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Une Preuve de Normalisation pour Systémes de
Type Purs

Résumé : Nous prouvons la normalisation forte pour tout PTS, sous condition
de I'existence d’un certain A-set 2T(s) pour chaque sorte s du systéme. Les
propriétés devant étre vérifices par les 2"(s) dependent des axiomes et des
régles du systéme.

Une version légérement plus courte de ce travail a été publiée sous le méme
titre dans le volume “Types for Proofs and Programs”, International workshop
TYPES’96, E. Gimenez and C. Paulin-Mohring Eds, LNCS 1512, Springer-
Verlag, 1998.
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1 Introduction

1.1 Brief History

This work is an attempt to deal with the structure of complex Type Theories.
Historically, once Girard had transposed the Burali-Forti paradox to type the-
ory, Martin-Lof replied by suppressing the guilty Type : Type rule and reme-
diated to the resulting loss of expressiveness by introducing a new concept of
stratified universes [10]. Today this notion can be found, in different forms and
variants, in most Type Theories, especially the ones with foundational ambi-
tions. For example, it appears in the theories used in actually implemented
proof-checkers (NuPRL, Coq, Lego...).

The main idea is that all types are no longer equal. Each one inhabits
a certain universe (Martin-Lof) or sort (Pure Type Systems). In general,
universes are embedded in each other following a monotone hierarchy. The
key point is that quantification inside a given type is restricted to types of the
same (or smaller) universes.

Since, this episode has often been presented as part of a long-going pred-
icative vs. non-predicative debate. It however had another consequence for
type theories viewed as practical and actually usable logical formalisms: The
fact that all types are no longer equal puzzles the newcomer and makes it more
difficult to grasp the underlying intuitions of the formalisms. This may become
particularly acute when types are used as propositions: for some formalisms,
depending upon in which universe it is done, proving “there exists an element
x of type A” will not have the same meaning, i.e. we may or may not exhibit
a constructive witness.

More generally, lots of very technical choices have to be made; in particular:

e Concerning the theory itself: as mentioned above, and would it be only
for pragmatic reasons, most up-to-date type theories are build on top of
a more or less complex structure defining the interactions between the
different kinds of types. The corresponding rules are however almost
always, if slightly, different from one theory to another. No current

'With the exception of the impredicative universe when there is one; but even then,
elimination has to be restricted for the existential quantifier.
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4 Paul-André Melliés et Benjamin Werner

mathematical tools deal with the study of these structures and are thus
likely to provide objective comparison criterions.

e When formalizing a piece of mathematics in such a theory, one has to
decide at which level the objects, respectively the propositions, of the
work to be formalized have to be put. There is, for now, no canonical
way of deciding this, and this choice will depend upon the way the objects
are going to be used. Schematizing, we might say that if every piece of
known mathematics seems to be, more or less, formalizable in a powerful
type theory, there is no uniform and canonical way of doing so since
it requires non-trivial choices to be made concerning the status of its
objects. From the outsider’s point of view, these choices often have to
be made be a Type Theory wizard.

For these reasons, the world of Type Theories might, at first glance, bear
some similitude with the late Ptolemeic astronomy. We hope to demonstrate
that what seems to be chaotic actually yields some order and structure?.

1.2 Why Pure Type systems ?

In the process of studying the structure of type theories, a first clarification
attempt has been the introduction of Pure Type Systems (PTSs). The concept
is due to Terlouw and Berardi and largely owes its fame to Henk Barendregt.

We refer to the bibliography [2] and to the definitions below for more de-
tails. The formalisms of PTSs allows to describe a wide range of A-calculi like
simple types, F', F,, the Calculus of Constructions, but also non-normalizable
systems, especially Girard’s system U or Martin-Lof’s Type:Type. Until now,
with the notable exception of Terlouw’s work [12], the only properties proved
on large classes of PTSs were of combinatorial nature (confluence, subject
reduction) and did not deal with normalization and its counterpart, logical
consistency.

The techniques presented in the present work do apply to extensions of
Pure Type Systems (inductive types...). Since our main aim was to confront
with complex structures, a generic study of PTSs was the natural first step.

2This was originally not suposed to be a quotation of Jean-Yves Girard.

INRIA



A Generic Normalisation Proof for Pure Type Systems 5

1.3 About this paper

Technically, the main difficulty, when trying to build up a generic normal-
ization proof for PTSs, is that syntactically similar operations (abstraction,
application) have to be interpreted in different ways, depending upon the sort
in which they are performed: whereas basic types are always treated like in
Girard’s original work [6], functions from types to types (object of type * —
in F,) have to be seen as extensional functions mapping sets of terms to sets
of terms. Thus the homogeneity of the syntax is lost.

An answer was proposed by Altenkirch [1] with the introduction of A-sets.
These are w-sets [8] modified for normalization proofs. The advantage is that if
types are interpreted by A-sets, function types can be treated in a fully generic
way.

What is done in the present work is therefore merely the next step: we
axiomatize, for every PTS, the properties of a structure of A-sets (sect. 4),
which allows the carrying through of a generic normalization proof (sect. 5).
The existence of such a structure is therefore a sufficient condition for strong
normalization. We construct such structures for well-known PTSs like F', CC,
ECC (sect. 6). In other words, we specify a particular model of type systems,
whose existence is sufficient for strong normalization. A difference with [12]
is that the specification of the model directly reflects the structure (i.e. sorts,
axioms and rules) of the PTS.

2 Definition

In the whole paper, we will consider a single pure type system, described by a
set of sorts S, a set of arioms A C S xS and a set of rules R C S x S x S.

We give ourselves a countable set V of variables (generally denoted by z, v, .. .).

In the meta-theoretic study hereafter, we will consider a variant of the usual
presentation of Pure Type Systems: the terms will carry more type information
than usual in the cases of A-abstraction and application. This approach can
be seen as related to the labeled terms used in [4]. However, here, we will
use these labels to restrict the usual formulation of S-reduction, see [1, 3.

RR n " 3548



6 Paul-André Melliés et Benjamin Werner

In section 7, we will verify that, provided the strong normalization property
holds, our definition of PTS’s is equivalent to the usual ones, and hence strong
normalization itself is inherited by the “unlabeled” PTS.

Definition 1 A term is described by
M = z|s|apppyuM, M) | Appemz.M | (x: M)M.

The set of terms is written T. A context (T') is a list of pairs (x : A) e VX T,
[| being the empty context.

The letters M, N, A, B,C,T,U,V,t,u,v, etc will be used to denote terms, greek
capitals I', A for contexts and a, b, ¢, z,y, z for variables.

Term conversion will here be taken care of by the following reduction, due
to Torsten Altenkirch:

Definition 2 (tight reduction) We define I>5 as the contertual closure of:
a‘ppyAB(()\yABxM)’ N) Dﬂ M[ﬂ: \ N]

As usual, we will write l>§L (respectively 5, =g ) for the transitive (respectively
transitive-reflexive, symmetric-transitive-reflexive) closure of >g.

Remark The tight-reduction does not enjoy the Church-Rosser property on
non well-typed terms. We do not give the proof, but it is quite easy to adapt the
counter examples for confluence for A-calculi with surjective pairing. See [7] for
details. Of course, Church-Rosser will hold for terms well-typed in a strongly
normalizing PTS.

Definition 3 (Strong Normalization) A term t is said to be strongly nor-
malizing if and only if there is no infinite sequence of reductions starting from
t.

INRIA
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The typing rules

We use two kind of judgements: = T" wf expresses that the context I' is well-
formed, I' + ¢ : T that the term ¢ is of type T in the context I'. The set of
deriwable judgements is inductively defined by the following inference rules:

(START) o[ owf
[
(AXIOM) ﬁslllu‘];? if (51, 52) € A
' - A:s
(WEAK) FTx: A wf

FLz: AT wf

oL , .
(VAR) 2 AT F 2.4 if binder(I'") N free(A) = 0
p ' A:5,Tz: A F B:sy " 2
(PrOD) T F (z:A)B: s if (51,52, 83) €
. z:A+F M:BT F (z:A)B:s
(LAMBDA) ' - XpapzM:(z:AB

' M:(z:ABT F N:A
(AppP)

I F appmAB(M’N)B[x\N]

' = M:ATl + B:s,ApzBor B>j A

(Conv)

' - M:B

Remark We consider that each judgement represents an a-conversion class:
for instance, x : s F z :sand y:s F y : s should be considered as two
a-equivalent judgements. The judgement I' = Ap.4pz.M : (2 : A)B obtained
with the rule (LAMBDA) is also equivalent to I' F Ag.apz.M : (y: A)B' or
I' b Apapx.M: (z: A)B where B' = B[z \ y| and vy is not free in B.

RR n " 3548



8 Paul-André Melliés et Benjamin Werner

We can now state some elementary syntactic results. The proofs are quite
similar to their counter-parts for usual PTSs and they are often simplified
by the presence of labels. We therefore do not detail the proofs; actually,
all the following lemmas are proved by inductoin over the structure of the
corresponding derivation. For matters of space, we also only state the results
which will be necessary in the rest of the paper.

Lemma 1 (Free Variables) Given any derivable judgement U F ¢ : T, every
free variable of t or T is bound in T'.

Lemma 2 (Subterms) Any subterm of any derivable judgement is well -
formed.

Lemma 3 (Substitution) Given the two following derivable judgements:
e:AAFt:T and ' u:A
there exists a derivation of:
oAz \u] B tlz\u]: Tz \ ul

Provided, of course there is no other binding occurrence of x in /A; in this case,
we have:
[yAz\u] - ¢:T.

Lemma 4 (Weakening) Given the two following derivable judgements ') A F
t: T and ' = A:s, there exists a derivation of I'yx : A, A F t:T for any
variable x which is not free in A, t and T.

Lemma 5 (Subject Reduction) Let I' + t: T be a derivable judgement.
Ift>pt and T >g IV, then the two following judgements are derivable:

r+=1¢:T and '+ ¢:T.

INRIA
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3 Structures for the interpretation

3.1 A-sets

As mentioned before, one of the main steps of this work will be to interpret
each type of the system by a A-set. This section is devoted to the definition
of this notion, and is therefore largely inspired by the work of Altenkirch [1].

Definition 4 (Atomic terms) A term is said to be atomic if it is of the form

apPPy,.,.8, (- - - (2PPz.a,.5, (P, Q1) - - -, Qn)

with P of one of the following forms: s, x, (x : A)B. We write AT for the set
of atomic terms.

The following is essentially Tait’s (and Krivine’s and other’s) |11, 5] version of
reducibility candidates [6].

Definition 5 (Saturated sets) A set C of terms is said to be saturated, if
and only if

1. CC SN
2. (SNNAT)cCC
3. if (A,B,P) € SN*® and

app;cn:An.Bn(' s (appzl:Al.Bl (M[.T \ P]’ Ql)? et Qﬂ) €C

then
appzcn:An.Bn(' < (appwlel.Bl (appw:A.B()‘CE!A-B‘r‘Mi P)’ Ql)’ Tt Qn) € C

Definition 6 (A-set) A A-set is a couple (Xo, =), where
- Xy is some set,

- and |= a relation between X, and the set of terms: =C Xo x T.

RR n " 3548
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The elements of Xy are called the carriers of X and X, is the carrier-set. The
terms M such that M =x o for some oo € Xy are called the realizers of o (or
more generally the realizers of X ).

Another way to view a A-set is that it is a family of sets of terms indexed over
Xo.

Notation If X is a A-set, we write X for its first component and = x for the
second.

Definition 7 (saturated A-set) A A-set X is said to be saturated if and
only if:

1. FRwvery realizer is strongly normalizable.

2. There 1s one element of Xy which is realized by any atomic strongly
normalizable term.

3. For every a € Xy, the set of realizers of « is closed by reverse head
B-expansion, i.e. verifies the condition 3 of definition 5:

V(A, B, P) € SN . app,, .4, B, (- - (8PPy,.4, 5, (M[2\P], Q1), . . ., Qn) Ex
a=

appwn:An.Bn ( s (a‘ppzl:Al.Bl (appm:A.B(/\fE:A-B'T'M’ P)7 Ql)’ R Qn) ‘:X G.

Remark If a A-set is saturated, the set of its realizers is a saturated set.

This means we can also see a saturated A-set as a saturated set of terms with
some additional information given by the carriers.
Notation Let X be a A-set. We write x C— X for z € Xj.

Definition 8 (A-morphism) Let X and Y be two A-sets. A morphism p
from X toY is a function p: Xo — Yy such that M =x f = M =y p(f).

Definition 9 (A-isos) Let X andY be two A-sets. An A-iso p from X toY
is a one-to-one function p : Xg — Yy such that M E=x f <= M =y p(f).

INRIA
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3.2 e¢-sets

A usual difficulty when building a model of a typed A-calculus is to restrict
the size of the function spaces, in order not to “get lost in a sea of set-theoretic
functions” (Girard). One radical possibility is to assume the existence of in-
accessible cardinals; here, we prefer to avoid this by defining a finer structure
on our A-sets using adapted equivalence relations. The underlying idea should
appear more clearly in the next sections. For a first reading, it is possible to
forget about the details of these relations.

Hereafter we give ourselves a fixed set ¢ which will index the equivalence
relations.

Definition 10 (&-set) An &-set A is a set of A-sets which, for every i € €,
s enriched with:

1. an equivalence relation over A,

2. an equivalence relation over Uxe Xo (i-e. a relation between the

carriers « of elements of A).

Definition 11 (product) Let 2; and Ay be two €-sets. Let X be a A-set
element of %1, and Y = (Ya)acx, @ family of A-sets elements of 2y (and
indexed over Xo). We define the A-set II(X,Y) by:

nXx,y), =
i

{f € Mpex, (Ya), | Vo, € Xy, Vi € €&, o = f(a) o
2

fla)}

1

M =nxy) [ =
Va € Xy, VN Ex a . VA, B€ SN . Vz €V . app,.4 g(M,N) =y, f(a)

Lemma 6 If X and every Y, is saturated, then so is II(X,Y).

Proof We separate the proofs of the three conditions:

RR n " 3548



12 Paul-André Melliés et Benjamin Werner

L. If M =rx,y) f, we know there exists a C X such that (for example) z =x a.
Thus app,., ,(M,z) =y, f(a) which implies that M is strongly normalizable.

2. For any a C X, we know there exists a carrier Y, of Y, which is realized by
any atomic strongly normalizable term. We define f as the function which to

2?1 and QIEQ are equivalence relations,
it is easy to check that f C II(X,Y). Now let M be a strongly normalizable
atomic term; we have

any a C X associates Y,. Since

VaC X .VN E=x a.VA,Be€ SN . app,. 4 5g(M,N) e SNNAT

and hence
appz:A.B(M7 N) IZYa &'
Which is sufficient for M fr(x vy f.

3. The proof is easy and simillar to its counterpart for saturated sets. See [1, 5]

for example.
|

Definition 12 (¢-relation product) Let 2, and 24y be two €-set. Let there
be elements X and X' of %y, and two families (Yy)aecx, and (Yo )wex, of A-
sets elements of Ay indexed over Xg and X'g. The following definitions extend

the ;’[ and ; ‘ to II(X,Y) and II(X",Y"), fori € &:
1
1. II(X,Y Xy’
( ’ )H H(Q[I;QlQ) H ( ) )
<~
!
X 1, X" and
! ! ! /L !
VaC X,V C X'« 1, o =Y, A, Y,
2. when II(X,Y) ” H(Qllz, %) HH(XQY/)} the relation H(Qlf,%lg) can be

defined as:

INRIA



A Generic Normalisation Proof for Pure Type Systems 13

{
f‘ (2, o) ‘

=
v

VaC X,Vo' C X'« o = f(a) o
2

g()).

1

Note that the relations are not expected to live

and ‘

7 2
II(2Ap, 242) IT(24, 242)

in any €-set I1(Ay,Az).

4 The universes of the interpretations

This is the key of the proof. We suppose that for every sort s, there exists
an ¢-set AM(s) and a saturated A-set 2(s). We shall construct in 2"(s) the
interpretation of types A of sort s ; and in 2y (s) the interpretation of terms M
of type s. One notable difficulty is that a type A of sort s is at the same time
a term A of type s (and vice-versa). Thus, for every sort s we suppose the
existence of two one-to-one mappings {s: AT(s) — 2Ay(s)o and s Ay(s)o —
2AM(s) such that:

ﬂs o Us: IdQ[TT(s) “U‘s o ﬂs: IdQ(U(s)O

In fact, if « is the “type” interpretation of I' - A in 2AT(s) then |, (c) is its
“term” interpretation in 2y (s). In the other direction, the “term” interpretation
pof I'F M in 2(s) can be lifted to its “type” interpretation f}s (i) in 2A(s).
The two equations above imply that the lift and unlift operations are revertible:

ﬂs <Us <O~/>> = « and Us <ﬂs <N>> =l

In all the literature, the two denotational universes 2™(s) and 2 (s) are iden-
tified to a unique 2A(s), with J;=fy= Idg). Our forthcoming interpretation
of derivations shows that the distinction we introduce is natural — moreover
it shall play an important role in circular Pure Type Systems.

The structure of the PTS is reflected in the fact that 2AT(s), 2y(s), 4 and 1
shall verify the conditions described below.

RR n " 3548



14 Paul-André Melliés et Benjamin Werner

Condition 1 (hierarchy of universe) We require that for any sort s, 2AM(s)
and Ay(s) verify the following conditions:

1. The elements of AM(s) are saturated A-sets; every carrier of 2y(s) is
realized by any strongly normalizing term.

2. If (s1,82) € A, then
Qlu(Sl) - Qlﬂ(SQ).

3. If (s1, 80,83) € R, then let there be X € AM(s;1) and a family (Yy)aecx,
with Y, € AM(sy) such that:
1 ?
2 (s1) 2 (s,) H Yol
there exists a A-iso lucx,y) from II(X,Y) to an element II|(X,Y) €
Q[ﬂ(83).'

V(a, o) € X2Vi € ¢.a o =Y,

Ineyy: X, Y) = T(X,Y) € AM(s3).

We ask here that 11 (X, Y") and |y (x,y) do not depend on (s1, 52, 53). However a
quick look at the definition 11 of products shows that the construction IT(X,Y")

i i
af(s,) | 204 ‘ Al (s,)
ensure that the construction of II(X, Y) itself does not depend on the universes
2AM(s;) and AM(sy) we impose the following uniformity condition:

depends on the equivalence relations In order to

Condition 2 (uniformity of equivalence relations)

1. if X, X" € aM(s1) and Ay(s1) € AM(sq) then
Viee, X !
LS A (1)

2. ifaC X; € AqM(sy), o/ C X| € AM(sy) and o C Xy € AN(sy), o/ C X} €
AM(s;) then

H X' el (X)

Qlﬂész) ‘ llsl <XI>

Q‘ﬁzsl)

!

Viee: « o,

Q‘ﬂzsz)

INRIA
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The required properties on the equivalence relations and

1 1
Qlﬂ(S?,) Q[ﬂ(Sg) ‘
in the case of a (collapsed) product construction are expressed by the following
condition.

Condition 3 (collapsed products)
if i € ¢ and (s1,52,83) € R, then given any elements X, X' € A(s;) and
Yy, Yo € AN (s9) respectively indezed by o = X and o/ C X':

1

1. II(X,Y) ‘ (A (s1), AN (s2))

I, (X", Y")

H (X, Y') = T,(X,Y) H mﬂz%)

1

2. ifTI(X,Y) ‘ TI(A (s1), 24 (s2))

" (X', Y') then f C II(X,Y) and g C II(X',Y")
imply that:

i

f af(s3)

9 <= luxy) (f) ey (9)

TI(AT(s1), A (s2))

The last condition tells that the lift and unlift procedures should not depend
on the universe they proceed in.

Condition 4 (uniformity of lift /unlift procedures)
We require that the |5 and the s verify the following conditions:

1. if a € AM(s) and o € AN(s") then s (o) =¢ ()
2. if o T Ay(s) and o T Ay(s’) then s (@) =Ny (@)

Remark This means that instead of considering a the family of {} isos (resp.
Us), we might assume the existence of a single = U,cs 115 respectively =
Uses ¥s- In other words, the sort in f};, respectively {};, may simply be seen
as an annotation.

We define for any A-iso lm(x,y) the inverse A-iso fr(x,y) such that tixy)
© J/H(X,Y): IdH(X,Y) and J/H(X,Y) © TH(X,Y): Idﬂi(X,Y)-

RR n " 3548



16 Paul-André Melliés et Benjamin Werner

5 The Interpretation

This section follows the usual pattern of reducibility proofs. For any derivable
judgement, we will define an interpretation. Like in [1], the interpretation of a
type will be a A-set and the interpretations of its terms will be carriers of this
A-set. Strong normalization being assured by the fact that every well-typed
term realizes its interpretation.

5.1 Definition

We will associate two interpretations [[' = M| and [I" - M] to any judgement
' v M : A. We also associate an interpretation [I'] to any well formed
context I'.

The construction is by structural induction on I' and M:

Definition 13

[ = {9} (1)

[[,z:A] = {(v,a),y € I]AaC [I'F A](y)} (2)

[[Fs](y) = Ay(s) 3)
[CF(z:A)Bl(y) = I(CFA)(0), [T, z: AF B](v,-)) (4)

T Ez)(y) = w (5)

[ FApapr-M|(y) = luqreajo),[res:Ar8]o,.) (T2 AE M](y, ) (6)

[T+ apPy:A. s(M,N)|(y) = TH([FI—A]](7),|[F,x:AI—B]](’Y,_ ([T = M](y)) ([T + NJ(v)(7)

and for all the other cases:

[T+ Al(v) s ([T Al(7)) (8)
CEA](y) = 4 ([CFA]() (9)

In the above, and the rest of the paper, [I',;z : A F B](7, ), respectively
[,z : AF M](v,_) is a short-cut for the function

C[CFA](y)—[T,z: AF B](v, )

respectively
C[CFA](y) = [T,z: AF M](y, ).

INRIA



A Generic Normalisation Proof for Pure Type Systems 17

The definition is not total. We explicit the sufficient properties for each inter-
pretation step:

o for all cases but (1) we require that [['] is defined.

(2) both [I'] and [I' F A] are defined and [[' - A](7y) there exists a sort s
such that [I'F A](y) € «M(s) for any ~ € [I.

(4,6 and 7) there exist (s, S2, s3) € R such that for any v € [I']:

= [T = A](7) £ 2(s1)
—VaC[T'FA](y) . [[,z: AF B](y,a) C 2AM(ss)

—Viee.V(a,d)e[lFA|(H)?. a

[T,z : AF B](y, )

(6) for any 7 € [I'], for any o = [T' F A](7), [T,z : A+ M](7, ) is defined,

and:

(aC [T F A](y) —» [Tz : A F M](7,«) C I([T F A)(y),[T,z : AF
B](v,-))

(7) [T+ M](y) T [T'F (z: A)B](y) and [T F N](v) C [I'F A](y) for any
v €[I]

(8) [I'F A](y) C 2Ay(s) for any v € [[]

(9) [T+ A](y) € «M(s) for any v € [T].

From now on, the main work will be to state and prove the soundness of
our interpretation. The strong normalization will follow quite easily, as it is
usual in reducibility proofs.
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18 Paul-André Melliés et Benjamin Werner

5.2 Subject reduction properties

Lemma 7 (Subject reduction A)
[T+ app,.a.5((Aziapz. M), N)|(7) = [I',z : A M](7, [[' = N|(v))
Proof using that

TH([r-AY (), [0 2 AF BY(y,0)) © $1I([THA] (), I 2: A B (3,) = 141([r+A] (y) [T,2:AF B](7,0))
|

Lemma 8 (Weakening for the interpretation, A) Suppose that
[T+ Cl(v) € 2M(s).
We prove three results in one:

1) if [T, A] is defined and z is not free in A then [T,z : C,A] is defined
and

[T, 2: C, Al ={(%,¢,0) | (,9) € [, A] and ¢ € [I' = CJ(7)}

2) if [I,A+ M|(~,9) is defined and z is not free in A or in M then [T,z :
C,A+ M](v,¢,9) is defined and furthermore

[,z:C,AF M(v,¢,6) =[I,A+ M](v,9).

3) if [T,A B M](v,9d) is defined and z is not free in A or in M then
[T, z: CyAF M](v,(,0) is also defined and:

ITyz:C,AF M](v,¢,0) =T, A+ M](y,0).

Proof We proceed by induction over the constructions of [I', A], [[', A + M](v, ),
[T, A+ M](y,d). We do not detail all the cases

INRIA
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e Suppose that [I', A] is defined: then it either comes from [T, A’ - A](y,d")
when A is of the form (A’,z : A) ; or permits to construct I,z : C] from
[T F C](vy) when A is empty. In the latter case, the definition of [I',z : C]
leads to the assertion (1). In the first case, when A is not empty, we have by
induction that:

[T,z : C,A"] exists
[T,z :C, A" A](y,¢,0") = [I, A" A] (v, )

which induces the assertion (1) from:
[T 2: C AT ={(7,¢,8) | (7,0') € [T, AT and ¢ € [T - C](7)}
and the definition of [T,z : C, A] as:

[T,2: C,A] ={(7,¢,0", @) | (,¢,8') € [T, 2: C,ATand a C [T, A"+ A] (v, 6')}

e Suppose that [['A F z;](7,d) is defined for z; bound by I' or A. It was
necessarily constructed from (v,6) € [I',A]; by induction, [I',z : C,A] is
defined and verifies the assertion (1). Hence [T,z : C, A F z;](7) also exists
with [[',z: C,A F z;](y) = [I', A F ] (7, §) — since z is different from z;.

e Suppose that [[', A (z : A)B](7,6) is defined: its definition then comes from
the definition of [I', A F A](v,d) and [[',A,z : A + B](7v,d,@). Remember
that we consider a-equivalence classes of judgement: it follows that we can
choose x such that x # z. We then use our induction hypothesis and obtain
from the assertion (3) that both [I',z : C, A + A](v,¢,d) and [[',z : C, A,z :
A+ B](v,(,d,a) exist and verify:

[T,z:C,AF A](v,¢,0) = [T, A+ A](y,6)
[T,z:C,A,z: AF B](7,¢,0,0) = [T, A,z : AF B](y, 4, )
These equalities permits to insure that:
[T, z:C,AF A](7y,¢,68) € Al (sy)

[T, z:C,A,z: AF B](7,¢,6,a) € AM(sy)

for some (s1,s2,83) € R. Hence [I',z : C,A F (z : A)B](v,(,d) exists and
verifies the assertion (3). The other cases are similar.
|
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Lemma 9 (Weakening for the interpretation, B)
If ' = M](vy) and [T, A] are defined and all the variables bound by A do not
occur free in M then [’y A+ M](v,0) is defined and furthermore

[0, A = M](y,6) = [ = M](7).
And similarly for [I' = M](v).

Proof using the lemma 8 as many times there are variables in A. -

Lemma 10 (Substitution for the interpretation) IfI',z: A/A+ M : B
and ' = P : A are derivable, v € [I'], 7 = [[' b P]() is defined, (v,,0) €
[T,z : AJA] and [T,z : A, A = M|(vy,m,9d) is defined, then [I',Alz \ P]
Mz \ P]|(v,9) is defined, and

T, Al \ P F M2\ P[(7,6) = [, : A, A F M](y,7.,)
Similarly, if [,z : A, A+ M]|(y,7,6) is defined:

[T, Ale\ P - Mz \ PII(7,6) = [T,z : A, A+ M](y,7,6)

Proof By induction over the structure of M. The key case is M = x which is treated
by the previous lemma. We also detail the case of A-abstraction; if M = Ag.4.pz.N

Lemma 11 (Subject Reduction for the interpretation) IfT' - M : A,
M g M and [I' = M](y) is defined then so is [I' = M'|(y) and

[T M](v) = [I'F M](v).
And similarly for [T+ M](v) and [T = M'](~).
Proof By induction over the structure of M, or more precisely over the proof that

M >3 M'. The key case is of course the one where M is itself the reduced redex. It
is treated by the previous lemma. -
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5.3 Soundness

Definition 14 Let i € ¢ and [I'] be well-defined. The relation

¢ ‘ between
the sequences y of [I'] is constructed by structural induction on I':
o Va,d €z : A]:

QlﬁZ(S)

!

« o &3Ise S «

¢
o V(v,a),(v,d) €I,z : A]:

(7, @) 7 and 3s € S,

! ! 7’
(%a)@v‘e

Qlﬂz(S)

1
¢

Theorem 1 (Well-formedness and soundness of the interpretation) If
I’ wf is derivable, then [I'] is defined. If the judgement I' = M : A is derivable,
then for any v € [I'] the following holds:

1. [T+ M](v) and [T+ A](vy) are defined with
[ M) E[TF Al(y)

Moreover, if there exists a sort s such that [[' = A](y) € 2 (s), then:

Viee.y '+ M|(v)

?
¢

/ 1
7= F 0] gty |
2. if A= s then [[' = M](y) is defined, and [T = M](v) € A" (s). Moreover:

Viee.y‘;

v = [+ M](7) H mﬂ"(s) H [T = M](%)

Remark We remark that clause 2 is equivalent to clause 1, provided A = s;
and the A-set 2y(s1) is element of an &-set AM(sy). This is typically the case
when A = s; and (sq, s2) € A.

Proof

RR n " 3548



22 Paul-André Melliés et Benjamin Werner
2 =1 Suppose that clause 2 applies and that A = s1. Then [I' - M](y) is defined
either directly or as {5, ([I' = M](7)). In both cases, by {5, o f5,= Id?lu(sl)o’
we have:
[I' = M](y) =s, ([T M](7))
and therefore:
[['F M](v) EAy(s1) = [I' - A](v)
Suppose now that 2 (s1) is element of AT(s) for some sort s. The condition
2(1) infers from
i
'=m T M]H
[ T 9y H [ 1)
that:
i /
[ MIO) | g ‘ [T M](v)
when ~y é v' ; we conclude clause 1.
1 = 2 conversely, suppose that clause 1 applies and that A = s; with 2y(s1) €

AN (sy). Then for every v € [T, [T F M](y) is defined either directly or

as fha, ([0 F M(7)). In both cases, by Ty, © Yo = Idgo,, . we have [I'
M](y) =t ([T F M](7)), hence
[T+ M](y) € 20 (s1)
Moreover, by clause 1 and 2y(s1) € AN (s9) we have:
; N i )
Viee€ vl |7 = ' = M](v) A (5,) T+ M](v)

therefore by condition 2(1) we deduce:

Vie € v v = [T+ M](v)

1
¢

At (sy) '[[r - M]()

Proof (theorem 1) Not surprisingly, the proof proceeds by induction over the struc-
ture of the derivation.
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WEAK

The judgement is = I',z : A wf. The induction hypothesis applied to the premises
yields:

e [I'] is defined
e for any y € [I'] we have [ - A](y) € A (s)

hence [[' F A](7) is a saturated A-set and [[',z : A] is defined.

SORT

the judgement is I' F s1 : so with (s1,s2) € A; we prove clause 2. [I'  s1](7) is
directly defined as 2y (s1), which is an element of %" (s2) by condition 1(2). Hence
clause 1.

VAR

the judgement is ',z : A, A + x : A; we prove clause 1, whichh implies clause 2
because A = s implies that A has a sort. The induction hypothesis applied to the
premises yields that [,z : A, A] is defined. Iterating the induction, it is easy to see
that its elements are of the form (v, «,d) with v € [I'] and « C [I' - A](y).

By definition, we have

C,z: A AFz](y,0,0) =«

and hence
C,z: A AFz](y,0,0) T [T F A](y).

On the other hand, by the weakening lemma, we have that [I',z : A, A F A](y, @, d)
is defined and also:

[T,z : A, AF A](y,a,0) = [T F A](y).
The result follows:
C,z: A AF z|(y,0,0) C [Tz : A, AF A](y, e, 0).

Suppose moreover that there is a sort s such that for every v € [T'], [T’ + A](y) €

7

¢ that there is

AN (s). Let i € €. (7,0, 6) é (+',a’,¢") implies by definition of
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1

- fr h th
an €-set AM(sq) such that o Al (s,)

o/. The property

(ryl,al7él) :> []‘_‘7'1' : A7 A }_ :1:]('7’ a’ 5) [F"T : A’ A I_ x](ﬂy, a7 6)

] i

follows condition 2(2).

PRrOD

The judgement is I' + (z: A)B : s3 with (s1,s2,s3) € R; we prove clause 2 (which
implies clause 1). The induction hypothesis applied to the premises yield:

1. [I'] is defined
2. for any «y € [I'] we have [T - A](y) € AM(s1)
3. for any a C [T F A](y), [T,z : AF B](y, ) € AM(sy)

4. for any i € €, for any ' € [I'], if

@ .

then
[T AJ()

e, H [T - A](y).

5. for any o/ C [T+ A](v'), if

@ .

then

[T,z : A+ B](y,a) mﬂZSQ)

H [T,z : AF B](+/,d).

By choosing v =+ in 5, we obtain:

Vie@.VaE[[FI—A]]('y).a‘ ’

!
a —
¢

[T,z : AF B](y,a)

At (s,) H [T,z : AF B](v, )
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which, by condition 2(2) is equivalent to:

. t ’
Vie ¢ . Vae[l'FA](w) . a aft(sy) o =

i
Q[ﬁ(SQ)
This last proposition, combined with 1, 2 and 3 above, guarantees that [I' - (z :
A)B](7) is defined as

[T,z : A+ B](v, @) ” [T,z : AF B](v, ).

[[F (z: A)B](y) = ([T - Al(7), [T,z : A+ B](v,-))

and thus
[T+ (z: A)B](y) € AM(s3).

It remains to be proved:

Viee, -~ é v = [T+ (z: A)B](y)

wﬁgHwkwammwm

', this is a consequence of:

By definition and condition 3(1), when é

i

H([FFA]](’Y),[F,Z‘:A"B}](’)’,_)) H(Qlﬂ(sl) Q[TT(52))

([T = AJ(+'), [T, 2 : A+ BI(+',-))

and unfolding the definition of the equivalence relation of definition 12:

[T+ A](v)

Lty | T AIC)

and
Va T [TF A](Y) .Ve/ C [T F A](Y) . @] 0"

/!
Q[ﬂ(sl) o —

)
AN (s2)

These two propositions are immediate consequences of the induction hypothesis
4 (respectively 5), using condition 2(2).

[T,z : AF B](y, )

H [T,z : AF B](v,d).
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LAMBDA

The judgement is I' + A, 4. p2.M : (z : A)B; we prove clause 1 (which implies clause
2 because (z : A)B is not a sort). The premises are

Fz: A-M:B

and
' (z:A)B:s.

We first prove that [ - Ay 4. pz.M|(7y) is defined as an index of [I"' F (z : A)B](7)
for any v C [I']. Some of the necessary conditions are common to the definition of
[T F (z : A)B](v); they are of course an immediate consequence of the induction
hypothesis for the second premise.

It is important hereafter that the derivation of the second premise contains a
(PrROD) derivation step of the form:

'A:s,Ic:AF B: sy
'k (z:A)B:s3

with (31, S92, 33) ER.
For any 7 € [I'], the induction hypothesises yield, among others:

1. [T+ A](y) € 2aM(s1)
2. for any a C [I' F A](y)

[,z : AF B](y,a) € 2A(sy)

3. for any v € [I'], for any o C [I" F A](v)

C,z:AF M](y,a) C [T,z : AF B](y, )
4. for any i € €, for any (v/,d/) € [T,z : 4], if

(7, @) (7', a")

then
C,z: A M|(y,®)

2 (s5) ‘ C,z: AF M|(v,d).
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5. for any i € €, for any (v,d/) € [,z : 4], if

(7, @) (v, )

i
¢

then
Ir - Aly) ‘ o) ‘ Ir - A1)

and

[T,z : AF B](y,a) [T,z : AF B](+/,d)

If we chose 4" =« in the fourth proposition above, we obtain:

Viee. Vo' C[I'FA](y) . @ o =

1
¢

1
A (s0)
This is exactly what is necessary for having (see definition 10):

[I‘,x:AI—M](*y,a)\ [T,z : AF M](y,d).

(aC [T+ A](y) = [T,z : A M](y,a)) C ([T F A](v), [T,z : A+ B](y,-))

1
2 (s)
a C [T F A](y) € AM(s) and o T [T+ A](y') € AM(s) — see condition 2(2).
Thus [[' - Ap.a.pz.M|(7y) exists and is an index of [I' F (z : A)B](%).
Suppose now that for some sort s, for every v € [T], [T F (z : A)B](y) € AM(s).
We have to check that:

since o' is equivalent to « o for any sort s (here s1) such that

) 1

v =[O+ Apa.pz-M](7) AN (s3)

V(v,7) € [T]? . v é

‘ [+ Ag.a.pz.M] ('y')

which by definition 12 and condition 3(2=-) and hypothesis 5, this proposition is a

consequence of:
)
¥(v,7) €T’ .VaC[CFAI() 7| 4 |V =

Vo/ C[TFA](Y) . a| b o =
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?
Q[ﬂ(SQ)
which is exactly the fourth induction hypothesis enumerated above.

[F,a::AI—M]('y,a)‘ [T,z: A+ M|(+,d)

ApPpP

The judgement is I F app,.4 g(M,N) : B[z \ NJ; we prove clause 1. The three
premises are

F'M:(z:A)B

and
'FN:A

and
'(z:A)B:s

Once again we use the fact that the derivation of the second premise contains a
(PROD) derivation step of the form:

'FA:5,T,x: AFB: s
'+(z:A)B:s3

with (81, S92, 33) eR.
The induction hypothesises yield, among others:

1. [I'] is defined

[\

. for any y € [I'] , [I'F (z : A)B](y) is defined and
[T+ (z: A)BJ(7) € 2M(s3)

3 I+ A1) € 20(s)

4. for any a C [I' - A](y)

[T,z : AF B](y,a) € A (s2)

ot

- T[T A (), [T 2:AFB](v,0)) (L' FM](y)) CI([L F A](7), [z : AF B](v))
[['FN](y) ETE A](v)

o
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7. for any i € €, for any ' € [I'] if

Y é o
then
LN | gy, |TF M)
and
L M) | gy, | TF M)

8. for any i € €, for any (v/,a/) € [T,z : A], if

(7, @) (v, )

¢
then
[T+ A](7)

W%ﬂ‘wkﬂwv
and

[T,z : AF B](y,a) [T,z: A+ B](+/,d)

An immediate consequence of the clauses 5 and 6 is that [I" - app,. 4 z(M, N)](7)
is defined and

[+ app,. 4 5(M; N)|(v) C [T,z : AF B](y, [T = N](7))-

By the lemma 10, we then have:

[+ app,.4 (M, N)|(v) C [ F Blz \ N]J](7)-

We now have to prove that for any i € €,

vy e[r] .y v = [T+ app,. 4 p(M, N)](7)

1 1
¢ 21 (52) ‘ [['F appy.a.5(M, N)I(v)
Which is a quite immediate consequence of the clauses 6, 7 and 8 of the induction
hypothesises above, of condition 3(2<) and of definition 12.
This proves clause 1. To prove clause 2, note that if B[z \ N] is a sort ¢, then
Ay (t) € AM(s2) by clauses 4 and 6 in the hypothesis.
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Conv

The judgement is I' F M : B; we prove clause 1. Clause 2 follows from the fact
that I' F B : s stands among the premises. Applied to the premises, the induction
hypothesis yields that [I'] is defined, and for any vy € [I'],

e [+ M](y) C[I'F A](v)
o [T+ Bl(y) € 27(s)
Furthermore, lemma 11 guarantees that
[T'F Al(y) = [T+ B](v)

and thus
[T+ M(y) C [T+ Bl(v) € A" (s).

The proposition

v = [['F M](v) [T+ M](v")

@ .

Viee .y

ﬂ%ﬁ

is already an induction hypothesis. -

5.4 Strong Normalisation

Definition 15 Let (v1,...,7.) € [[]. We define (Py, ..., P) E (7155 7n) by
induction on n:

o if [ a1 @ Apgr is well formed and vy, ..., Vi1 € [I, Zns1 © Any1] then
(Pla"':Pn-f—l) ): (71:"'a’)/n+1) Zﬁ (Pla"'apn) ’: (717"%771) and Pn+1 ):
|[F F A]](’Yla-"ar)/n-i—l)'

If (71yeey ) € o1 @ Avy ez 0 Ay and (Pr, .. Py) E (71,0, 70) then
{MWP} (P, ..., Py) is defined as M|z, \ Pp,...,x1\ P1].

Lemma 12 LetI' - M : A be derivable. If (v1,...,7n) € [I'] and (P, ..., P,) =
v then

{My (P, ..., B) IZ[[FI—A]](’Y) [I' = M](v)
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Proof By induction over the structure of the derivation. We only detail two cases:

LAMBDA

PRrROD

We have to check that

{{AE:A.B-T-M}}(Pla S P’n) ):[[FI—(X:A)B]]('y) [F F Az:A.BﬁC-]M'] (7)

because L1y([r+A](y),[FT,z:AF B](v,.)) 18 & A-iso, and unfolding the definitions, we
see this is equivalent to

{Ae:a Bz MP(Py, .., Py N) Fri(reA)(y),[7 04 B](v,) LT 2 A M](v, )

or equivalently,
Va C [[P F A]](’)’) . VN ):[Pl—A]]('y) « . VAI,BI € SN .
{{appw:A,_B,(AI:A_B:L‘.M}}(Pl, eny Pn), N) IZ[[T,;U:AI—B]]('y,a) [F,.T A M](’y, a).

Now, the induction hypothesis ensures that

{AMB (P, ..., Poy N) B arB)(va) L7 1 AE M](7y, @)

which, since [I',z : A F B](y, ) is a saturated A-set, is equivalent to the
previous proposition.

We simply have to check (condition 1(1)), that {{(z : A)B}(p1,...,Py) is
strongly normalizing. It is an immediate consequence of the induction hy-
pothesis, which states that {{A}} (p1, ..., P,) and {{B}}(Pi, ..., Py, x) are both
strongly normalizing.

|

Theorem 2 IfI' = M : A is derivable, then M is strongly normalizable.

Proof Let I' = [z1 : A1;...;52pn ¢ Ap]. We know that [z, : A1] is a saturated A-set;
thus the second clause of definition 7 ensures there exists y; T [z1 : A1] such that
1 is realized by any strongly normalizing atomic term. Iterating this construction
we obtain v = (y1,...,7v,) such that v € [['] and (z1,...,2,) &= (71,-.-,7n)- The
previous lemma then ensures that M[z, \ P, ...,71 \ Pi] E[r+a)(y) and hence M is
strongly normalizing. -
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6 Universe Constructions for Different Type Sys-
tems

Definition 16 (degenerated A-sets) A A-set X is said to be degenerated if
Xy is a singleton {C} where C is a saturated set of terms and

MExC <<= MeC.

There is of course a trivial one-to-one correspondence between saturated degen-
erated A-sets and saturated sets of terms. Remark The family of degenerated
A-sets is a set.

Any non-empty set X can be viewed as a A-set J(X) whose indexes are the
elements of X and such that

Ve e J(X). VM e A . M g, ) C <= MeSN.

Hereafter we usually identify the set X and the (saturated) A-set J(X).

6.1 System F

Girard’s system F', also called second order polymorphic A-calculus is defined
as a PTS by:

S = {x,0} A={(+,0)} R = {(x,*,%), (0, %, %)}

Here, the set ¢ is empty, which means that we do not care about the relations.
For every sort s we take 2T(s) = 2 (s) = 2(s) and thus ff,={s= Idgn,,). We
define 2A(x) as the set of saturated degenerated A-sets ; the set 21(0), is the
singleton {2A(x)}.

Conditions 2, 3 and 4 are trivial because ¢ is empty. The first two points
in condition 1 are easy:

1. all elements of 2A(x) and 2A(0) are saturated A-sets

2. (%) is (the only) element of 2(0).
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Let us prove the point 3. Suppose that X is a A-set either element of 2(*) or
2(0), and (Ya)acx, is a family of saturated degenerated A-sets Y, € 2. Since
all the Y, have exactly one carrier y,, the saturated A-set I1; (X, Y") is naturally
defined as the degenerated A-set corresponding to the following saturated set:

{M,¥(A,B,N) € SN® .Ya T X .VN Ex a . app,.4 s(M,N) Ev, Yo}

The element of this set are exactly the realisers of the only index of 7 C
II(X,Y). Thus we have defined a A-iso

ooy X, YY) = (X, Y) € 21t (%).

which associates 7w to (). This proves criterion 1.

6.2 CC
The Calculus of Construction which extends system F is defined as a PTS by:

S = {x,0} A= {(x,0)} R = {(x,*,%), (0O, %, %), (x,0,0),(30,0,0)}

Our model extends the model of system F. We use a singleton set € = {1} to
treat the rule (O,0,0) inside set theory. For every sort s we take 2AM(s) =
Ay (s) = A(s) and thus f,={,= Tdgn - 2A(x) is the set of saturated degener-
ated A-sets. 2(0) is constructed as the union of all level, for n € w™, where
w™ is the set of strictly positive natural numbers.

1. level; is the singleton {2A(x)},
2. level<,, is defined as the union of all level; for 1 <k < n,
3.
level,, 11 = {II(X,Y), X € A(x),Y, € level,}

U {II(X,Y), X € level,,Y, € level,}
U {II(X,Y), X € level,, Y, € level, }

We check easily that the level,, are disjoint sets. Let us introduce the equiva-
lence relations:
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1 1
a(s) relates every two elements of 2(x), and ‘ () ‘ relates every

two indexes ) of saturated degenerated A-set X, X' € (%),

if and only if they are in

1
A(0)

2. two elements of 2T(0) are related by H

the same set level,,

. . 1
3. every two indexes o and o/ of X and X' in 2" (0O) are related by ‘ a

o |

The isos
wLH(X,Y): H(X, Y) — H‘L(X, Y)

are defined:
1. as in system F for the rules (x,*,*) and (O, %, %)

2. as the identity II(X,Y) = II;(X,Y") for the rules (x,0,0) and
(o, 0, 0).

Remark that the A-iso |1(x,y) does not depend on the rules because Qlﬂ(*) and
2 (0) are disjoint sets.
Let us check that the definition fulfills our conditions. First, conditions 2(2)

and 4 are trivial ; condition 2(1) means and ‘ are identical

1 1
A0 () A (00)
on AT(x) = 2y (), which is true.

On the other hand, conditions 3(1) and 3(2) are true on the rules (x, *, *)

1 1
ax) [ ‘ (%)
elements of 2A(x), respectively. Condition 1(3) is true on (x, *,*) and (0O, *, )
for the same reason as in system F.

At that point, let us check conditions 3(1), 3(2) and 1(3) on the rules

and (O, %, x) because relate all elements and indexes of

(%,0,0) and (O,0,0). Condition 3(1) is true because the relation

1
2(0)
mirrors the levels of 2(0). In fact, a product II(X,Y) is in level, when there
are natural numbers m and n such that:
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e X € level,, and Y, € level, for any o C X: then p = maxz(m,n) + 1,

e or X € A"(x) and Y, € level, for any o C X: then p=n + 1.
Condition 3(2) is true for another simple reason. Suppose that

1

(. v) H (20 (s,), 200 (0

(X', v'

) H Y

for s; = % or s; = 0. Remark (see points 1 and 3 in our definition of equiva-
lence) that all indexes in @ C X, o/ C X' and indexes § C Y, and ' C Y, are
equivalent. As a consequence, all indexes f and g of II(X,Y’) and II(X', Y")
respectively, verify:

9

1
d ‘ M2t (s,), 2t ())

On the other hand, by point 2 in the definition of equivalence relations, all
indexes in IT (X,Y) and IT (X', Y") are equivalent:

uxyy (f)

mﬂ}D) ‘ J/H(X’,Y’) <9>

The condition 3(2) follows.

Let us check condition 1(3) on (,0,0) and (O,0,0). It is of the highest
importance here that every two indexes o and o of a A-set X € 2AM(s;) are
1
A (s1)
a family of elements in 2(0) such that

related by — for s; = % or s; = 0. As a consequence, if (Y,)aex, 18

V(a, o) € Xi.a o =Y,

1 1
ot (s1) at (D) H Yo

then all Y,’s are on the same level level,. It follows that II(X,Y") is an element
of level,,+1 and as such, an element of 2(0).

6.3 ECC
The Extended Calculus of Construction is defined as a PTS by:

S={x0]icw"} A={(*,0),(0;,0i1) i € w™}
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R = {(*7*7*)7 (Dia*a*)a (*7 Di7 Di)7 (Dja Dkaljm) | iajak € (w+)3am = ma:c(j,k)}

The construction of the 2(0;)’s extends the construction of 2(0) in the case of
ECC. Here, ¢ is the set w™. For every sort s we take 2" (s) = 2y (s) = 2(s) and
thus f,={,= T dmﬂ(s). Again, the set 2(x) is the set of saturated degenerated

A-sets. The sets %(0;)’s are defined as the union of all level(; ) for n < w:

1. level( ) is the singleton {2A(x)},

2. level(; ) is defined as the union of all level; ) for (4, p) lexicographically®
less than (i, n),

level(;ny1) = {II(X,Y), X € A(x), Yo € leveli )}
u {II(X,Y), X € Ievel(,-,n), Y, € |eve|§(z~,n)}
U {H(X, Y),X S Ievels(i,n), Y, € |eve|(z~,n)}

4. level(it1,0y is the singleton {2(0;)}.

All sets level(;,) are disjoint sets. In the case of CC we were able to give a

. . . 1 1 .
direct definition of the relations 2t () and () in terms of the levels
in 2(0). This would be very hard indeed in the case of ECC. As a consequence
. ”» J j .
at some point the definition of af(s) and af (s) forjeeand s € S

makes use of an induction argument on the construction steps level ).

For the universe ()
J
2A(*)

urated degenerated A-set X, X' € 2(x),

relates all indexes () of sat-

J
relates all elements of 2A(x), and ‘ a(+)

For the universe 2(0;) when i < j

J
2A(0;)
two indexes « — X and o C X'.

relates all elements X and X' of 2™(0;) and ‘ relates every

J
2A(0;)

3That is j <4 or (j =i and p < n).
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For the universe 2(0;)

Two elements X and X' of 2™(0,) are related by if and only they

J
2(0;)

are in the same set level; ). relates every two indexes @ — X and

J
A(5;)
o' C X' in any two A-sets X, X' in 2(0;).

For the universe 2(0;) when i > j

The two relations are defined by induction on the

J J
and
24(0;) H 2A(0;)
construction steps level; ). The first step in the construction is to impose
that

1. two A-sets Z and Z’ related by H 9

(JDZ) are at the same level level; ),

2. two indexes o C Z and o C Z’ related by ‘ 2% (jD) ‘ have their A-sets Z
(]
and Z' at the same level level; ).
. J J |
Thus, it is enough to construct a(0;) and ‘ a(0;) at each level level; ,).

Let there be two elements Z and Z' of level; ,):

1. if n = 0 then by construction of %(0;), Z and Z' are equal to 2y (0;_4)
J

and thus related by 2(0;)

Let there be two indexes f and g of

2Ay(0;-1). Then

J
/ A(0;

. i J
) ‘g if and only if f A(0; 1) Hg

2. if n=p+ 1 then Z and Z’ are of the form:

Z=T(X,Y) and Z =T(X"Y")
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y L of

where X, X' and Y,,Y,, are elements of level<(; ), for any o C X and

o' C X'. We impose that the relation only relates the A-sets

J
2A(0;)
Z and Z' when there are two sorts s; and s, among {*,0,, | m < i}
such that

e both A-sets X and X' elements of 2(s),
e forany a C X and o C X', both A-sets Y, and Y, are elements of

91(82).

The relation is defined as follows:

J
2™ (0;)

I

(X Y)' I 'H(X’,Y’)

if and only if:

and for any o — X and o' C X',

J

!
(s1) o =Y,

«

J

. the relation a(0;) ‘ is defined on any index f C Z and ¢ C Z' with

Z,7" € level; ) as follows:

if and only if

d
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Once having expressed the equivalence relation, we introduce the isos
Iy XL Y) = 1L (X, Y)
which are defined like in CC:
1. as in system F for the rules (*, *, *) and (0O;, *, )
2. as the identity II(X,Y) =II,(X,Y) for the rules (x, J;, 0;) and
(04, 0k, 0,,) with m = maz(k, m).

Again, the A-iso ln(x,y) does only depend on X and Y since %"(x) and the
2 (0;)’s are all disjoint.

Let us check the conditions on our model. Conditions 1(1), 1(2) and 4 are
trivial, condition 2(2) is true because the 2M(s)’s are disjoint and condition
2(1) is the consequence of the fact that

j 1 .
1. and are the same relation on AT (x) = 2y (%),
i) | "] ay(@) =
J J .
2. and are the same relation on 2™(0;) = 2y (0;), for
at(@y) | | 2y (o) (B =2(54
1,7 < w.

Condition 1(3) is true:

1. on the rules (x,x,%) and (O;,*,*) because every product II(X,Y) of
saturated degenerated A-sets Y, is collapsed by |n(x,y) to the saturated
degenerated A-set II|(X,Y) ;

2. on the rules (O;,0;,0;) when ¢ < j because the equivalence relation

is designed so as to relate every two indexes o and o in a A-set

J
2A(0;)
X element of O;. As a consequence, if (Y,)acx, is a family of elements
in 2(0) such that

Y(a, ') € XE.a o =Y,

1
20 (s1) (D) H Yo

then all Y,’s are in the same level level,,. It follows that II(X,Y") is an
element of level, 1 and as such, an element of 21(0).
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3. on the rules (0;,0;,0;) for ¢ < j because all products II(X,Y) where
X is element of level;;,y and (Ya)arx is a family of elements of 2(0;)
indexed by indexes of X, are in level(; 1), and hence in 2(0;).

Let us check condition 3 on the relations and

J
2A(s)

J :
‘ a(s) H for a given

element j of ¢:

For the rules (s, s9, s3) where sy = s3 = x or s3 = 0; with i < j

The conditions 3(1) and 3(2) are true here for the same reasons as in CC:

o Ql(jsz) and ‘ 21(?9;;) relate all elements of A(s,) and A(s3),
o Q[(‘;) and ‘ 2[({93) relate all indexes of elements of A(s2) and A(s3).

For the rules (s1, 52, 0;)

The proof of conditions 3(1) follows the same line as in the case of CC: A
product II(X,Y) is in level; if and only if there are (i1,n;) and (72, n2) such
that

1. X € levelg, 5,y and Y, € level, ;) for any @ C X, and (j,p) is the
(lexicographical) maximum of (i1, n1) and (ig, ns),

2. or X € A"(x) and Y, € level(;,,_1y for any a C X.

The reasons for condition 3(2) are the same as in the previous case since all

. J
indexes of elements of 21(0;) are related b )
( ]) y Ql(Dj) ‘
For the rules (s, s2,0;) for i > j
. . .. j J L . .
The inductive definition of a(0;) and a(0;) ‘ for 7 > j follows explicitly

the requirements of conditions 2(1) and 3. For this reason both conditions are
fulfilled.
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6.4 System U~

It is well-known that Girard’s system U~ yields non-normalizable terms, and
thus we cannot find a collection of 2A(s) fitting its rules. However, it is reas-
suring to check that the rules do not allow the usual model construction.

As a PTS, system U~ is defined with three sorts R = {x,0, A} and the
following axioms and rules:
A={(x,0),(0,A)} and R = {(*, %, %), (O, %, %), (3,0,0), (A,0,0)}.

The three first rules are exactly the rules of system F,. The last one
however is obviously problematic:

e because of the second axiom, we need to have completed the construction
of 2(0) in order to define A(A),

e on the other hand, because of the last rule, we need to quantify over all
elements of A(A) while constructing 2(0).

It is obviously not possible to break this vicious circle. In other words, we see
how polymorphism cannot be authorized for higher sorts.

6.5 Cyclic F

The following PTS does not seem more expressive than system F'. It might
however be worth noting that it fits easily in our pattern. A = {(x,0), (O, %)}
and R = {(x,*,*), (O, %, %)}

2A(x) is the A-set of degenerated A-sets. 2T(0) is the singleton 2A(x). 2Ay(0)
is a degenerated A-set. It is easy to finish the proof.

7 The Church-Rosser Property

We now focus on the relation between the labeled PTSs considered in this
paper and the usual presentation. The first step is to verify the Church-Rosser
property for the first one.

>From now on, we suppose given a PTS (i.e. the sets S, A and R) and
we assume it verifies the strong normalization property. We will make another
assumption (uniqueness of type) just before lemma 15.
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Definition 17 (loose reduction) Loose reduction (written t>;) is the con-
textual closure of

app,. 4 p(Aw:ar.p .M, N) >; M[z \ N].

Again, we write >} (respectively =;) for the reflexive-transitive (respectively
reflezive transitive and symmetric) closure of >;.

Lemma 13 The >; property enjoys the Church-Rosser property on pseudo-
terms:
Vi, it =t =3ttt A

Proof The usual Tait—-Martin-Lof style proofs apply. -

Lemma 14 Let app,. 4 p(Ap:ar.px.M, N) be a well-typed term in some context
I'. We have A =; A" and B =; B'.

Proof Looking at the derivation, it is clear that (z : A)B =r (z : A")B’, and thus
we also have (z : A)B =; (z : A")B’. The previous lemma ensures that there exists
a (z : A”)B" which is a common (loose) reduct of (z : A)B and (z : A")B’. Hence,
A A", A7 A" B>y B" By B”. -

Theorem 3 (Church-Rosser) Let there be two derivable judgements T+t
T and ' Ft T, such thatt = t' andt and t' are in normal form (for ©>3).
Thent =t'.

Proof We proceed by mutual induction over the size of ¢ and ¢'. We start by proving
that ¢ (respectively ¢') is in normal form for >;: suppose t yields a loose redex, i.e.
contains a subterm of the form

appw:A.B()\m:A’.B'CIJ.M, N)

by the previous lemma, we have A =; A" and B =; B' and by induction hypothesis
A = A" and B = B’. But then we have exhibited and tight redex, and this is
impossible since ¢ is in normal form.

Now lemma 13 states there exists t” such that ¢ > t” and ' >} t”. But since ¢
and ¢’ are normal with respect to I>;, we have t =t = ¢'. -
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Corollary 1 Let t and t' be two well-formed terms in a same context I'. If
t = t', thent and t' have a common unique normal form.

What now follows is a little boring and straightforward, but necessary to
extend the previous results to usual PTSs.

We can now define the usual PTSs and state our equivalence theorem. The
unlabeled terms are defined by the following grammar:

M = z|s|(MM)| X : MM | (x:M)M.

We overload the symbol >; (respectively 7, etc) by defining reduction on
unlabeled terms:
(Ax: A.M N)r>; Mz \ NJ.

The rules for unlabeled judgements I' b; M : T are then defined as usual (see
[2] for example). The main point is of course that the conversion rule now
goes:

F}_ZMIA,FFZBZS,AZIB

(conv) T M:B

Definition 18 (Unstripped term) We define the map |||| from terms to
the usual, naked terms of PTS’s:

lzfl = =

lsll = s
llappa s(M, N)|| = ([[M]] [[N]])
[ Aaapz-M|| = Az [|A]l.[[t]|

It is straightforward to extend this map to contexts.
The following results are quite immediate:
o t=pt' = |[t|| = ||t
o t = t' = |[t|| = |||

o I'Et:T = [[Tf| ko [Je]] - [[T7].
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But we are mainly interested in the reverse assertion, i.e. theorem 4. Since
we do not want to get lost in technical details without much interest, we make
the following assumption.
Assumption If the judgements Tt :T and T' ;¢ : T are derivable, then
T=T1T.

The first thing to check is:

Lemma 15 Let ' ¢:T and T =t : T' be two derivable (tight) judgements.
If [[tl] = [[¢)], then t =g t'.

Proof Thanks to strong normalization, we might restrict ourselves to the case were ¢
and ¢’ are both normal. Thanks to previous results, this implies that |[¢|| = ||t'||. We
may then proceed by mutual structural induction over ¢ and #'. The only non-trivial
cases are:

o t = A\papzr.M and t' = A4 px.M'. Since both terms are normal and =;-
convertible, we have A =; A', B =) B’ and M =; M'. The induction thus
implies that A = A" and also B = B’ (respectively M = M'), since B and B’
(respectively M and M') are well-typed in T,z : A.

® t=app,,.4,.5,(8PPs,:.4,.8, (- - - @PPy .4, B, (¥s Mn) - .., Ma), M)
and

t' = appx’lz.»‘l’l.B’1 (appa:’z:A’TB’Q(' e appx’n:A’n.B;L (ya MTIL) s aMé)a M{)

We know that (z, : Ap)B, and (z], : Al)B}) are both correct types for y in
|IT'||. They are therefore convertible and the induction hypothesis applies. We
also know that ||M,]|| = ||M},|| and may apply the induction hypothesis. We
iterate these two steps m times to conclude t = ¢'.

|

Theorem 4 Given a derivable judgement I =, t : T, there exists a derivable
judgement A wu :V such that ||A|l| =T, |ju||=1t and ||V|| =T.

Proof By induction over the derivation. All steps are straightforward but the con-
version rule, which is taken care by the previous lemma. -

Corollary 2 IfI' bt : T is derivable, then t and T are strongly normalizing
with respect to >;.
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8 Conclusion

We hope that this work might shed some new light on the interaction be-
tween model construction and strong normalization, which is the syntactical
approach to logical consistency. We realize that the definition of the interpre-
tation, as well as the construction of the universes for particular systems is
complicated by the presence of the equivalence relations in the 2"(s). This
seems the price to pay for avoiding the use of inaccessible cardinals. We how-
ever conjecture that inaccessible cardinals are necessary to prove normalization
for more powerful theories, for instance when adding full inductive types to
ECC. This leads to possible directions for future work:

e Give a clean categorical setting to this work, since most of the construc-
tions seem to be of categorical nature.

e Extend this approach to other theories, especially to inductive types.

e Understand to what extent these construction might be used for more
traditional applications of models, like consistency for additional axioms
(excluded middle, choice) or new reductions.
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