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Abstract: The detection signal is an input signal that enhances the detectability of failure. As-
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Conception de signal de détection pour la détection de pannes :
une approche robuste

Résumé : Un signal de détection est un signal d’entrée qui permet de détecter au mieux une
occurence de pannes. On présente une méthode de construction d’un signal de détection d’énergie
minimale garantissant la détection. On suppose que les comportements, normal ou défaillant,
peuvent étre modélisés par deux systémes linéaires soumis a des perturbations d’énergie bornée.
On considere aussi I'implémentation en temps réel du filtre détecteur.

Mots-clé : Détection de pannes, signal de détection, systémes implicites, robustesse.



1 Introduction

There are two approaches to the problem of failure detection and isolation. The first is a passive
approach where the detector monitors the inputs and the outputs of the system and decides whether
(and if possible what kind of) a failure has occurred. This is done by comparing the measured
input-output behavior with “normal” behavior of the system. The passive approach is used to
continuously monitor the system in particular when the detector has no way of acting upon the
system, for material or security reasons. Most of the work in the area of failure detection is geared
towards this type of approach [1, 10, 13].

The active approach to failure detection consists in acting upon the system on a periodic basis
or at critical times using a test signal, which we call a detection signal, in order to exhibit abnormal
behaviors which would otherwise remain undetected during normal operation. The detector can
act by taking over part or all of the inputs of the system for a period of time: the test period. The
decision whether or not the system has failed should be made at (and if possible before) the end of
the test period. The structure of the failure detection method considered in this paper is depicted
in Figure 1.1 .

detection noise v decision
signal v l/ A
output y
: System ]
mput_u Y detection
‘ filter

Figure 1.1 : Active failure detection.

The design of detection signals has been a major issue in system identification but their use for
failure detection has been introduced in [14, 5, 6]; see also [11]. The detection signal (called auxiliary
input) in these works are considered to be linear inputs of stochastic models and their objective
is to optimize some statistical properties of the detector. In [8], a method for guaranteed failure
detection was presented in which perturbations were modeled as polyhedral sets. The method was
based on solving large linear programming problems. The work presented here is closely related
to that work but the approach is different in that uncertainties are modeled as bounded energy
signals.

Let v = {v(k)}, k € [0, N — 1], denote a detection signal and let A°(v) represent the set {u,y}
of normal input-output behaviors of the system over a period of time of length N; y = {y(k)}
and v = {u(k)}, k € [0, N — 1], denote respectively the measured output vector sequence and
the measured input vector sequence. Similarly, let A!(v) represent system behavior when failure
has occurred. Then failure detection consists of observing the inputs and outputs of the system
over some period of time of length N, called the detection horizon, and deciding to which set they
belong. Clearly for perfect isolation we need that for a given detection signal v

A%(v) N AL (v) = 0. (1.1)

In this paper, we focus on the following problem: how to construct a detection signal v so
that condition (1.1) holds. The solution to this problem can be computationally intensive since
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it is constructed, once and for all, in advance. We also briefly consider the problem of (assuming
condition (1.1) holds) how to decide to which set the observations belong to. The solution to this
problem is to be implemented on-line and needs to be efficient.

The outline of the paper is as follows. In Section 2, basic assumptions are presented and the
model is introduced. Detection signals are characterized in Section 3 and a method for constructing
an optimal solution over finite horizon is given. The asymptotic properties of the detection signal
as the horizon goes to infinity are studied in Section 4 where it is shown that for long detection
horizons, asymptotically optimal detection signals can be easily characterized and constructed.
Section 5 is dedicated to a brief discussion of the implementation of on-line decision filters.

2 System model

The behaviors of the normal and failed modes of the system are supposed to be modeled by

$Z(k + 1) = Azxz(k) + Bzu(k) + Dzv(k) + M;v; (k), (2.1)

for k=0,...,N—1, and : = 0 and 1 correspond respectively to the normal and failed modes. v is
the detection signal (known), v and y are inputs and outputs which are measured on-line. A;, B;,
Cy, D;, M;, N; are matrices of appropriate dimensions. Note that zg and z; need not even have
the same dimension. The same is true for vg and vy.

The two models are supposed to satisfy:

21— A;, M,
C; N;

) has full row rank Vz, (2.3)

and N; has full row rank. These assumptions are the usual assumptions for Kalman filtering
problems. For example when the dynamic and observation noises are independent, i.e., MZ-NZ-T =0,
Assumption (2.3) is equivalent to the controllability of (A4;, M;).

Finally, the v;(k)’s are unknown sequences representing perturbations, noises and unmeasured
inputs. They are supposed to satisfy

N-1
lwill> = lw®)|* <o, i=0,1. (2.4)
k=0

More general constraints such as Y v;(j)T Riv;(j) < o; can always be converted to (2.4) by modi-
fication of the M; and N; matrices.

Note that unlike most other approaches to uncertainty modeling in dynamical systems for the
purposes of failure detection, v is not a stochastic white noise sequence, but rather a bounded
energy arbitrary discrete sequence. This kind of modeling is used in robust control methodology
(in particular Hs,), and is particularly useful when there is large uncertainty concerning the power
density of the noise process.

Finally, a fundamental assumption, in this paper, is that, during the test period, the system is
either in normal mode or failed mode. No transition occurs during the test period.

INRIA



3 Detection signal design

3.1 Proper detection signal

We say that v is a proper detection signal if its application implies that we are able to always
distinguish the normal mode from the failed mode of the system, based on observations u and y.

Definition 3.1 Delection signal v is not proper if there exisl sequences xg, 1, Vg, V1, 4 and y
satisfying (2.1), (2.2) and (2.4) both for i =0 and i = 1. The detection sequence v is called proper
otherwise.

The objective here is to find a method for constructing a minimum energy proper detection
signal. For that, we need first to introduce an auxiliary cost function.

Definition 3.2 The function J(3,v) is the auziliary cost function associated with problem (2.1)-
(2.2) if

=

J(8,0) = min Bllvo(R)I* + (1 = B)llva (k)]* (3-1)
LiyViy Uy Y 0
subject to (2.1)-(2.2), i =10,1

o~
Il

Jor0 < p <1.
Note that vy, vy in (3.1) need not satisfy (2.4).

Lemma 3.1 For all v, for 0 < g <1, J(B,v) is defined and has the following properties:
1. it is zero for f =0 and § =1,
2. it is quadratic in v, i.e., for all scalar ¢, J (8, cv) = |c|>J (8, v).
3. il is a continuous function of (3,

it satisfies J(B,v) < o if v is not proper,

BN

5. it is a strictly concave function of B if the set of proper delection signals is nol emply,
otherwise it is identically zero.

Proof J(f,v) is well defined for all v thanks to full rankedness of N;’s since this clearly implies
that the minimization in (3.1) is over a non-empty set for all v.

Let vy = 0 and consider constraints (2.1)-(2.2) for ¢ = 0. Clearly there exist zg, v and y so that
these constraints are satisfied. But then for these u and y (and in fact for any other), there exist
xq and vy satisfying constraints (2.1)-(2.2) for ¢ = 1. This shows that 1y = 0 is consistent with
(2.1)-(2.2) for ¢ = 0 and ¢ = 1. Thus J(1,v) = 0. Similarly, we can show that v; = 0 is consistent
and J(0,v) = 0. Thus, J(0,v) = J(1,v) = 0 for all v. This proves the first statement.

Note that (2.1), (2.2) fori =0,1 and k£ =0,..., N — 1 form a consistent set of linear equations
in the variables {xq, 21, o, 1, u, y} which have a right hand side of the form Quv. Thus the set of all
solutions is an affine set of the form @v + E]- a;z; for some vectors z; in {zg, 21, vo, V1, u, y} space.
RR n°’ 3547



Projecting this affine set onto the {vy,v;} components we get the the set of pairs (v, v1) for which
(2.1) and (2.2) hold has the form Qv+ E]‘ a;z; for some vectors Z; in {vy, v1 } space. Equivalently,
there are matrices A, B, Q so that the consistent v; are characterized by the system

Avg + Bry = Qu (3.2)

This system is consistent for all v so that we may assume without loss of generality that (A B)
has full row rank. Let

Vi = (ﬁol (1 _Oﬁ)l) (3.3)

where the identities are the sizes of vy and vy respectively. Then J(3,v) is the minimum, over
consistent (vg,v1), of (v v{) Vs (V()) which we denote [|v[|3 and call the S-norm. We see that
141

J(B,v) is the square of the G-norm of the f-norm least squares solution of (3.2). Formulas for
weighted least squares solutions can be found in [2]. Translating these back into the Euclidean
norm, we get that, for 0 < g < 1,

J(B,v) =l [(A B) vﬁ—l/Q]T Qu|>. (3.4)

This proves Statement 2.

The matrix (A B) Vﬁ_l/2 is continuous, differentiable and constant rank for 0 < 8 < 1. Thus
its Moore-Penrose inverse is continuous and differentiable. This proves Statement 3 (continuity of
J(B,v) is obvious at 0 and 1). Note that we get more than continuity, in particular, we get that
for fixed v, J(8,v) is real analytic (has power series expansions) for 0 < g < 1.

For the fourth statement, note that if v is not proper, then there exist consistent v; with
|vil|* < o. Thus J(B,v) < o for all 8. In fact, J(3,v) is bounded by the larger of the two [|v;]|%.

Finally, let 0 < @ < 1,and 0 < 3y < B2 < 1, then

N-1

o (Br,v) + (1= @) J (B2, v) = amin Y Billvo(k)[|* + (1 = Bo)lla (k)[1* +
k=0

N-1
(1—a)min }_Boflro(R)|* + (1 = Ba)lla (k)[I* (3.5)
k=0
which is less than or equal to
N-1
min )~ (afy + (1= a)Ba) || (k)|* + (a(1 = B1) + (1 = a)(1 = B2)) [l ()| =
k=0

J(af + (1 — a)fz,v) (3.6)

which implies that J(3,v) is concave in 5. But we have shown that J(8,v) is also real analytic,
which implies, thanks to Statement 1, that J is either strictly concave or identically zero. State-
ment 5 follows then thanks to Statement 4. |
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Theorem 3.1 Suppose the set of proper detection signals is not emply. Let (3%, w*) be a solution
of

. - J(B,w)

v = max .
o<p<t  |wl
w#0

(3.7)

Then, a minimum energy detection signal is given by

o w*

il

Proof From Statement 2 of Lemma 3.1, we have that

Thus the max in (3.7) is the max of a continuous function J(f, z) over a compact set consisting of
0 <3 <1, || =1and the max (3.7) is attained at least at one place. Note that if v is given by
(3.8), then J(8*,v) = ||v||*y* = 0. Thus v is proper by Statement 4 of Lemma 3.1.

We now show that v is minimal. Suppose there exists a proper detection signal ¢ such that
6" < [Jvl|* = o/% (3.10)

and let

(3.11)

and denote by § a maximizing § in (3.11). Note that ¥ < v*. Note also that

f, ) = min 2{: Bllvo (kI + (1 = B)llwa (R)]? (3.12)

where the minimization is subject to (2.1)-(2.2), ¢ = 0,1. Suppose (&;, 74, @, ) is a solution of the
minimization in (3.12). Then, as we shall show below,

N-1 N-1
po(k)|* =D 1 (k)] (3.13)
k=0 k=0
which implies that
J(B,%) = #||8]|? < v18])% < o (3.14)

But then (&;, 2;, @, 9) satisfy (2.1), (2.2) and (2.4), simultaneously for ¢ = 0 and ¢ = 1. Thus ¢ is
not proper which is a contradiction. So, v is a minimum energy proper detection signal.

What remains to be shown is (3.13). This is done first by noting that vy and vy minimizing
in (3.1) are unique and continuous functions of 3, for all v (see the proof of Lemma 3.1). Since for
3 = 0 the corresponding v is zero, and for 3 = 1, vy is zero, there exists a 0 < 3 < 1 for which the
corresponding optimal v;’s, denoted v;, satisfy

[17]]* = (|7 1*. (3.15)
RR n° 3547



So all we need to show is that for v = o, § = B Note that by definition (since ;’s are minimizing

values corresponding to f3),

Bllol|* + (1 = B)llon))* < Bllzol|? + (1 = )l (3.16)
which thanks to (3.15) implies that

Bllaell? + (1 = B)lal> < Blool + (1 )17l (3.17)
But by definition, B is a maximizing (3, thus

Bllzol|* + (1 = B)llz )1 < Blliol|? + (1 = B)llon)” (3.18)
which implies that both sides of (3.18) must be equal, i.e., J(B,0) = J(ﬁ,f)). But thanks to
Statement 5 of Lemma 3.1, J is strictly concave, thus g = . |

Note that 7* defined in (3.7) can be considered as a measure of how easy it is to distinguish
the two models. The larger v* is, the easier it is to separate the two models. And when y* = 0,
then the two model are indistinguishable no matter what the input v is. So, ¥* can be considered
as the counter part of the Kullback distance [7] used in some stochastic formulations.

Definition 3.3 We call \/~v* the separability index where v* is defined in (3.7).

The optimization problem (3.7) can be expressed as follows:

V= JBax, J(B) (3.19)
where
J (8,
J*(B) = max ‘(’fus) (3.20)

The usefulness of (3.8) depends on having a good estimate of v*. The optimization problem (3.19)
is a scalar problem over a finite interval. Even though J*(3) is not concave, it has nice properties
which make the optimization problem (3.19) not so difficult to solve numerically. In particular,
thanks to Lemma 3.1, we know that J*(5) is a max over concave functions each of which is zero
at =0 and 8 = 1. Using this fact, it is easy to show the following result.

Lemma 3.2 Consider two scalars $1 and (9 salisfying 0 < 81 < B9 < 1. Then

- J*(B1) " (B2)
5255, 70 S T a1 I BB

(3.21)

The proof follows a straightforward geometric argument and is illustrated in Figure 3.1.

Now consider the following simple optimization strategy for estimating v* which consists of
taking the maximum of J*(3) for n — 1 regularly spaced values of § over [0, 1]:

4= max J*(k/n). (3.22)

INRIA



N J*(B1)J*(B2)

J* A /‘ T*(B1)(1=P2)+T* (B2)P:
// \\
/ \
, : \\
7/ : \
// N \
: —
0 B B2 1

Figure 3.1 : Since J*(f) is the max over concave functions going through the points (0,0) and
(1,0), it remains necessarily below the two dashed lines inside [, #2] (and above outside).

Then, thanks to Lemma 3.2, it is straightforward to show that

< : (3.23)

This shows that we are not dealing with a difficult optimization problem. We can of course use
more sophisticated algorithms to estimate v*.

The next problem is the construction of the auxiliary cost function J(3,v) and J*(3). In theory
at least, for constructing J(8,v), we can convert the equations of the two dynamical systems into
a single equation by stacking up both system equations over [0, N], and constructing an explicit
solution to the linear quadratic optimization problem (3.1), as it was done in the proof of Lemma 3.1.
This however requires manipulating (and in particular inverting) huge matrices when N and the
sizes of the states of our two models are large. In the next section, we show that the solution to this
problem can be constructed recursively. This can be numerically more efficient, but the real reason
for studying this problem is that it allows us to study the asymptotic behavior of the solution as
N goes to infinity. And, in particular, find a simple method for constructing detection signals over
long horizons.

3.2 Construction of J(#,v) and J*(()

The construction of the auxiliary cost function J(3,v) can be done recursively. As we have seen in
the previous section, the optimization problem to solve is the following:

) = min ZﬁHVo P+ (1 =Bl (k)12 (3.24)
subject to
zo(k+1) = Agzo(k) + Bou(k)+ Dov(k) + Movo (k) (3.25)
y(k) = Cozo(k) + Novo(k) (3.26)
zi(k+1) = Ayzi(k)+ Bru(k) + Dyv(k) + Myvy (k) (3.27)
y(k) = Cizi(k) + N (k) (3.28)
(3.29)
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This problem can be expressed as follows:

N-1
J(B,v) =min Y  v(k)TVav(k) (3.30)
k=0
subject to
E¢(k+ 1) = F¢(k) + Gv(k) + Hu(k), (3.31)
where
I 0 00 A 0 0 B
10 1 0 0 10 A 0 B
E_OOIO’F_COOOO7 (3.32)
0 0 I 0 0 Cy 0 0
MO 0 DO
o m o _ (BT 0
G = N 0 | H = uE Vg—(o (1—ﬁ)1)’ (3.33)
0 j\fl O
and
zo(k)
Vo(k)) Q?l(k‘)
k) = , k) = . 3.34
v = (). ew =i (3:34)
u(k)

Constraints (3.31) can be simplified without affecting the solution of the optimization problem
(3.30). For example, since u(k) and y(k) are not dynamical variables and they do not appear in the
cost function, they can be removed from the constraints by simple matrix operations. In particular,
it suffices to replace (3.26) and (3.28) with their difference (in which y(k) does not appear), and to
premultiply (3.25) and (3.27) respectively by By and B; and add them together where (BO Bl) is
a highest rank left anihilator of (go) These simplifications allow us to rewrite constraints (3.31)

1
with smaller dimensions.

This type of simplification can be done systematically as described in the following Lemma.

Lemma 3.3 There exist a full row rank matriz S and a full column rank matriz T such that

N-1
J(B,v) = min Y v(k) Ve (k) (3.35)
k=0
subject to
SETE(k +1) = SFTE(K) + SGu(k) + SHu(k), (3.36)

has the same solution as (3.30) subject to constraints (3.31), for all v(k), where
e SET has full column rank and

. (ZSET — SFT) has full column rank Vz.
INRIA



Proof Let us first put the pencil {F, F'} in Kronecker form. As shown in [12], there exist
orthogonal matrices () and Z such that

zE. — F, * * *
0 zFE. — Fo * *
Q(zE-F)Z = 0 0 2B — F . (3.37)
0 0 0 2k, — F,

where the the eigenmodes of the square pencils {Ey, F¢} and {E, Fio } are respectively the finite
and infinite eigenmodes of {F, F'}, zE, — F, and zE, — F), are respectively full row rank and full
column rank, for all z, and F. and £}, are respectively full row rank and full column rank. Let

£1(4)
§() | _ res
20 = 7). (3.39)
€4(4)
Then (3.31) can be expressed as follows
E. * * &(k+1) F. x * %k &i(k) *
0 E. =* * &(k+1) 0 F.o * k)| | 399
00 By w [|&GR+D [0 0 Fox [ {&H) [T | (3:39)
0 0 0 B/ \&Gk+1) 0 0 0 F) \&k) *

It is straightforward to verify that no matter what the values of the first 3 entries of the vector
on the right hand side of (3.39) is, there exist sequences &, & and &3 such that (3.39) is satisfied.
This means that the top 3 equations in (3.39) do not impose any constraint on v and v. We can
thus take

S=0 00 1)Q, T=2z0 00 1)", (3.40)
and of course & = &;. |

The decomposition (3.37) can be done in a numerically robust way [12]. But since we are
only interested in the “n” part, we can also use simpler algorithms; see for example the reduction
algorithm introduced in [9].

Thanks to Lemma 3.3, we can assume from here on that

F has full column rank

(ZE — F) has full column rank, Vz
(ZE - F G) has full row rank, Vz
(E G) has full row rank.

Assumption (3.43) follows from (2.3), and (3.44) the full rankedness of N;’s.

To construct the solution of problem (3.30) subject to constraints (3.31), we use the method of
dynamic programming. Let J;(£(z)) denote the past cost function:
1—1

Ji(€(3)) = min Y " w(k) Ve (k) (3.45)

k=0
RR n° 3547



subject to
E¢(k+1) = FE(k)+ Grv(k)+ Hu(k), k=0,---,i— 1. (3.46)

Note that J; depends on given constants v and § but for simplicity of the notations, we do not
explicitly express this dependence. Clearly,

J(8,0) = min In(E(N). (3.47)

The J;’s can be constructed recursively as follows:

Lemma 3.4

e = (s - (2) €)1 (s - () €0 + SO (48)

where
s(G+1) = ((0 ET;{Ef(j)S(j)), s(0) =0, (3.49)
(0 -1
Do(i+1) = ( 0 B () ) - Ts(0) =0, (3.50)
F GVﬁ‘lGT

Proof The proof is by induction. Clearly J,(£(0)) is zero. Now suppose that (3.48) holds for
t = k and let us show that it also holds for : = k + 1. The dynamic programming equation is

Jewr €064 1)) = min (€06 + 00 Va(h) @51
subject to
E¢(k+1) = FE(k) + Guv(k) + Hu(k). (3.52)

Introducing the Lagrange multiplier vector A, we define the Lagrangian
L= Jp(€(k) +v(k) T Vav(k) = \T(BE(k+ 1) — FE(k) — Gu(k) — Ho(k)). (3.53)

Setting the partials of £ with respect to {(k) and v(k) to zero, we get that the solutions £*(k) and
v*(k) satisfy

—(0 ET)rs(k) ( Fr e\ [~ (0 ET)Ta(k)s(k)
( o (E) G‘/ﬁlGT> ( /\/2) B ( E¢(k+1) — Ho(k) ) (3.54)

and v*(k) = —Vﬁ_lGTA/Q.
The matrix on the left hand side of (3.54) is invertible. This can be proved by first noting that

(0 ET)Tgs(k) (g) >0 (3.55)
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because, in case v = 0, thanks to our assumption,

0
IE) = €07 (0 B Ta(h) () €0 (3.56)
which is non-negative for all {(k). Now suppose that the matrix on the left hand side of (3.54) is

not invertible, i.e.,
( (0 ET)Ts(k) (g) Ft ) (1‘) —0 (3.57)

F GVﬁ‘lGT

for some vectors z and y (not both zero). From (3.57) we obtain:

— (0 ET)Dg(k) (g) e+ Fly=0 (3.58)
Fz+GV;'GTy=0 (3.59)
which implies that
0 _
T (0 ET)T4(k) (E) r+y GVIIGTy =0 (3.60)

Thanks to (3.55) and the positivity of Vi3, both terms in (3.60) must be zero. Thus

(0 ET)Tgs(k) (g) z = 0 (3.61)
Gy = 0 (3.62)
which using (3.58) implies that
FT

But y is not zero (otherwise from (3.59) and Assumption (3.42), we have z = 0) which means
that (3.63) contradicts (3.43). Thus the matrix on the left hand side of (3.54) is invertible, and so

the matrix
0 -1
- ETYT4(k FT
Tg(k+1) = (0 B%) To( )<E) (3.64)
F avitat

is well defined.
We thus get that the solution to the optimization problem (3.51) is unique and is given by

()= (0 her) oo G W) o9
Thus

Tir1 (E(k +1)) = Jo (€ (k) + v (k)T Vpr™ (k) (3.66)
RR n’ 3547



which after some straightforward algebra and using (3.49), can be expressed as follows

Jesnlek+ 1) = (sth+ 1) - () e+ 1>)Trﬁ<k 1) (ste+ 0 - () e+ )

k
+3 s() Ta()s(s). (3.67)
7=0

But this is just (3.48) for i = k + 1. |

Theorem 3.2 The auziliary cost function J((3,v) is given by

N-1
s()TT5(5)s(7) + s(N)T®5s(N) (3.68)

=1

where the s(j)’s and U'g(j)’s are respectively defined in (3.49) and (3.50), and where
0 T o0\ .
Cp=Ts(N) = Ts(N) | g (0 ET)Is(N) . (0 ET)Ig(N). (3.69)

Proof To compute J(3,v), we can use (3.47) and (3.48) for j = 0. It is straightforward to show
that any £*(N) satisfying

0 B L) () €)= (0 B a()s() (3.70)
is an optimal solution of (3.47). Equation (3.68) is then obtained by placing

5*(N):<(o ET) T4(N) (%))T(o ET) Dg(N)s(N) (3.71)

n (3.48). |

After the auxiliary cost function J(8,v), we consider the construction of J*(3) as defined
n (3.20). This is not a quadratic optimization problem, however it is possible to convert it to a
related quadratic problem:

J(B) = max J (8, v) — y|v]*. (3.72)

J*(B) can then be obtained by noting that for v > J*(3), the optimization problem (3.72) is well
posed and j(ﬁ) = 0, otherwise, j(ﬁ) = oo0. Thus J*(§) can be obtained by a simple v-iteration
algorithm.

Using (3.49), (3.50) and (3.68), the optimization problem (3.72) can be solved recursively (for
each 7). This however is not particularly useful for the asymptotic analysis that we shall undertake
later, so here we proceed in a more direct way. In particular, we construct an explicit expression for

INRIA



J(B,v). For that, it suffices to express the s(j)’s explicitly in terms of v’s. Note that System (3.49)
is causal, so s(j) depends only on the past values of v. Thus there exists a matrix Qg(j) such that

v(0)
s(j) = Qs () : : (3.73)
v(i—1)

With this and Theorem 3.2, we have all the necessary ingredients to state the main result of this
section.

Theorem 3.3 The auziliary cost function is given by

J(3,v) = vl Agv (3.74)

where
2= (MY D)+ Qe @sas) (3.75)

and where

Aot +1) = (S48 0) 4 Qalk+ 17T (0Qak+ 1) (3.76)
Ag(0) = [ ] (emply matriz), (3.77)

and
Qs(k+1) = ((O ET)FOE(k)QB(k) 13) (3.78)

Qp(l) = (2) (3.79)

It is straightforward to see that

J7(B) = p(Ap) (3.80)
where p(.) denotes the spectral radius!. And thus, in Theorem 3.1,

* = < p(A 3.81

7= max p(Ag) (3.81)

and w* is an eigenvector associated with the largest eigenvalue of Ags (which is v*) where §* is a
solution of the optimization problem (3.81).

Even though we have not taken advantage of the particular structure of the Ag in computing
J*(8), as would have a fully recursive approach. This method can still be more efficient because
it allows us to use powerful standard linear algebra routines to find the largest eigenvalue and the
associated eigenvector of Ag.

'Since Ag is symmetric non-negative, this is just its largest eigenvalue.
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3.3 Example

It would take a lot of space to present any meaningful example. So instead, to simply give an idea
of what the solutions look like, we consider two randomly generated models. In our example, u and
v are of size one, and y of size 2. zg, z1, Vo, V1 are of sizes 4, 2, 3, and 4 respectively. Both models
are stable. N =60 and o = 1.

Figure 3.2 is a plot of J*(§) versus §. In this case, as it often is with randomly generated
examples, this function is concave. This is not always the case!

24e-3

20e-3 —

16e-3 —

12e-3

8e-3 —

0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 10

Figure 3.2 : This figure shows J*(f) as a function of §. §* = .47 and v* = .02251.

Figure 3.3 illustrates the eigenvector of Ag« corresponding to its largest eigenvalue which is
equal to v*, scaled to give the minimum energy detection signal.

4 Asymptotic behavior

For N large, it is possible to find simple approximate (asymptotically optimal) solutions to the
minimum energy detection signal design problem. This allow us to avoid the construction of the
Ap matrix. We of course continue to assume, as shown previously, that (3.41) through (3.44) hold.

4.1 The Algebraic Riccati Equation

To study the asymptotic behavior of the solution as N goes to infinity, let

=0 N (7). (1)
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Figure 3.3 : A minimum energy detection signal.

Then, clearly

Pk = (0 1) (—ETPQI(:{C—DE GVI;GT> B (?) (4.2)

Ps(0) = 0. (4.3)

Theorem 4.1 Pg(k) converges exponentially fast to the unique positive definile solution of the
algebraic descriptor Riccati equalion

Py = (F(ETRE) ™ FT + GV;'GT) - (4.4)

Proof The proof has four parts. First we show that Pg(k) is increasing. Then we show that it
is upper-bounded. This proves that Pz(k) converges. Then we show that the limit Pj is positive
definite. And finally we show that Pg is the unique solution of the algebraic descriptor Riccati
equation (4.4).

Lemma 4.1 The sequence of Pg(k)’s salisfies

Pg(k+1) > Pg(k), Yk >0. (4.5)
Proof First consider the optimization problem
V(X,¢) = min ECETXEE+ 0TV (4.6)

subject to F¢€ = ¢ — Gv. Clearly,

X1 > Xy = V(X1,¢) > V(Xb,qb), Vo. (47)
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The solution to the optimization problem (4.6) is

(—ETXE  FT \7' /0
_ T
VX9 =67 (0 1) ( F GVﬁ‘lGT> (1) ¢
Thus by letting Xy = Pg(k — 1) and X, = Pg(k), we get
Pg(k) > Ps(k = 1) = Ps(k+1) > Ps(k)

but Pg(1) > 0 = P3(0) so Pg(k) is increasing and positive semi-definite.

Lemma 4.2 There exist a positive semi-definite matriz P such that

Ps(k) < P, Yk > 0.

Proof From (3.43), it is easy to see that there exists an invertible matrix

such that

Y1 Y,

(E —zF ZG) (YS Y,

) = (21 + EY; EY,).

(4.10)

(4.11)

(4.12)

where (Yl Yg) is a right inverse of (—F G). Clearly (ZI + FY; EYQ) has full row rank, ¥z # 0,
which implies that (EY3, EY3), and consequently (—EY, EY;) is a stabilizable pair. Thus there
exists a matrix K such that A = —EY; + EY,K is stable (has all of its eigenvalues inside the unit

circle). Let

L\ (1 +¥hK
Ly) \Y3+Y,K

(-F G) (g) =1

and F' Ly has all of its eigenvalues inside the unit circle.

Then

Now consider the following cost function
J(z)= ) (k) Var(k)

subject to

Be(h+1) = FE(R)+Gulk), k=0, N1,
z = &(N)

(4.13)

(4.14)

(4.15)



where we let

v(k) = LyFE(k+1). (4.18)
This choice of v yields

(k)= —-L1EE(RE+ 1) (4.19)

but the nonzero eigenvalues of L; E are identical to those of E'L; (which are inside the unit circle),
thus recursion (4.19) is stable and £(k) converges exponentially to zero. Then v(k) also converges
to zero thanks to (4.18). This implies that .J(z) converges as N goes to infinity, for all 2, which
implies that there exists a positive semi-definite matrix Q such that

lim J(z) = 27Qz, V. (4.20)

N—oo

Now consider the same cost function but instead of the particular choice of v used above, take the
v that minimizes the cost, i.e.,

N-—
JEN)) =min Y v(k)TVav(k) (4.21)
k=0

—_

subject to (4.16). This problem is of course the same as problem (3.45) with v = 0. The solution is
J(E(N)) = §(N) P B (N)FE(N), VE(N). (4.22)

Since the optimal solution is necessarily smaller than or equal to any particular solution, and thanks
to the fact that the sequence Pg(k) is increasing, we have that

ETPy(k)E < Q, Vk, (4.23)
which implies (4.10) where
. 7T -1
P=(0 1) (_1? Gvﬁ—lGT> ((}) : (4.24)
|

So for we have shown that Pg(k) is increasing and bounded, which implies that it converges to
some Pgz. Now we show that Pj is positive definite. Suppose it is not and let X be a matrix such
that its columns form a basis for the null space of Pz, and let

(;) B (_Ez‘PﬁE GV?TGT )_1 ()O(> : (4.25)

Note that

—ETpP;E FT N!0
Ps = (0 I)( Fﬁ Gvﬁ—lGT> (I) (4.26)
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and the image of X is in the null space of Pg, so T in (4.25) is zero. Thus, from (4.25) follows that

ETPsES = 0 (4.27)
FS = X (4.28)
which implies that
PgES = 0 (4.29)
PsFS = 0 (4.30)

and since E and F are full column rank, the columns of ES and FS form two bases for the null
space of Pg. Thus there exists a square invertible matrix L such that £S = F'SL. Let U be the
matrix of change of basis that puts L in Jordan form: L = UJU™! where .J is in Jordan form.
Thus ESU = FSUJ, so if we denote the first column of SU by s, we have

FEs= J11FS (431)

where J1; is the (1,1) entry of J (because J is upper triangular?). S has full column rank (because
X has full column rank), so SU has full column rank which implies that s is not zero. But
then (4.31) contradicts Assumption (3.42). Thus Pg is positive definite.

Finally, we must show that there is a unique positive definite solution to the algebraic descriptor
Riccati equation. Suppose there are two distinct solutions P, and P, i.e.,

P=(F(ETRE)T FT 4 GVB_IGT)_I , i=1,2. (4.32)

By taking the inverse of both sides of (4.32) and subtracting the result for ¢ = 2 from the result for
1 =1, we get

Pl - Pyt = F(ETPE)'ETP (P - Y (F(ETRE)TETP)T (4.33)
which implies that, for all & > 1,
Pl — Pl = (F(ETPE)'ET PR (P — Py Y(F(ETRE) T ET Py)T)E. (4.34)

Clearly if we show that F(ETBE)_IETB, t = 1,2, have all their eigenvalues inside the unit circle,
we immediately have that P, = P,. This can be shown by noting that thanks to (4.32),

P = (F(E"RE)'ETP P (F(ETRE) T ETR)T = GvtaT. (4.35)
But (4.35) is a Lyapunov equation and thus it is enough to show that
(F(ETRE)T'ETP, @), i=1,2,

are controllable pairs. Suppose this is not the case, i.e., there exists a z and a non zero w such that

w' (21 - F(ETPE)'ETP, G)=0 (4.36)

2Note that s is an eigenvector of {E, F'}, in fact each column of SU is either an eigenvector or a generalized
eigenvector of {E, F'}.
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which implies that

wIF(ETPE)'ETP, = z2w! (4.37)
wl'G = 0. (4.38)

Multiplying (4.37) on the right by £, and using (4.38), we obtain
w' (:E-F G)=0 (4.39)

which is clearly a contradiction (see Assumption (3.43)). Thus, both matrices F(ET P E)~'ET P,
and F(ETP,E)"'ET P, have all their eigenvalues inside the unit circle. [

The solution to the algebraic descriptor Riccati equation (4.4) can be constructed using the

matrix pencil
F Gvi'GT\ (E 0
{0 5@ M) a0

Theorem 4.2 The matriz pencil ¥ is reqular, has no eigenmode on the unit circle and if the

columns of (;1) form a basis for the stable eigenspace of ¥, i.e.,
2

(107 av; ;GT> G;) 7= (’OE F‘?T) (E;) (4.41)

where eigenvalues of J are inside the unit circle, then,
Py = (FI4 I +Gvitah)™ (4.42)

is the unique positive definite solution of the algebraic descriptor Riccati equation (4.4).

Proof Let

-1 ~T _ =1 ~T
FGV5G>_(E O)I(ZF EZG‘ﬁG)‘ )

V(z) == (0 ET 0 FT 0 2ET_—FT
Suppose z is on the unit circle and let z* denote the complex conjugate of z. Note that z* = 1/z.

To show that z is not an eigenmode of ¥, we must show that ¥(z) is invertible, or equivalently
that
:F - E Gvﬁ‘lGT
0 Pt — BT

is invertible. Suppose this is not the case, i.e., there exist z and y, not both zero, such that

:F-FE GviGT x
( 0 Z*Fﬁ B ET) (y) =0. (4.44)

But this implies, after premultiplication of the first equation by the complex conjugate transpose
of y, that

GT
(Z*FT _ ET> Y= 0 (445)
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Thanks to Assumption (3.43), (4.45) implies that y = 0, which in turn implies that
(:2F-E)z=0 (4.46)
which implies that z = 0, thank to Assumption (3.42). But this is a contradiction, so ¥ has no

eigenmode on the unit circle.

Let p(z) denote the determinant of W(z), and u the degree of p(z). Thanks to the identity

[(z‘oll _o]) ‘I’(Z)]T = (ZOI _0]) v(=), (4.47)

by taking the determinant of both sides, we get 2~ p(z) = 2™p(2~!) where m equals the number

of rows of F. So, since p does not have any roots on the unit circle, g = m and consequently I'; is
square.

From (4.41), we get

FIZJ +GVi'GTTYT = Bl (4.48)
E'r,g = FTI, (4.49)

which implies that
[3FTy = JTT3 R T + TGV G, T (4.50)

which is a Lyapunov equation and since J has all its eigenvalues inside the unit circle,
W =T7FT, (4.51)

is symmetric positive semi-definite.

Lemma 4.3 The matriz I'y is invertible.

Proof Suppose I';w = 0 which implies that Ww = 0. Thanks to (4.50), we get that
WJw = 0 (4.52)
GTryJw = 0. (4.53)

But from (4.49) we get ETI';Jw = 0 which thanks to (4.53) and (3.44) implies that [y Jw = 0.
Thus ker(I'y) is J-invariant. This implies that there exists at least one eigenvector of 7 in ker(I'z),
i.e., there exist a non-zero vector v and a scalar A such that ';v = 0 and Jv = Av. So by multiplying
(4.48) on the right by v we obtain

(A\F — E)Tv = 0, (4.54)

which thanks to (3.43) and (3.44) implies that I'yv = 0. But this is a contradiction because (;1)
2

has full column rank. Thus I'; is invertible. [ |

Lemma 4.4 The following always holds

ker(FTTy) = ker(I'y). (4.55)
INRIA



Proof Since F has full column rank and I'y is invertible, ker(W) = ker(l';) and since W is
symmetric

ker(FTTy) C ker(Ty). (4.56)
Now we show that
ker(J) = ker(FTT,). (4.57)

From (4.49) it follows that ker(J) C ker(FTT;). Let w be any vector such that FT'yw = 0, this
implies, thanks to (4.50), that

Gy Jw=0 (4.58)
and thanks to (4.49), that
ETTyJw = 0. (4.59)

But (4.58) and (4.59), because of Assumption (3.44), imply that I';Jw and consequently Jw is
zero. Thus ker(FTT;) C ker(J). This proves (4.57).

Now we show that
ker(J) = ker(I'). (4.60)

From (4.48) and the full rankedness of I, it is easy to see that ker(J) C ker(I'y).
Let w be any vector satisfying I'yw = 0, then by premultiplying by w’ and postmultiplying by
w (4.50), we obtain

IJw = 0 (4.61)
GT'ryJw = o, (4.62)

From (4.61) we get that ker(I'y) is J-invariant. Let v be any eigenvector of J satisfying I'yv = 0,
and A the associated eigenvalue, i.e., Jv = Av. Then,

AETDw = FTTyw=0 (4.63)
AGTTw = 0. (4.64)

Thus A is necessarily zero. So the restriction of 7 to kerI'; is nilpotent. We denote it by A.

Now suppose ker(I'y) is not a subset of ker(7), i.e., there exists a vector w such that I'yw =0
but Jw # 0. This clearly implies that A # 0, i.e., the nilpotent matrix A has non trivial Jordan
blocks which in turn implies that there exists a vector v € ker(I'y) such that

Jv # 0 (4.65)

J*w = 0. (4.66)
But then from (4.50) and (4.48) follows that

Ffgv = 0 (4.67)

GTgv = 0 (4.68)
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which because of Assumption (3.43), imply that Jv = 0. But this is a contradiction. This

shows (4.60). Finally, (4.55) follows from (4.57) and (4.60). |
Now we can show that
H=FIT;'+GvyGh (4.69)
is invertible. Note that FI'y[';t = (I';1)TWT;! is positive semi-definite. So if Hw = 0, then
Wi e = 0 (4.70)
GTw = 0. (4.71)

But thanks to (4.55) and full rankedness of F, ker(W) = ker(FTI'y). Thus (4.70) and (4.71)
imply that w’ (F G) = 0, which implies that w = 0. Thus H is invertible and positive-definite.
From (4.48) follows that ['sJ = H~'ET; and from (4.49), that

ETy= Iyt = FT. (4.72)

But E has full column rank, so that ETH ! E is invertible. Thus from (4.72) we obtain FT',[';! =
F(ETH'E)~'FT. But then thanks to (4.69), we obtain

H=GV;y'G" + F(ETHT'E) ' FT. (4.73)
By letting
Py =H", (4.74)

we obtain the algebraic descriptor Riccati equation (4.4). Noting that (4.74) is equivalent to (4.42)
and Theorem 4.2 is proved. |

4.2 Construction of detection signal for large N

For the construction of a detection signal for large N, we need to study the asymptotic behavior
of the auxiliary cost function J(8,v) as N goes to infinity. From here on, we denote the detection
signal vy and the the auxiliary cost function Jy (3, v) to show their dependence on N (so far we

had considered N to be fixed).
Note that the convergence of Pg(k) to Ps clearly implies the convergence of I'g(k) to

—ETP;E FT N\
Fﬁ:< e Gvﬁ—lGT) . (4.75)

This convergence is exponential and allows us, as will be shown later, for large IV, to consider the
stationary version of recursion (3.49) for the construction of detection signals. To study the asymp-
totic behavior of the optimal detection signals, we need to introduce the concept of “asymptotically
optimal”:

Definition 4.1 Consider the optimization problem
max In(z). (4.76)
Then Ty is called an asymptotically optimal solution of (4.76) if
Jim {f(Ex) — max ()} = 0 (4.77)
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Let us now consider a new auxiliary cost function

N
In(B,vN) = Zs(j)Trﬁs(j) - s(N)'rg (g) (ETP;E) (0 ET) Ds(N) (4.78)
where
T
i+ = (1 ) rastiy + () v 50 =0 (4.79)

with 0 < j < N — 1. Note that (4.79) and (4.78) are the stationary versions of (3.49) and (3.68),
so we call Jy the stationary auxiliary cost function. It is straightforward to verify that

IN (B, vN) —mmZH (k)1* + () F! PsFE(0) (4.80)

subject to
E¢(k+1) = F§k) + Gv(k) + Hon (k). (4.81)

To see this, simply note that this optimization problem can be solved exactly the same way we
solved problem (3.30), the only difference is that because of the initial cost on £(0), the cost to
go function in the forward dynamic programming approach is not initialized to zero. In fact this
particular choice of initial cost results in constant I'g(¢)’s (= I'g).

This problem is to be compared with (3.30) and (3.31). Clearly Jy(8,vn) > Jn(8,vn). The
following Lemma which we will prove later in this section, shows that we can study the stationary
auxiliary cost function instead of the auxiliary cost function.

Lemma 4.5 Any asymptotically optimal solution of the stationary auxiliary cost function is an
asymptotically optimal solution of the auxiliary cost function, i.e.,

INn (B, IN (B,
lim max M — max M =0. (4.82)
N—ro0 vy #0 o] vy #0 [[on]]
subject to (4.79) subject to (3.49)

So, we consider the optimization problem

In(B,vN)
= max —_— 4.83
PyN(ﬁ) vy %0 ”UNH2 ( )
subject to (4.79)

Theorem 4.3 The optimization problem (4.83) is equivalent to

v (8) = mae LI (484
on#0 [[on]
where Sg is the stable linear system
tj+1) = F(ETP;E)'ETPst(j) + Hun(j)
S5t . : 4.85
’ { CU) = Wsty) (485)
with t(0) = 0 and where Wg is any matriz satisfying
Wi Ws = Ps — PsE(E"PsE)"'ETPg. (4.86)
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Proof Let
t(k) = (F(ETPsE)™" 1I)s(k), 0<k<N. (4.87)

Then, using (4.79), we get

: 0 ET : 0 :
1 +1) = (FETPE)™ 1) ((0 0 ) Pgs(5) + (H) 'vN(J)) (4.88)
which implies the first equation in (4.85). It is also easy to show that
ET Pst(k)
= < < ps - . .
s(k+1) ( Hon(k) )’ 0<kE<N-1 (4.89)

From (4.78) and (4.89), after some algebra, we get

=

IN(Byon) = )t + D) Bst(j +1) = t(G) PBE(ET BsE) T ET Pst(j) ~

o,
Il
=]

s(N)ITg (g) (ETPsE)™ (0 ET)Tys(N) (4.90)

which, since t(0) = 0 and (0 E7)I'ss(N) = ETPst(N), implies that
~ N
In(B,on) = 1(j)"(Ps — PsE(E"P3E) T E" Pa)i(j Z 1€ ()2 (4.91)
J=1

What remains to be shown is that Sg is stable, i.e., that the eigenvalues of F(ET PsE)~'ET P are
inside the unit circle. But this matrix is just A in the proof of Theorem 4.1 and it is shown there
to have all its eigenvalues inside the unit circle. |

Clearly as N goes to infinity, yn(8) converges to
Yoo (B) = [|S5ll% = max 7 (Sp(exp(v'=1w)) (4.92)

where & denotes the largest singular value and where Sg(z) denotes the transfer function associated
with System Sg:

Sp(2) = Ws(2I — F(ETPsE) ' ETPs) H. (4.93)

The H,, norm of a discrete system can be computed by transforming it into a continuous system
by a bilinear transformation, which preserves the H., norm, or directly as described in [3]. Thus,
Yoo() and the critical frequency w = w(f) achieving the maximum in (4.92) can be computed
using standard algorithms. Note that w(f3) is a frequency at which, for N = oo, the system Sg has
highest gain. This is equal to /7vuo ().

In case of scalar vy, an asymptotically optimal solution of (4.83), is

oy (i) = sin(%i) cos(w(B)i), i=0,...,N—1. (4.94)
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The choice of the envelope (in this case sin(%t)) is of course not unique. We can consider for
example 1/N for ¢ = 0,..., N — 1, or any other function as long as when N goes to infinity, the
spectrum of vy converges to a delta function at critical frequency w(3).

To show asymptotic optimality of (4.94), we simply have to make sure that as N goes to infinity,
vy converges to a pure sinusoid with critical frequency w(3). But this follows from

ox (i) = 5 (sin((@(8) + i) —sin(((5) ~ 1)0)- (4.95)
Thus
lim M = Y0 () (4.96)

N—oo |lun|]?

proving the asymptotic optimality of vy.

Note that the norm of vy can be computed using

n—1 2 . . .

- b
lim >y cos“(ai+ b) _J1 }f a ?Lnd b are mu‘ltlples of m, (4.97)
n—co n 1/2 if a is not a multiple of 7.

and the fact that
n—1 . 2/m
: io SI° (%)
nh_}rlgo - =1/2. (4.98)

We obtain (clearly if w(3) = 0, 7, then ¢ is a multiple of 7) in particular that |Jon|| = § ifw(B8) # 0,7
and % otherwise.

It is straightforward to generalize this result to the non-scalar case and construct a complete
solution to the optimization problem associated with the stationary auxiliary problem, which is
also a solution to our original problem thanks to Lemma 4.5.

Theorem 4.4 Consider the problem of minimum energy proper detection signal design over [0, N].
Then, an asymptotically optimal solution vy is given by

i cos(57)i + )
un (i) = o /N%.%(/@*) sin(%) bz cos(w(:ﬁ Jito2) (4.99)
Pn cos(w(B57)i + én)

where (p1 exp(v/—1¢1) paexp(v—1¢2) .. p, exp(\/—lqbn))T is a normalized eigenvector associ-
ated with v.(8*), the largest eigenvalue of the matriz Tg«(z(8*)) and where 3* salisfies

MaX Yoo (B) = Yoo (57). (4.100)

The scalar coefficient o is equal to 2 if w(B*) # 0,7; it is equal to /2 otherwise.

Of course this result uses Lemma 4.5 which we have not proved yet.
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Proof of lemma 4.5 To prove this Lemma, what we need to show is that in the optimization
problem (4.80), for any asymptotically optimal vy, the corresponding optimal £(0) converges to
zero as N goes to infinity. Let us consider the asymptotically optimal vy found in (4.99). Using
the fact that this vy is a stationary (in particular sinusoidal) function of amplitude in the order of
1/v/N and that the recursion (4.79) is stable, we get that s is a stationary process of amplitude in
the order of 1/\/ﬁ, and thus s(N) is in the order of 1/\/ﬁ But then

5*(N):((0 ET)Ty (%))T(o ET)Tgs(N) (4.101)

where £*(N) is the optimal £(NN). This is just a straightforward extension of Theorem 3.2 to the
stationary case. So the optimal £(N) converges to zero as N goes to infinity. Once we have £*(V),
the other optimal &’s can be obtained by

_ Do
ew =0 st (ele ) (1102)

(this is just an extension of (3.65) to the stationary case). But it is straightforward to show
that (4.102) is a stable recursion and moreover both vy and s are stationary processes of amplitude
in the order of 1/v/N. Thus £*(0) converges to zero as N goes to infinity. |

The conclusion of this section is that approximate minimum energy proper detection signal
design, for large NV, reduces to solving the following simple scalar nonlinear optimization problem
= ") = max [|S(2)||co- 4.103

¥ = 1ee(5) = gmax, 15(2)] (4103

An asymptotically optimal solution is then given by (4.99). Note that \/7* is the approximation of

the separability index (converging to the real one as N goes to infinity). The above computations
can easily be implemented using programs such as Scilab and Matlab.

4.3 Example

Going back to the random example we treated in Section 3.3, Figure 4.1 illustrates the result-
ing 70 (3); note the resemblance with Figure 3.2 . The optimal value of v, is v* = .02266.

Figure 4.2 shows the corresponding detection signal obtained using (4.99). Note that the
real separability index for this example is .150033. The approximation of the separability index,
obtained by considering the infinite horizon problem, is .150532 which, as expected, is larger than
the real one. Finally the effective separability index obtained by using the approximate solution vy
obtained in (4.99), is

1 - 1
——  max.J = /| —— maxvi Agzoy = 0.149666. 4.104
\/HvNu?mé‘* V(o) \/ o] g N Aat (4104

That amounts to an error of less than .3%. Thus, for all practical purposes, the approximate
solution can be used instead of the optimal solution. This is true because N = 60. For small NV,
the situation is different. For example for N = 10, the real separability index is 0.13153. The use
of the approximate solution vy obtained in (4.99) gives an effective separability index of 0.07603.
This corresponds to more than 40% error.
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Figure 4.1 : This figure shows 7. (8) as a function of . §* = .47 and v* = .02266.
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Figure 4.2 : The approximate optimal detection signal, to be compared with the optimal detection
signal of Figure 3.3 .
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4.4 Discussion

In a real application of the method presented here, one has to have an estimate of ¢. It clearly
makes sense to assume that o is proportional to N. In which case, without any loss of generality
we can let

o=N. (4.105)

To see the trade-off between the length of the detection horizon N, and the average power
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Figure 4.3 : The minimum average power needed for perfect detection as a function of the length
of the detection horizon N. Note that as N goes to infinity, this function converges to 1/.02266 =
44.12.

|lun]|?/N of the optimum detection signal, we have computed the average power for different values
of N for our randomly selected example; see Figure 4.3 . As expected, the result is a decreasing
function of N. Larger N implies that we can better shape the detection signal and have a higher
separability index. The price to pay is of course longer detection horizon.

5 On-line detection filter

Once the detection signal is constructed, we need to design an on-line detection filter to decide,
based on measurements w and y, whether the system is in normal mode or in failed mode. If
the detection signal is proper, then a correct decision can be made in every situation. Figure 5
illustrates this point. In a perfect world where the behavior of the real process is perfectly captured
by our model, the measurements (u,y) would fall either in A°(v) or A!(v), and not elsewhere. In
that case, it suffices to verify for example that (u,y) is in A%(v). This can be done by the following
test

J <o (5.1)
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Figure 5.1 : A°(v) and A" (v) are generalized ellipsoid open sets in the space of measurements (u, y).
If v is @ minimum energy proper detection signal, then the two sets don’t intersect but are at zero
distance of each other.

where

i

J'= min v (B[, i=0,1. (5.2)
subject t;7(21.1)—(2.2) 0

x~
Il

If (5.2) holds, (u,y) is in A%(v), and we decide that no failure has occurred, otherwise we decide
that a failure has occurred. Thus this test divides the (u,y) space in two parts: A°(v) and its
complement.

But in the real world, measurements can be outside both sets®. If a measurement falls right
off the top of A%(v) (see Figure 5), the test (5.1) would decide on a failure even thought this
measurement is much “closer to” A%(v) than it is to A'(v). This shows that we need a more
“reasonable” way of dividing the (u,y) space. Two such tests are: the hyperplane test, and the
ratio test.

5.1 Hyperplane test

The sets A%(v) and A!(v) are generalized ellipsoids*. Thus they can be separated by a hyperplane
because any two disjoint convex sets can be separated by a hyperplane.

The advantage of dividing the (u,y) space using this hyperplane is that the corresponding
decision test is very simple:

()T y(O) 7 w)T - wN-1)T y(N-1DT)r<s (5.3)
for a vector r and a scalar §. r and & are the parameters of the hyperplane and can be computed

off-line. So the detection filter needs only store the precomputed values of r and 4.

Note however that r and § depend on the detection signal v. Since such a detection filter is nec-
essarily customized for a specific detection signal, changing the detection signal implies redesigning
the filter.

®This should not happen very often, otherwise the models should be adjusted
*The set X is a generalized ellipsoid if X = {z|(z — xo)TQ(x — ) < 1} for some zo and a positive semi-definite
matrix Q.
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5.2 Ratio test
The ratio test is
JOJJt <1 (5.4)

where the .J'’s are defined in (5.2). This test, which is reminiscent of the log-likelihood ratio test
in the stochastic formulation, can be implemented recursively. Note that

N-1
T = min 3" [lui(k)] (5.5)
T k=0
subject to
v(k)
Ezacz(k + 1) = Fzmz(k) + G,y; (k) + H; u(k) , (5.6)
y(k)
where
1 A;
= (). = (3), 6.7
M; - (D; B; 0
G (), me (B B0 ”

But this problem is similar to problem (3.24). All the assumptions are verified and we can construct
the solution as we did there. We start by simplifying the system matrices F;, F;, G; and H; as
described in Lemma 3.3, so that, for =0 and ¢ = 1,

E; has full column rank (5.9)
(zE; — F;) has full column rank, Vz (5.10)
(ZEZ' - F Gi) has full row rank, Vz (5.11)

)

(EZ- GZ-) has full row rank, Vz. (5.12

Considering the case of large N. The approximate solution is given by
- N
TH=Yrill? (5.13)
i=1

where ¢;(0) = 0 and
v(7)

Fy(E BE) T ETP(j) + H; | u(j) (5.14)
y(7)

T’Z(]) = Wlt(l) (5.15)

t:(7+1)

and where P; is the unique positive definite solution of the algebraic descriptor Ricatti equation

B::(E(EfBEW_IF?+(%Gf>4 (5.16)
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and W; is any matrix satisfying
Wiw, =P, - PE(EIPE)'ELP, (5.17)

Systems (5.14)-(5.15), ¢ = 0,1, are two residual generator filters. Their outputs are squared and
summed up. And at the end of the test period, the results are compared and a decision is made.

We can also consider a variant of the ratio test:
m
S (B > o (5.18)
k=1

We decide that a failure has occurred if (5.18) becomes true for ¢ = 0, or we decide that no failure
has occurred if (5.18) becomes true for ¢ = 1, whichever occurs first. This can happen for m < N,
i.e., a decision can be made before the end of the test period.

6 Conclusion

We have studied the problem of constructing minimum energy input test signals (detection signals)
for separating two given models based on input-output measurements. Model and measurement
uncertainties are supposed to be bounded energy arbitrary signals. It is shown that as the detection
horizon goes to infinity, optimal detection signals converge to pure sinusoids. The ratio of the
bound on the norm of the uncertainty signal over the norm of the optimal detection signal plays
an important role in our development; we call it the separability index. A constructive method for
computing this index, and the corresponding detection signal is given.

A fundamental assumption in this work is that the detection signal is constructed off-line, i.e.,
the detection signal does not depend on the on-line measurements. It is conceivable to consider a
situation where the detection signal depends causally on the measurements. In practice, in most
cases, this is not desirable. This dependence introduces a feedback which modifies the dynamic
characteristics of the system; it can even destabilize it. It is more realistic to consider the separa-
bility index as a control objective to be used in the feedback controller design (assuming that we
are dealing with a controlled system). This problem is under investigation.
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