N

N

Redistribution of Self-service Electric Cars: A Case of
Pickup and Delivery

Moshe Dror, Dominique Fortin, Catherine Roucairol

» To cite this version:

Moshe Dror, Dominique Fortin, Catherine Roucairol. Redistribution of Self-service Electric Cars: A
Case of Pickup and Delivery. [Research Report] RR-3543, INRIA. 1998. inria-00073142

HAL 1d: inria-00073142
https://inria.hal.science/inria-00073142
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073142
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Redistribution of Salf-service Electric Cars:
A Case of Pickup and Delivery

Moshe Dror , Dominique Fortin , Catherine Roucairol

No 3543

Novembre 98

THEME 1

apport
derecherche

%I INRIA

ROCQUENCOURT

Redistribution of Self-service Electric Cars:
A Case of Pickup and Delivery

Moshe Dror * , Dominique Fortin T, Catherine Roucairol

Théme 1 — Réseaux et systémes
Projet Praxiteéle

Rapport de recherche n° 3543 — Novembre 98 — 14 pages

Abstract: For a large urban area an alternative to public transportation and private cars
is considered in the form of a "free" use of electric cars. Such "free" use of electric cars
would require periodic redistribution of the cars among different dropoff/pickup stations by
a fleet of finite capacity towtrucks stationed at the various depots on the road network. In
this study we examine in detail the electric car redistribution problem. The redistribution
activity is modelled as that of less than truck load, pickup and delivery with nonsimple
paths, allowing for split pickups and deliveries. We propose a Mixed Integer Programming
formulation of the problem and we test several solution which include constraint Program-
ming, Lagrangian relaxation methodology applied to the MIP model, and an AI solution
approach with a modified A* heuristic. The solution procedures here are designed to solve
large practical instances of the car redistribution problem.

Key-words: transportation, electric vehicles, pick up and delivery problems, MIP, A*
heuristic

(Résumé : tsup)

* Management Information Systems Department, College of Business and Public Administration, Uni-
versity of Arizona, Tucson, Arizona, 85721, U.S.A.

t Inria, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France.

! Laboratoire PRiSM, Université de Versailles-St-Quentin-en-Yvelines, 45, av. des Etats-Unis, 78035
Versailles Cedex, France

Redistribution de véhicules électriques en libre service:
un cas de collecte et livraison®

Résumé :

Pour une métropole, une alternative au transport public et & la voiture privée peut étre
la mise en libre service de véhicules électriques. Ce systéme nécessite une redistribution
périodique de véhicules entre les stations en pénurie ou surplus par une flotte de camions
de capacité finie stationnée en différents dépots dans le réseau. Dans cet article, nous
présentons le probléme et étudions des méthodes de résolution . La redistribution consiste en
un probléme de tournée avec des chemins non simples et des possibilités de fractionnement
des collectes ou livraisons. Nous proposons une modélisation sous forme de programme
entier mixte et, comme les solvers de Programmation Par Contraintes ou de Programmation
Linéaire ne permettent que de travailler sur des exemples de petite taille, nous donnons une
heuristique a la A* pour résoudre notre probléme.

Mots-clé : transport, véhicules électriques, pick up and delivery, programmes mixtes en
nombres entiers , heuristique A*

§ This research has been supported by Nato Collaborative Research Grants Programme CRG 971490
and was done while the first and third authors were visiting INRIA.

Redistribution of self-service electric cars 3

Contents

1 Motivation and Problem description 1

2 Notation and Mathematical Description of a Single Depot Problem 2
2.1 Mathematical Formulation for Pickup and Delivery 3
2.2 Partial Pickup and Delivery L. 5

3 Solution approaches with solvers 6
3.1 Benchmark problems 6
3.2 Integer programming solver 7
3.3 Constraint programming toolso oL 7

4 A*-heuristic approach 10
4.1 An A*-algorithm L 10
4.2 Analgorithmala A* L 11

5 Concluding remarks 13

RR n~"3543

M. Dror, D. Fortin and C. Roucairol

INRIA

Redistribution of self-service electric cars 1

1 Motivation and Problem description

French public transportation systems, especially those operating in large urban concentra-
tions such as Paris (Ile de France) have long been concerned with the increasing problems
of air pollution and traffic bottlenecks caused by the present private and mass transporta-
tion technologies. In light of this concern, an auxiliary transportation mode in the form of
electric cars has been developed in the attempt to stem the traffic related pollution levels
and alleviate the problems caused by the use of private cars in such urban settings adding
the logistics of urban parking to those already mentioned. The idea behind this system
is that people would choose to use "free" (freely available and at no cost) electric cars for
short distance in-city transportation reducing the demand for mass transit and the use of
private conventionally powered vehicles.

The electric cars would be parked at a large number of stations located throughout
the metropolitan region, and the users would take a car from one station and leave it at
some other station. In order to prevent a station from running out of cars (or of parking
space) the electric car system has to provide for a car redistribution mechanism. Such a car
redistribution system would be provided by a fleet of tow-trucks positioned at a fixed number
of depots in the service region. However, the tow-trucks are of finite capacity (single digit)
and their operation of collecting the electric cars and redistributing them appropriately has
to be carefully planned in order to minimize waste and provide for a satisfactory level of
service. The objective of this study is to analyze this redistribution planning operation and
to provide the system’s management with an efficient tool for constructing (generating) the
best pickup and delivery routes for the fleet of tow-trucks.

This public transport system is actually experimented in France, at Saint-Quentin-en-
Yvelines (near Versailles) with a fleet of 50 self-service electric cars (Renault Clio) and 5
parking lots. Two large government research institutes, one in transportation technologies
INRETS, the other in Computer Science and Automation INRIA (Praxitele project) work
on that project in cooperation with industrial companies (Renault, EDF, Dassault and
CGFTE).

The paper is organized as follows. Section 1 gives an abstract description of the problem,
assuming that the underlying graph of roads, streets (one way or two way), location for
the electric car stations, and the depots for the tow-trucks are given. Each tow-truck
depot is identified with its own fleet of vehicles and each such vehicle has to return "at the
end of the day" to the original home depot. We initially assume a very generic problem
setting with heterogeneous tow-truck fleet and a single depot location. Subsequently, we
examine problem extensions and other problem scenarios. Section 2 proposes a modeling
approach for the problem which allows then to represent the problem as a Mixed Integer
Program (MIP). Section 3 shows that the problem could be decomposed into two more
classical problems by using Lagrangian relaxation. Since solvers based either on Constraint
Programming or Linear Programming could only solved small size examples (section 4), a
A* heuristic approach is designed for pratical size applications.

RR n~"3543

2 M. Dror, D. Fortin and C. Roucairol

2 Notation and Mathematical Description of a Single
Depot Problem

Let G = (N U D, A) be a graph with

e N=N"UN~ where N* is a set of nodes with surplus demand (the source nodes),
N~ the set of nodes with demand requests (the sink nodes),

e D the set of depot nodes (initially, we set D = {0}),

e A is the set of arcs — ordered pairs of nodes— and we assume that all the undirected
edges in the graph are represented as two directed arcs.

@ denotes the capacity of the tow-truck and ¢; the demand (positive integer in the case of
surplus, or negative integer in the case of shortage) at node i. In addition, assume that the
cost of traveling between each pair of nodes 7 and 7 on the graph is given and denoted by
Cij-

Traditionally, in routing formulations a binary decision variable z;;, indicates if the
routing solution requires vehicle v to travel directly between point 7 and point j on the
graph. Since split pickups and split deliveries are allowed, already at this point in the
problem description we run into some difficulties. In order to illustrate the difficulty of
modeling the corresponding pickup and delivery routing problem in this traditional problem
description, take the following example.

There are 3 nodes and 1 depot in the graph. The capacity of the vehicle () = 5, and the
demands are as follows: {¢; = +6,¢s = —4,q3 = —2}. We can easily construct a distance
matrix for which the optimal solution requires the tow-truck to pickup 5 units at node 1
and deliver 4 of those to node 2 and 1 to node 3, after which the vehicle revisits node 1
to pickup the remaining surplus unit to be delivered to node 3, after which the tow-truck
returns to its depot (node 0).

Subsequently, the closed path (circuit) which the vehicle travels is not a simple path
(which is an implicit assumption in all traditional vehicle routing formulations with which
we are familiar) visiting nodes 1 and 3 two times each.

We will call Eulerian trail a circuit which visits each node of the graph at least once
except the depot (exactly once).

To alleviate the issue of nonsimple paths in modeling (and solution) of the split pickup and
split delivery problem we propose the following pseudopolynomial construction (see figure
1 right) of an extended graph.

At each demand point ¢ in the graph with ¢; > 2 (or ¢; < —2) construct a clique of g;
nodes connected by arcs of zero weight. Each of the clique nodes is connected to the rest
of the graph in the same manner as the original node (note that in terms of data storage
and manipulation one can resort to only original arc representation). The new nodes in

INRIA

Redistribution of self-service electric cars 3
+6 /_\ +2
@\/ c
-4 @
Figure 1: pseudo-polynomial clique expansion
each surplus clique will have demands ¢; = +1 (or ¢; = —1 for the shortage clique). Now,

in the extended graph we can limit our problem formulation to simple paths.

We assume from now on that our graph G' has only demand points of +1 or -1 in clique

clusters and depot(s).

2.1 Mathematical Formulation for Pickup and Delivery

min Z Z Z CijuTiju
i j v

subject to
Z Lijo — Z L jiv
i i
2D Tijo
J v
Hijv
> (Bijo + Tiju)

> (Bijo — Tij)

%

> (Bajo + bjav)

J

> (@gjo + Tjaw)
7
Z Tijo

i,jES
Tiju
Hz'j'u

RR n~"3543

IN

IN

xiijm Vz’,j,v
Zejk’ua V'U,j € N+a
k

> bk, Yv,j €N,

k

0, Yv,5,d e D,

2, Yu,j,d e D,

S| —1, SCH{2,...,n};Vo,

{0,1}
Z>

4 M. Dror, D. Fortin and C. Roucairol

gij'u S Q’Ua Vi,j,'l) (12)
Y iy > 1, jEN (13)
> 1, ie Nt (14)

Z gij'u
7,0

NV denotes the upper bound on the number of vehicles and n is the cardinality of the node
set without the depot.
Tijy equals 1 if vehicle v goes from i to j and O otherwise,
0 represents the number of items (cars in our case) carried by the tow-truck v when going
directly from node 7 to node j.
Constraint sets (2),(5),(6),(7),(8),(13) and (14) are the flow constraints requiring that each
vehicle v leaves node i if and only if it enters the node , and leaves and returns to depot d
once. Constraint set (3) states that each customer must be assigned to exactly one vehicle.
Constraints (4) concerns the capacity of tow-truck v. The number of items carried is
restricted by the capacity of the tow-truck @, in case of heterogenous fleet composition or
just @ if the tow-trucks are of identical capacity.
Constraints (5) and (6) ensures respectively that the load of a vehicle increases (decreases)
by one after visiting a surplus (demand) node. Constraint set (6) states that the tow-truck
leaves and returns to depot empty.

Note: in the case of non-split pickup and delivery (i.e., if station 7 is no longer represented
by an appropriate size clique and has a given surplus (or shortage of —¢;) of +¢;(< Q,),
then the tow-truck v servicing ¢ will pickup all of the g; cars or not serve i), the above
formulation is modified by
> (Oijo + ¢Zijo) =Y Ojko, Vv, 5 € NT

k

2

appropriatetly instead of constraints (5) and
> (Oijo — ¢jTijo) = D Ojke, V0,5 € N™
i k

instead of (6).

Constraint sets (12), (13), (14) are redundant in the above formulation. The three
constraints are added here for the sake of the forthcoming Lagrangian relaxation.

In the vehicle routing literature (Fisher, 1994, Nobert, 1982, Laporte et al. 1985)
subtour elimination constraints such as (9) above are examined for tightness and compared
with subtour elimination constraints below which are equivalent.

i€S j¢S v
where V(S) denotes the minimal number of vehicles necessary to serve the set S of custo-

mers.

As Fisher (1994) indicates, the choice of the version of subtour elimination constraints is
important for the computational experiments and informally, subtour elimination constraints

INRIA

Redistribution of self-service electric cars 5

(9) have been shown to produce tighter bound than (15). Moreover, V(S) corresponds to
a bin-packing solution for demands in S. This on itself is a hard problem to solve opti-
mally (Martello and Toth, 1990). However, in the case of unit demands (+1 or -1) the
computation of V(S) is trivial.

2.2 Partial Pickup and Delivery

Suppose that on a given day the tow-truck fleet is not expected to fully redistribute the
population of electric cars among the stations. Suppose that only a certain percentage o
of the cars needs to be redistributed. Still, such partial redistribution has to be planned
in a manner which minimizes cost. This again can be mathematically described using the
basic optimization model from section 2.1 with some modifications. For completeness, we
restate the modified formulation.

min Z Z Z Cz’jvxijv (16)
i j v

subject to
zxmv_zxﬂ’u = 07 j=1,...,n;v=1,...,NV, (17)
szm’u S 17 V?;,U, (18)
7 v
YD wye = al|NF[+|NT)), (19)
7 J v
Oijo < TijuQy, Vi,7, (20)
Z(eijv + xijv) = Z ejkva vvaj € N+7 (21)
i k
> (bijo — zijo) = D ik, Yv,jEN, (22)
% k
Z(edjv + ejdv) = 07 V’U,j, de Da (23)
J
Z((L‘dj’u + xjdv) S 25 Vvaja de D’ (24)
J
v €S j¢S
Ty € {0,1} (26)
> by > 1,jEN (27)
Y 6y > l,ie Nt (28)
VK
Ty € {0,1} (29)
01-3-1, S Zz (30)

RR n~"3543

6 M. Dror, D. Fortin and C. Roucairol

Note that the above formulation can also be easily modified if certain (specific) electric
car stations need to be only partially replenished.
We can now outline some computational solution approaches to the above models.

3 Solution approaches with solvers

We start by trying to experiment with integer programming solvers based on Linear Pro-
gramming (Cplex) or Constraints Programming (tools from Ilog Company). The idea was
to test if for small size applications that kind of tools could be useful.

The main difficulty with this approach was in addressing the subtour elimination constraints.

3.1 Benchmark problems

The problems have been generated on Paris map. Nine parking stations have been selected:

1. Hotel de ville,
Grand Palais,

Gare Montparnasse,
Gare d’Austerlitz,
Gare du Nord,
Tour Eiffel,

Bercy,

N o ot e W

Palais des congrés,

9. Cité Universitaire.
The depot (o) was Gare Saint Lazare. Others parameters could be randomly chosen:

e N set of parking stations (set of nodes) chosen among the 9 preselected parking
stations,

e n number of demand (surplus/shortage) nodes,

e ¢ number of electric vehicles,

¢; quantity of vehicles to be picked /delivered at each demand node i,
e V number of tow-trucks,

e (), capacity of each tow-truck.

As the number of variables in the (2)-(14) MIP model is 2n?V and the number of constraints
is 77?7 (without the subtour elimination ones), the choice of the parameters has been limited
as follows: N between 3 and 7, q between N and 8, V from 1 to 4, Q less than 5.

INRIA

Redistribution of self-service electric cars 7

3.2 Integer programming solver

For the computational experiments on a small problem instances with the MIP model (2)-
(14), the subtour elimination constraint (9) (of exponential order in the number of nodes)
has been replaced by Miller, Tucker and Zemlin (1960) subtour elimination constrainst
which are polynomial with the number of graph nodes(Brochard, 1997).

We introduce new non negative integer variables V;;, which represents the rank in which
an arc is visited in the optimal tour.

‘/;j’u S NZijv, Vvaiaj EN; (31)
> (Vigo + Tijo) = Zvjiva Vv,j €N (32)

2

Note that if d is the depot, V4, is in fact the number of nodes visited by v, and so
Z Viee = n VYo.
i

For example, a problem with 7 nodes, one depot, 5 vehicles, has 1299 constraints and 880
variables.

Cplex uses a Branch and Bound method based on the continuous relaxation of the problem.
Results indicate that resolution time increases with the number of electric cars to redistri-
bute, the number of tow-trucks and their capacity. The number of nodes to be explored in
the B&B was limited to 5000; the largest problem exactly solved redistributes 6 vehicles
with 3 tow-trucks of capacity 3 and requires 1H30 time for solution. For a greater number
of tow trucks (4) and a greater capacity, program stops before exploring all the critical
B&B tree, confirming the intuition that this problem may be extremely hard, even with
small problems.

3.3 Constraint programming tools

Ilog Company provides several tools for object-oriented constraint programming that could
be used at hand.

Firstly, we test Ilog Dispatcher which is especially adapted for solving vehicle routing pro-
blems. Dispatcher offers a simple object model for representing routing problems in terms
of vehicles and visits. The model exploits a library of C++ classes and functions that
implement the concepts of vehicle and visits in terms of constrained Solver variables and
constraints followed by building solution and a routing plan, The Dispatcher implements a
local search method. It offers a variety of predefined heuristics to generate a first solution:
nearest addition, nearest insertion, saving heuristics, sweep heuristic. To move from one
solution to another, iterative improvement techniques based either on greedy, steepest des-
cent search or Tabu search with move operators (2-opt, Or-opt, relocate, exchange, cross)
could be used. Subsequently, the Dispatcher tries to provide to user good solutions but not
optimal solutions.

RR n~"3543

8 M. Dror, D. Fortin and C. Roucairol

For our problem, we select saving heuristic and Tabu search. Solutions are obtained very
quickly on previous examples (less 30 seconds).

In order to assess the quality of these solutions, we use Ilog planner to search for opti-
mal results. Ilog planner is an extension of the Ilog solver (C++ library for object-oriented
constraint programming) for solving problems in linear, integer and mixed integer program-
ming. It offers techniques based on the simplex algorithm and Branch and bound.

For our application, we use another formulation of the problem (see below). We search an
Eulerian trail in the initial graph (not the extended one). Each time a solution contains
a subtour, we introduce the corresponding elimination constrainst. Planner supports very
easily that kind of interactive method.

min Z Z z Cij’uxz’jv (33)
i j v

subject to
N Tijp— Y xjiw = 0, j=1,...,mv=1,...,NV (34)
2.2 Ty > 1, Vi, (35)
j v
Oijw < TijpQuVi, j, v (36)
> Ok — > bijy = @, Yv,j €N, (37)
k i
Z(edjv +0j0) = 0, Yv,j,d€ D, (38)
J
> (g0 + Tjaw) < 2, Yo,j,d € D, (39)
J
szijv Z]-: SQ{Q,,’I’L},VU, (40)
i€S jgS
Tijy € >, (41)
Hz-jv € Zz. (42)
(43)

Tijy is an integer variable representing the number of times a vehicle v goes from i to j , 0;j,
represents the number of electric cars carried by the tow-truck v going from node 7 to node j.

In figure (2), the depot is close to optimal cost and running time information and each arc
is labelled with a couple (#times,global load) of number of times the trail passes through
and the corresponding cumulative load while in figure (3), the same example is run a direct
search heuritic so each arc is labelled by its actual load.

INRIA

Redistribution of self-service electric cars 9

Cost: 33408742
Vehicles: 1
Planner time: 340.249998

Figure 2: Planner optimal eulerian trail

Cost: 40.658002
Vehicles: 1
Dispatcher time: 15.233333

Figure 3: Dispatcher eulerian trail

For all examples of the previous benchmark, optimal solutions have been obtained in about
less than 5 minutes. It indicates in fact that these examples are “easy” problems: small
number of self-service cars, and parking lots. As an illustration of the increase in difficulty,
we give an example specially constructed for INFORMS’98 in Tel Aviv. It takes 15s to
obtain an initial solution with Dispatcher and more than 5mn to obtain an optimal solution
with Planner for a problem with 1 tow-truck, 25 electric cars, 8 parking lots. The cost
optimal solution is 21% better than the initial one. Of course, the number of vehicules to
redistribute influenced directly the time taken to find the best solution.

RR n~"3543

10 M. Dror, D. Fortin and C. Roucairol

4 A*-heuristic approach

Let us consider our initial problem in the initial graph (without clique expansion). Our
goal is to find in G an Eulerian trail of minimal cost with some additional constraints (
capacity of tow-truck, demand nodes to satisfy).

We have decided to experiment with an A* type of an algorithm in order to keep the
structure of a solution in term of flow and transport. Metaheuristics based on local searches
would necessitate more effort to rebuild that kind of structure at each iteration move.
Thus, we revisit the A*-algorithm and explain how to construct a method based upon this
A*-algorithm for our redistribution problem.

4.1 An A*-algorithm

An A*-algorithm can be viewed as a generalization of Dijkstra’s shortest path algorithm
on locally finite graphs from a source stage, say 0, to a target stage 7 defined implicitly.
Unlike Dijkstra’s algorithm, A* remembers only stages in the vicinity of a shortest path
from 0 to a target stage, meaning that such a stage has been traversed because it is likely
to belong to a shortest path.

Each traversed stage S is labelled by a pair (7(S), ¢(S)) of values, the first of which
is the actual shortest length from the source and the last is the length to a target stage.
Since the latter is not known, a third value is introduced such that :

P(S) = 7(S) + ¢(S) (44)

is a shortest path through S to a target 7,
where ¢.(S) is an e-shortest path (epsilon estimated path) from S to 7,
meaning ¢,(S) < (1 —)4(S).

Then Dijkstra’s algorithm rewrites as :

A*()
{
// initialize
w(0) = 0;
$(0) = 7(0) + ¢¢(0);
frozen = {J;
eligible = {0};
do {
// select best eligible stage

§=ar min 8);
gseeligiblew()

if37, 7T =s{
// done
return shortest path to s;
}
// proceed outgoing arcs from s
foreach outgoing arc s — s’ {
if s’ ¢ (frozenUeligible) or m(s) + I(s,s") + ¢c(s') < ¥(s') {
// new shortest path through s’

INRIA

Redistribution of self-service electric cars 11

m(s") =w(s) + (s, s');
P(s') = m(s') + ¢c(');
eligible = eligible U{s'};
frozen = frozen \{s'};

}

else {
frozen = frozen U{s'};

}

We will refer to A*-algorithm whenever :
(i) € is known ,
(il)) VS # 8, 0(S) < 9 (S') +1(S — &)

where [(S — &) is the length of a shortest path between S and &'.

Note that monotonicity condition (ii) (usually known as consistency property) prevents
transition from frozen to eligible set and then minimizes the number of stages examined (in
Gondran, Minoux).

When condition (i) is violated, we only achieve (often effective) A*-heuristic, while
violation of condition (ii) removes the finiteness property of A*-algorithm.

4.2 An algorithm a la A*

In our case, we define a stage S = (demand, dsptree) as a pair: nodes demand and partial
directed spanning tree (dsptree).
7(8) is the cost of current stage and ¢.(S) is an e-optimal cost to turn current stage S into
a goal stage 7 = (@), minimum cost constrained eulerian trail).
Of course, a minimum constrained eulerian trail would yield a (possibly many) solution to
our problem.

In practice, ¢ may be hard to compute, however we assume that we could overestimate
€ as a function of demand «(demand) subject to :

lim a(demand) =0
demand—g

Below, we concentrate on an implicit computation of ¢(S) in order to improve the likely
poor e-approximation based on a TSP on remaining demand nodes (a tour on these nodes
clearly underestimates the cost to build a constrained eulerian tour for our problem).

We construct several directed spanning trees by associating some selected sources (surplus
nodes) to targets (shortage nodes). Sources are eligible following some rules defined further.
Then, the roots of the directed spanning trees are linked. Finally, we complete the directed
spanning tree into an eulerian trail by connecting pending leaves (targets) back to internal

RR n~"3543

12 M. Dror, D. Fortin and C. Roucairol

nodes or roots. By insuring that the outdegree of each node equals its indegree, we permit
the building of an eulerian trail.

computation of ¢.(S)

// turn current stage into a target one T
while (S.demand # 0)

step(S);
return cost(S);

}

step(S)
{
// feed directed spanning tree with source—target
while (eligible s—t)
S.update(eligible s—t);
/%
* assert any root demand is non negative
x assert any internal/leaf demand is non positive

*/

// link directed spanning trees through source—source
while (eligible s—s)
S.update(eligible s—s);
/*
* assert z outdegree(s) — indegree(s) = 0
ses.dsptree

*/

// complete the directed spanning tree into an eulerian trail
// by connecting pending leaves (targets) back to internal nodes
// (including sources nodes)
while (eligible t—s)
S.update(eligible t—s);
/%
* assert Z S.demand =0

*/

Adding the best eligible arc into current stage requires the true add on of the arc into

(partial) dsptree as well as the demand update for both source and target nodes (from the
computed flow on the arc).
For sake of correctness proof (through assertions in pseudo-code), we avoid mixing of first 2
loops; moreover, it allows to skip over selection details between s—t and s—s transitions.
We do not emphasize when the depot actually joins the directed spanning tree, since it may
occur once in any round of ¢(S) loop.

INRIA

Redistribution of self-service electric cars 13

Our selection scheme relies on a mean cost estimation to smooth selection over fore-
casted demand :

eligible s—t = arg miltl{meancost(s — t)| Vs # s (s — t) & dsptree} (45)

eligible s—s = argmin{meancost(s — s')| s’ € dsptree} (46)
eligible t—s = arg 1tnin{meancost(t — 5)| s,t € dsptree} (47)

Notice that selection rule (45) allows multiple arcs between two nodes in the directed
spanning tree without major changes for turning it into an eulerian trail ; in what follows
we use directed spanning tree in this weak sense.

Cst
min(Q, |¢4|, [¢i|)

Ceol
t ! — ikl 48
meancost(s — s) min(Q, 7], pushed () (48)

meancost(s — t) =

Cis
min(|outdegree(t) — indegree(t)|, |outdegree(s) — indegree(s)|)

meancost(t — s) =

where ¢/ is the current demand in node s.
Finally, in mean cost computation (48) pushed(s’) is obtained through the recursive top-
down traversal of the directed spanning tree rooted at s’ :

pushed(s’)
{
p=0;
foreach (outgoing arc s’ — s)
p = max(p, min(Q-flow (s’ — s),pushed(s)));
return p;

}

where Q-flow(s" — s) is the remaining capacity along this arc. However, some tradeoffs
are in order to balance e-approximation against (likely heavy) pushed computation time.

5 Concluding remarks

This article deals with a new routing problem compared to standard TSP or VRP; even
with small instances, it happens to be very difficult, due to splitup deliveries and small
capacity on the one hand and from the non simple paths constraint on the other hand. On
the contrary to local search heuristics, which destroys the flow and transport constraints, an
A*-algorithm affords to go around partial eulerian paths to retrieve a good feasible solution.

RR n~"3543

14 M. Dror, D. Fortin and C. Roucairol

References

Boone, M., (1994). "A capacitated transportation problem", Report, Laboratoire PRiSM,
Université de Versailles-St-Quentin-en-Yvelines, 45, av. des Etats-Unis, 78035 Versailles
Cedex, France.

Brochard, J., (1997). "Probléme de redistribution des véhicules électriques, Report,
Laboratoire PRiSM, Université de Versailles-St-Quentin-en-Yvelines, 45, av. des Etats-
Unis, 78035 Versailles Cedex, France.

Chauvet, F., Hafez, N., Proth, J.M. and N., Sauer, (1997), “Management of a pool of
self-services cars”, INFORMS San Diego, USA.

Dror, M., Fortin, D. and Roucairol, C., (1998), “Redistribution of Electric Cars:
A Case of Pickup and Delivery”, INFORMS, Tel Aviv, Israel.

Fisher, M.L., (1994). "Optimal solution of vehicle routing problems using minimum
K-trees", Operations Research 42, 626-642.

Gondran, M. and M., Minoux,(1995), Graphes et algorithmes, 3 rd, Eyrolles.

Goemans, M.X. and Bertsimas, D.J., (1993). "Survivable networks, linear programming
relaxations and parsimonious property", Mathematical Programming 60, 145-166.

Laporte, G., Nobert, Y., and Desrochers, M., (1985). "Optimal routing under capacity
and distance restrictions", Operations Research 33, 1050-1073.

Nobert, Y., (1982). "Construction d’Algorithmes Optimaux pour des Extensions au
Probleme du Voyageur de Commerce", Doctoral Thesis, Departement d’Informatique et de
Recherche Operationnelle, University of Montreal, Canada.

Parent, M., Dumontet, F., Texier, P.Y and Fleurent, F., (1994), “Design and implemen-
tation of a public transportation system based on self-service electric cars” IFAC/IFORS.
Tianjin. China, 1994.

INRIA

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhdne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

