of edges in the metagraph
depend on the number of intermediate ver-
tices in the original computational graph
exponentially. Thus, both an exhaustive
search and any algorithm for computing a
shortest path in the complete metagraph
are not practicable. In order to decrease
the complexity of the general edge elim-
ination problem to solve one has to put
certain restrictions on the metagraph, thus
reducing both the number of its nodes and
the number of different paths to check. This
will lead to subgraphs which are then sub- Figure 7.12: Vertex Elimination
ject to an analogous shortest path problem.

An example is the restriction to the process of successively eliminating vertices from
CG(F). This approach has been exploited in several papers in order to minimize the overall
operations count for computing Jacobians ([28] and [5]). Obviously, for a problem in p inter-
mediate variables there are exactly p! different elimination orderings. The vertex elimination
strategy leads to a subgraph of the metagraph shown in Figure 7.12. The number of vertices
in the vertex metagraph (which are exactly those vertices w; € M that are reachable by
a pure vertex elimination strategy) is equal to 2P where p is the number of intermediate
vertices in the original computational graph. The cost of computing the Jacobian using a
certain vertex elimination ordering is equal to the sum over all Markovitz degrees of the

INRIA

Automatic Differentiation for adjoint code generation 51

intermediate vertices at the stages w;;) € M of their elimination:

Cost{J(z)} = Z mark;;y(v;) (overall Markovitz degree) (7.6)
1<j<p

The problem of minimizing this cost by determining a corresponding optimal vertex elimi-
nation ordering is called a vertex elimination problem. It is equivalent to the solution
of a shortest path problem on the subgraph of the metagraph induced by the restriction to
the elimination of vertices.

However, concentrating on the vertex elimination problem will not solve our general
problem which was to determine a method for accumulating the Jacobian using a minimal
number of multiplications. One can show that there are situations where the optimal vertex
elimination sequence does in fact not minimize our objective function Cost{J(z)}. In order
to be able to find this optimum one has to solve the general edge elimination problem
including both the possibilities to eliminate edges forward and backward.

We conjecture that the minimal number of multiplications (from the best edge elimina-
tion ordering) differs from the number required by the optimal vertex elimination sequence
by a small constant factor. Therefore, it certainly does make sense to consider the "simpler"
problem of eliminating whole vertices.

7.4 Solution

Remember, that labelling the edges in the metagraph M with the cost (the number of
multiplications) of getting from the graph represented by their source to the one associated
with their target we end up with a shortest path problem on a graph in which the number of
vertices depends on the number of intermediate vertices in the original computational graph
exponentially. Thus, we have to think about certain restrictions, reducing the number of
different paths to check. This will lead to subgraphs, which are then subject to an analogous
shortest path problem while having a smaller size than the original metagraph.

Apart from the restriction to vertex elimination, which still results in an NP-hard problem
there are numerous other ways to decrease the size of the metagraph. For example, with the
terminology introduced in Section 7.2 we have a representation of the complete Jacobian J as
a chained matrix product with factors representing the local extended Jacobians associated
with each single intermediate variable given by

J=Qm(Cppm + I —€pymeny) (CL+1—eref)Py

where P, and @),, are the matrices that project a given vector of length n+ p+m to its first
n and its last m components, respectively. Using a dynamic programming algorithm one
can determine a parenthesization which minimizes the number of multiplications required
for the calculation of the above chained matrix product. Still, this does not deliver a solution
to the general edge elimination problem. Due to the hardness of the optimization problem
heuristics for finding the elimination ordering will play an important role in the search for
a solution.

RR n° 3555

52

Christéele Faure, Ed.

INRIA

Automatic Differentiation for adjoint code generation 53

Bibliography

[1] J. Abate, C. Bischof, A. Carle, and L. Roh. Algorithms and design for a second-
order automatic differentiation module. In Int. Symposium on Symbolic and Algebraic
Computing (ISSAC), pages 149-155. Association of Computing Machinery, New York,
1997.

[2] B. M. Averick, R. G. Carter, J. J. More, and G.-L. Xue. The Minpack-2 Test Problem
Collection. Preprint MCS-P153-0692, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Ill., 1992.

[3] M. Berz, C.H. Bischof, G.F. Corliss, and A. Griewank, editors. Computational Differ-
entiation: Applications, Techniques, and Tools. STAM, Philadelphia, 1996.

[4] C. Bischof. A collection of automatic differentiation tools.
URL=http://www.mcs.anl.gov/Projects/autodiff/AD_Tools/index.html.

[5] C. H. Bischof. Hierarchical approaches to automatic differentiation. In [3], pages 83-94.

[6] C. H. Bischof, G. F. Corliss, L. Green, A. Griewank, K. Haigler, and P. Newman.
Automatic differentiation of advanced CFD codes for multidisciplinary design. Journal
on Computing Systems in Engineering, 3:625-638, 1992.

[7] C. H. Bischof and M. R. Haghighat. Hierarchical approaches to automatic differentia-
tion. In [3] pages 83-94.

[8] C. H. Bischof, L. Roh, and A. Mauer. ADIC: An Extensible Automatic Differentia-
tion Tool for ANSI-C. Preprint MCS-P626-1196, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, Ill., 1996.

[9] A. Carle, M. Fagan, and L. Green. Preliminary Results from the Application of Auto-
matic Adjoint Code Generator to CFL3D. In 7th AIAA/USAF/NASA/ISSMO Sym-
posium on Multidisciplinary Analysis and Optimization, 1998.

[10] I. Charpentier. The mesodif package: Algorithmic documentation.
http://www-lmc.imag.fr /~charpent /meteo.html.

RR n° 3555

54 Christéle Faure, Ed.

[11] I. Charpentier. Génération de codes adjoints : Traitement de la trajectoire du modéle
direct. Rapport de recherche 3405, INRIA, April 1998.

[12] I. Charpentier and M. Ghemires. Génération automatique de codes adjoints : Stratégies
d’utilisation pour le logiciel Odyssée. Application au code météorologique Meso-NH.
Rapport de recherche 3251, INRIA, September 1997.

[13] B. Creusillet. Analyses de régions de tableauz et applications. PhD thesis, Ecole des
Mines de Paris, 1996.

[14] B. Creusillet and F. Irigoin. Interprocedural Array Region Analysis. Rapport CRI
A-282, Ecole des Mines de Paris, January 1996.

[15] C. Eckert. On Predictability Limits of ENSO - A Study Performed with o Simplified
Model of the Tropical Pacific Ocean-Atmosphere System. PhD thesis, Max-Planck-
Institut fiir Meteorologie, Hamburg, Germany, 1998.

[16] ECMWE. Use of parallel processors in meteorology: Making its mark, 1996.

[17] F. Eyssette, J.-C. Gilbert, C. Faure, and N. Rostaing-Schmidt. Applicabilité de la
différentiation automatique & un systéme d’équations aux dérivées partielles régissant
les phénoménes thermohydrauliques dans un tube chauffant. Rapport de recherche
2795, INRIA, February 1996.

[18] C. Faure and Y. Papegay. Odyssée Version 1.6. The language reference manual. Rapport
technique 0211, INRIA, November 1997.

[19] R. Giering. Tangent linear and Adjoint Model Compiler home page.
URL=http://puddle.mit.edu/~ralf/tamc.

[20] R. Giering. Tangent linear and Adjoint Model Compiler , Users manual, 1997. Unpub-
lished, available from http://puddle.mit.edu/~ralf/tamc.

[21] R. Giering and T. Kaminski. Recipes for Adjoint Code Construction. ACM Trans.
Math. Software, (212), 1996. in press ACM Trans. On Math. Software.

[22] R. Giering and T. Kaminski. Recipes for Adjoint Code Construction. Technical Report,
ACM TOM 212, Max-Planck-Institut fiir Meteorologie, 1998. in press.

[23] J.-C. Gilbert. Automatic differentiation and iterative processes. Optimization Methods
and Software, 1:13-21, 1992.

[24] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Pres, New
York, 1981.

[25] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optimization Methods and Software, 1:35-54, 1992.

INRIA

Automatic Differentiation for adjoint code generation 55

[26] A. Griewank. Some bounds on the complexity of gradients, Jacobians, and Hessians.
In Panos M. Pardalos, editor, Complexity in Nonlinear Optimization, pages 128-161.
World Scientific Publishers, 1993.

[27] A. Griewank and G.F. Corliss, editors. Automatic Differentiation of Algorithms: The-
ory, Implementation, and Applications. SIAM, Philadelphia, 1991.

[28] A Griewank and S Reese. On the calculation of jacobian matrices by the markowitz
rule. In [27], pages 126-135.

[29] J. E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs.
In [27], pages 243-250.

[30] P. Hovland, C. H. Bischof, D. Spiegelman, and M. Casella. Efficient derivative codes
through automatic differentiation and interface contraction: an application in biostatis-
tics. Preprint MCS-P491-0195, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Ill., 1995.

[31] Morgenstern. J. How to compute fast a function and all its derivatives, a variation on
the theorem of Baur-Strassen. SIGACT News, 16:60-62, 1985.

[32] T. Kaminski, R. Giering, and M. Heimann. Sensitivity of the seasonal cycle of CO5 at
remote monitoring stations with respect to seasonal surface exchange fluxes determined
with the adjoint of an atmospheric transport model. Physics and Chemistry of the
Earth, 21(5-6):457-462, 1996.

[33] K. Kubota. PADRE2 - FORTRAN precompiler for automatic differentiation and esti-
mates of rounding errors. In [3], pages 463-471.

[34] J. P. Lafore, J. Stein, N. Ascencio, P. Bougeault, V. Ducrocq, J. Duron, C. Fischer,
P. Héreil, P. Mascart, V. Masson, J.-P. Pinty, J.-L. Redelsperger, E. Richard, and
J. Vila-Guerau de Arellano. The Meso-NH atmospheric simulation system. part I:
adiabatic formulation and control system. Ann. Geophysicae, 16:90-109, 1998.

[35] F.-X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimilation
of meteorological observations: Theoretical aspects. Tellus, 38A:97-110, 1986.

[36] J. Lewis and J. Derber. The use of the adjoint equations to solve a variational adjust-
ment problem with advective constraints. Tellus, 37:309-327, 1985.

[37] Météo-France and CNRS. The Meso-NH Atmospheric Simulation System: Scientific
Documentation, September 1995.

[38] M. O’Keefe and C. Kerr, editors. Second international workshop on software engineering
and code design in parallel meteorological and oceanographical applications, 1998.

[39] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimination on Directed
Graphs. SIAM Journal of Applied Mathematics, 34(1):176-197, January 1978.

RR n° 3555

56

Christéele Faure, Ed.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

N. Rostaing, S. Dalmas, and A. Galligo. Automatic differentiation in Odyssée. Tellus,
45A(5):558-568, 1993.

Jens Schréter. Driving of non-linear time dependent ocean models by observations
of transient tracer - a problem of constrained optimization. In D.L.T. Anderson and
J. Willebrand, editors, Ocean Circulation Models: Combining Data and Dynamics,
pages 257-285. Kluwer Academic Publishers, 1989.

J. G. Sela. Spectral modeling at the national meteorological center. Monthly Weather
Review, 108(9):1279-1292, September 1980.

D. Stammer, C. Wunsch, R. Giering, Q. Zhang, J. Marotzke, J. Marshall, and C. Hill.
The Global Ocean Circulation estimated from TOPEX/POSEIDON Altimetry and a
General Circulation Model. Technical Report 49, Center for Global Change Science,
Massachusetts Institute of Technology, 1997.

M. Tadjouddine, C. Faure, and F. Eyssette. Sparse jacobian computation in automatic
differentiation by static program analysis. In G. Levi, editor, Static Analysis, volume
1503 of Lecture Notes in Computer Science, pages 311-326. Springer-Verlag, September
1998.

O. Talagrand. The use of adjoint equations in numerical modelling of the atmospheric
circulation. In [27], pages 169-180.

Y. Trémolet and J. Sela. Parallelization of the NCEP global spectral model. Submitted
to Journal of Parallel and Distributed Computing, 1998.

E. Tziperman and W. C. Thacker. An optimal control/adjoint equation approach to
studying the ocean general circulation. Journal of Physical Oceanography, 19:1471—
1485, 1989.

G. J. van Oldenborgh, G. Burgers, C. Venzke, C. Eckert, and R. Giering. Tracking down
the delayed ENSO oscillator with an adjoint OGCM. Technical Report 97-23, Royal
Netherlands Meteorological Institute, P.O. Box 201, 3730 AE De Bilt, The Netherlands,
1997. Monthly Weather Review, in press.

H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. Addison-
Wesley Publishing Company, 1991.

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

