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Abstract: Circumscription formalizes in terms of classical logic various aspects of com-
mon sense reasoning: exceptions are made as rare as possible from the given knowledge. We
give the main properties of the reasoning thanks to circumscriptions. We provide various
counter-examples to prove some counter-properties. We restrict our study to propositional
circumscriptions, and we show that even in this case, things are not that easy. We evoke
the predicate calculus case, showing that the propositional case suffices to get a good under-
standing of the logical properties of circumscriptions in any case. As we stick to traditional
circumscriptions, we have adapted significantly the literature on “preferential models”. We
study carefully the more general “formula circumscription”, examining when sets of formulas
give rise to the same circumscription, and providing the first known characterization result.
Finally, an intuitive presentation of some of these (counter-)properties is given. Examples
of real circumscriptions illustrate the utility of this study for translating a common sense
situation in terms of circumscription. This part contains arguments against some classical
methods and proposes new methods instead, which have a better behavior and use simpler
circumscriptions than the classical methods. Our study can be considered as giving the
first steps towards an automatic way of translating sets of rules in terms of circumscription,
which should allow to use seriously circumscription for what it has been proposed till the
beginning. Also, as we describe syntactically all the sets of formulas which give rise to some
given propositional circumscription, this study should help the automatization.
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Circonscriptions propositionnelles

Résumé : La circonscription est un formalisme logique bien adapté au raisonnement de
sens commun, et en particulier aux regles avec exceptions: les exceptions sont rendues aussi
rares que possible en tenant compte des données. Nous donnons les principales propriétés
du raisonnement par circonscription connues de nous a ce jour. Nous fournissons aussi des
contre-exemples afin de préciser les limites précises des propriétés satisfaites. Nous nous
restreignons au cas de la logique propositionnelle. Cependant, cette étude montre que ce
seul cas est déja suffisamment complexe pour permettre de bien cerner les propriétés essen-
tielles de la circonscription en général. D’ailleurs, afin de justifier cette affirmation, nous
donnons & chaque fois que c’est possible ’équivalent en terme de circonscription de pré-
dicats des propriétés et contre-propriétés citées. Comme notre but est la circonscription,
nous nous en tenons ici & 'inférence préférentielle la plus naturelle, qui suffit dans ce cas, ce
qui s’écarte parfois de la littérature sur une “inférence préférentielle” plus complexe. Nous
étudions aussi en détail la notion plus générale de circonscription de formules, en particulier
nous précisons quand deux ensembles de formules donnent naissance & la méme circonscrip-
tion, et nous donnons un résultat de caractérisation des circonscriptions de formules, méme
dans le cas infini. Enfin, une partie importante est réservée a la signification intuitive, en
termes de raisonnement, de quelques unes des propriétés et contre-propriétés présentées.
Plusieurs exemples illustrent I'utilité de cette étude quand il s’agit de traduire précisément
une situation donnée par des régles de sens commun en terme de circonscriptions. Cette
partie contient une critique de méthodes classiques et présente des méthodes inédites. Ces
nouvelles méthodes se contentent des circonscriptions les plus simples, 1& o1 les méthodes
classiques nécessitaient parfois des versions plus exotiques.

En conclusion, nous montrons comment cette étude fournit les bases d’une méthode
systématique de traduction d’un ensemble de regles informelles en termes de circoncriptions.
Cela permettrait enfin d’utiliser la sérieusement la circonscription pour ce pourquoi elle a
été concue des lorigine.

Mots-clé : Circonscription, inférence préférentielle, inférence prudente par défauts, lo-
gique des modeles minimaux, raisonnement de sens commun, raisonnement non monotone,
représentation des connaissances.
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4 Moinard and Rolland

1 Introduction

Circumscription has been introduced by McCarthy at the end of the seventies as a way of
formalizing important aspects of common sense reasoning. It uses classical logic for repre-
senting knowledge with implicit information or rules with exceptions, allowing to reason non
monotonically. Non monotony is a “negative feature”, and the study of “positive properties”
has been initiated by [Gab85] in the middle of the eighties and studied thoroughly in a
context of general preferential entailment since by [KLM90, Mak94] and other authors.

Strangely enough, this important study has never been applied seriously to the traditional
circumscriptions. As a first step towards this study, we examine propositional circumscrip-
tions, in the infinite case. For the sake of comparison, we evoke also very concisely the
largely unexplored case of the predicate circumscription: indeed the properties concerned
are the same ones, only the conditions of applicability are more complicated and not detailed
here.

We examine the main properties of propositional circumscriptions, and we precise which
variant of each property holds. To our knowledge, the great majority of these results are
new, and references are given for the exceptions. The properties studied here are simple
(except a few “auxiliary” ones) and they have easy and important interpretations in terms
of knowledge representation. For example, the well known “case reasoning”, or (CR), means
that, if we know that birds fly, and also that bats fly, then, if all we know about Tweety is
that it is a “bird or a bat”, we get the expected conclusion that Tweety flies. This gives the
main motivation for this study: it is necessary to know which properties hold in order to
know whether circumscription is adapted to what we want or not.

We give also two examples showing how the study of these intuitively simple and natural
properties may have some important technical consequences. One example uses an infinite
variant of (CR): we establish that some way of expressing finite circumscriptions only thanks
to their “inaccessible formulas”, does not extend to the infinite case. Precisely, it extends
only in the cases when this extension is easy, and in particular it does not extend when
varying propositions are present. This result was unexpected for us. Another example uses
a property called (rather strangely) rational monotony. We show how, from the known
fact that any non trivial circumscription falsifies rational monotony, we may deduce that a
technical result which was believed to be true cannot be true in reality.

These examples let us think that further studies on the subject, not only are necessary
in order to improve our comprehension of the way circumscription “reasons”, but could also
give various more technical results as a bonus.

Hopefully also, some of the results given in this text could be used in order to help the
automatization of circumscription.

As the examples of practical use of circumscription show, it is generally much more na-
tural and simple to use the more general notion called formula circumscription. Thus we
study also this version in great details. One of our results answers a problem stated as open
by Makinson in 1994: the characterization of formula circumscription.

INRIA



Propositional circumscriptions 5

We begin (section 3) by a reminder about propositional preferential entailments, as this
is now relatively well-known, we do not give again the proofs of the results given here (see
[MR99] for precise references and proofs'). Notice however that we depart significantly from
the intricate (and these complications are useless for studying circumscriptions, even in the
predicate calculus) “preferential models” or related formalisms used in [KLM90] and its follo-
wers. Then (section 4), we deal in great details with propositional circumscriptions. We give
the precise variants of the properties which are satisfied. We give all the proofs, including
all the counter-examples, in order to make precise the border line between the properties
satisfied by circumscriptions and related properties which are not satisfied. Then (section
5), we examine formula circumscription, which is very useful in applications of circumscrip-
tions, providing three equivalent definitions. We examine when two sets of formulas are
“equivalent” with respect to formula circumscription, and we show why in fact two different
kinds of equivalence must be considered. Also, we show that in the finite case the notion of
formula circumscription is equivalent to the apparently more general notion of cumulative
and consistency preserving preferential entailment. This last result was probably ready to
get out, because we have discovered it in two recent apparently unrelated papers at the time
of printing! Elaborating from a known result, we have shown how the elimination of the
fixed propositions in a formula circumscription makes precise the equivalence between for-
mula circumscription and sceptical Poole’s defaults without constraint. The more technical
results about formula circumscription (and also a few related results about ordinary propo-
sitional circumscription) are examined in section 6. There, the problem of the equivalences
of sets of formulas with respect to formula circumscription is developed, and it is shown how
this gives naturally rise to the introduction of various sets of “positive formulas”. It is known
till the introduction of the notion of circumscription that the notion of “positive formulas”
plays a central role. However, and rather strangely, what this notion denotes exactly in the
case of formula circumscription, or even in the case of ordinary (propositional or predicate)
circumscription with varying objects, had never been studied. We show that various notions
of “positive formulas” are necessary. In this more technical section also, the problem of the
characterization of the notion of formula circumscription in the infinite case is solved: to our
knowledge, it is the first time that such a characterization result appears in the literature.

Finally (section 7) comes a rather detailed intuitive explanation of the main properties,
and counter properties, as some of them are not very well known. We explain why we think
that the set of the already known properties of circumscription makes that circumscription
is a good candidate for translating sets of rules with exceptions. In order to confirm this
opinion, examples of real circumscriptions used for translating some rules are given. One

1[MR99] was begun much earlier than the present report (before 1994). It deals with great details with
circumscriptions and preferential entailments, in the predicate calculs and in the propositional calculus. As
the subject is rather complex, in particular the limits of the interesting properties are not always easy to
be precised exactly, we have decided to extract the results for propositional circumscriptions, which has
given the present report. The “big” report is almost achieved, only it needs polishing, and this polishing
may take some time, but it will be published in a near future. Thus, for results about general preferential
entailments, even when these results are ours, we do not provide the proofs here, in order to keep the present
report short enough, and we refer to our “big” future report. However, all the results concerning specifically
circumscriptions are proved in this present report, except a very small number of easy or well known results.

RR n3538



6 Moinard and Rolland

of these examples shows how this study can be applied in order to decide which circum-
scription is better to translate some given set of rules. Another example shows that we
cannot expect too much from this study alone: the real situation to be translated must be
studied carefully in order to obtain an appropriate translation. Also, this example shows
that in some cases when the tradition uses unions of classical circumscriptions, in fact a
unique formula circumscription gives a better solution. In all these examples, we show how
a pertinent combination of the sets of formulas associated to individual rules may give a
good answer for translating the “rule” corresponding to the set of these “individual rules”.

We have taken great care in attributing any result about circumscription to the first text
(or at least to a more elaborated text by the same author[s]) where it appears, to the best of
our knowledge, even in cases when the relation with our own result was not obvious. We have
tried to make as many connections as possible with equivalent formalisms. Certainly, there
are still omissions and wrong attributions, and we welcome any comment on the subject.
This report has taken some times (the situation is much worse for the “big report” evoked
in note 1...), partly because the characterization of formula circumscription in the infinite
case was not so obvious, and we wanted to avoid publishing this report without such a
result. Thus, sometimes we have discovered in the recent literature a result that we had got
before its publication, thinking it was new. Naturally, even in these cases, we attribute the
concerned result to (whom we think is) the right person.

2 Notations

L is the propositional logic considered, which contains propositional symbols noted
P,Q,Z,---. V(L) is the set of all the propositional symbols. As usual, £ denotes also
the set of all the formulas existing in this logic. As we are in a propositional logic, our logic
is compact and complete. Also, for preferential entailments, a relation between models may
be assimilated to a relation between complete theories.

The set of theories is </ = {T/T C L, T = Th(T)} where Th(T) = {¢/T = ¢}.

Letters ¢ and 1 will denote formulas in £. | denotes the false formula, and T the true
formula.

C denotes the set of all the complete theories 7 in £: ¢ € T exclusive or ¢ € T for
any .

The letter T (with possible subscript or superscript) will denote subsets of £, when 7 is
a theory (7 € ¢/), this will be precised, and 7" (with possible subscript) will be reserved to
complete theories (T € C ). For any theories 71 and 75 in £ we have T1 =T iff T1 2 Tos.
Notice that letters &, ¥, --- and X will also denote sets of formulas, but only in cases when
considering the logical closure by Th of these sets is not intended.

INRIA



Propositional circumscriptions 7

For any subset T of £, V(T) denotes the set of the propositional symbols appearing in
T and L(T) is the language such that V(L(T)) = V(T). If P C L, then we note P(7") for
the set PNY(T) and P*(T) for P — P(T).

When we consider partitions of V(L£), e.g. (P,Q,Z), we mean as usual PUQUZ = V(L)
and the pairwise intersections are empty, however, notice that we allow empty sets among
P,Q,Z.

We use the notations 71 U T2 = Th(T1U T2), s Ti = Th(U;je; Ti) and T U@ =
T U{e}

For any 7 € ¢, T(T) denotes the set of all the complete theories which entail (i.e.
contain) 7. We know that 7 = \zicp(r) T -

Letters p and v denote interpretations for £, 4 may be assimilated to its corresponding
complete theory Th(u) = {¢ / ¢ € L,u = ¢} (Th(u) € C) (this ambiguous meaning
of = and of Th is classical in logic and should not provoke confusion). We will denote
the interpretations by the subset of V(£) that they satisfy: e.g. if V(£) = {P,Q, Z} and
uw=A{P,Z}, then Th(p) =Th(PA-Q A Z).

71 denotes the set of all the interpretations for £, i.e the set of all the subsets of ¥#(£).
For any subset 770 of M, we note Th(1) for the set ﬂueml Th(p) ={¢/veL,pkE

o for any u € m/}.

An expression such as “for any ¢” will mean “for any formula ¢ in L£”, similarly “for any
T” will mean “for any subset of £” and “for any p” will mean “for any interpretation y for
L7, and similarly when “for any” is replaced by “there exists some”.

N(T) denotes the set of all the models of 7: NMUT) = {u € M / p = T}. Thus we
have p € TMU(T) iff Th(p) € T(T).

We note I'(¢) instead of I'({}) and 71(p) instead of M ({¢}), and also P(y) for P({¢}),
V() for V({e}).

As we work in propositional logic, there exists an obvious correspondence between m
and C, MYT) and T(T), u and Th(x) and so on. However, we like better to keep the two
kinds of notations, as sometimes it is easier to consider the interpretations, and sometimes
it may be easier to consider the complete theories.

TC(---) denotes the classical topological closure: for any set S C C, we note TC(S) for
the closure of the set S, i.e. TC(S) = I((\7.cg T')- Thanks to the correspondence between

C and M, for any set M’ C M, we will also denote TC(7M) for the closure of MM, i.e.
TC(M'y = M(THIMNY).

RR n3538



8 Moinard and Rolland

A is the set of the finitely axziomatizable theories of £: T € A iff there exists some ¢ such
that 7 = Th(p). f T ¢ J, we will as usual call T finitely aziomatizable iff Th(T) € 4.

= (without any subscript) is a meta symbol meaning “equivalent to”.

The term formula will generally be used in fact to denote the quotient of this notion
by logical equivalence: we will note ¢ = 9 for ¢ = 9, i.e. T'(p) = I'(¢)). This means that
we often assimilate the set of all the formulas £ to the quotient of £ by logical equivalence
(Lindenbaum algebra). However, it is not always possible to make this assimilation: preci-
sely, when we consider V(p) (or V(T)), we cannot assimilate ¢ to its equivalence class by
logical equivalence. The context should make clear what is intended by a formula, and this
abusive partial assimilation, which simplifies considerably the expression and proof of some
results, should not provoke confusion.

3 Propositional preferential entailment

3.1 Pre-circumscriptions and a menagerie of logical properties

Definition 3.1 A pre-circumscription f (in L) is an extensive (i.e. f(7) 2 T for any
T) mapping from ¢/ to ¢/. For any subset 7 of £ not in ¢/, we use the abbreviation
F(T) = f(Th(T))?. We use also the notation f(p) for f({¢}) = fF(Th(p)).

A pre-circumscriptions restricted to U C J is the restriction to U of a pre-
circumscription f.

The wunion f1 U fo and the intersection f1 N fo of two pre-circumscriptions fi; and fs
are the pre-circumscriptions defined by (fi U f2)(T) = fi(T) U f2(T) and (fr N f2)(T) =
F1(T)N f2(T) respectively. Unions and intersections of pre-circumscriptions restricted to
are pre-circumscriptions restricted to U. O

Definitions 3.2 Here are various properties a pre-circumscription may possess. 71,7 2,7 ;
are in o/

2Thus, for a reader familiar with the terminology used in [KLM90], a pre-circumscription is an “inference
operation” satisfying the full (or theory) versions of reflexivity, “LLE”, “RW” and “AND”.

INRIA



Propositional circumscriptions

Idempotence : F(F(T) = f(T) (Idem)
Reverse monotony : if 7 CT", then f(T") C f(T ) uT7” (RM)
Case reasoning : F(T)Nf(T2) CF(T1NTa) (CR)
id. (infinite version) : Nicr f(T3) € f(Nier T4) (CRx)
Conjunctive coherence : FTUTY CfTMufT" (CO)
id. (infinite version) : Flier Ta) € Lier £(Te) (I #0) (CCx)
Restricted identity : if f(T1) C T2 then f(T2)=Ta2 (RI)
Disjunctive coherence : F(TiNT2) Cf(T1)U f(T2) (DC)
Disjunctive rationality : f(TiNT2) Cf(T1)U f(T2) (DR)
Monotony : f(M) CfTuT" (MON)
Cumulative monotony : if 7T CT" Cf(T) then f(T) C f(T") (CM)
Cumulative transitivity : if 7T CT" Cf(T) then f(T") C f(T) (CT)
Cumulativity : if 7T CT" Cf(T) then f(T) = f(T") (CUMU)
Preservation of consistency : if f(T1)=Th(L)=L then T, = (PC)
Coherent non monotony : if L¢ f(T)UT” then L¢ f(TUF(TUT") (CNM)
Rational monotony : if L¢ f(T)uT" then f(T)C fF(TUT") (RatM)

P:if f(T)Ue # £ then T(f(T)) NT(p) N\Uzer(ry Nrver(ry TUT'NTY)) #0 (P')

These properties come from various texts and are well-know except (CC), (CCoo),
(CRoo) and (RI), which are ours. Our names come from the literature, except when some
conflict existed between the notations used in various texts, or when no specific name has
been given before, to our knowledge. (PC) appears in a context very close to circumscrip-
tion in [BS85]. (CT) and (CM) appear for the first time in the context of non monotonic
reasoning in the pioneer [Gab85] (which has initiated the systematic study of such properties
in this context) under the respective names of cut and restricted monotonicity, the names
we have given in this text being rather common now. (CR), often called also OR, as in
[KLM90], or distributivity as in [Sch92], is also one of the “oldest” properties of this kind
which has been considered. (RM) is called by various names: its formula-only version (cal-
led (RMO) below) is called deduction principle in [Sho88| where it makes it first apparition
in a context of preferential entailment and circumscription; among the various names given
to the full version (RM) we may cite [infinite] conditionalization in [Sch92, Mak94] and, in
the lines of Shoham, deductivity in [FL93]. (DC) has no name in [Sat90] where it makes
its first apparition to our knowledge (formula-only version, called (DCO) below, which, as
remarked by Satoh who was mainly concerned by circumscription, “corresponds [in another
context] to the property called (R8) in [KM91]”’). The formula versions of (DR) and (RatM)
(called (DRO) and (RatMO) below) appear in [KLM90]. (P’) appears without name at all
((P") itself is not a real name either...) in lemma 3.4.9 in [Mak94] which uses it differently
than we do (Makinson does not give the characterization result that we give in proposition
3.8-2 below). The formula-only version of (CNM) appears without other name than (13) in
[LM92]. Beware that a few texts denote rational monotony by (RM), but the name “rational
monotony” is misleading: see below in subsection 7.5 why we consider (RatM) as not “ra
tional” at all. Moreover (RatM) is not a property of circumscriptions, while some variant of

RR n3538



10 Moinard and Rolland

(RM) ((RM1) given below) is a fundamental property of circumscriptions, thus it is much
better in texts about circumscriptions to use a short name for (RM) and a longer name for
(RatM), which is rather exotic in this context.

For an intuitive meaning of most of these properties, see section 7 below.

In order to study circumscriptions, we need also some weaker versions of the properties
given above:

Definitions 3.3 Formula versions Formula-only versions
(RM1) f(Tue) < f(T)u{e} (RMO) f(¥Ap)C f¥)u
(CR1) f(Tue)n f(TUy)C f(Tupvy)  (CRO) flo)Nf(y) C fle Vz/))
(DC1) f(Tuevy) C f(TUp)u f(Tuyp)  (DCO) fleve) C fleo)U f()
(DR1) f(TUpvey) C f(TUp)USf(TUY)  (DRO) feve) C flp) U f(¥)
(CC1) f(TUpAy) C F(TUp)U f(TUy)  (CCO) flpA) € flp)U f(¥)

(CT1) if p € f(T) then f(T Up) C f(T) (CTO) ifpe f(¥)

(CM1) if p € f(T) then f(T) C f(T Up) (CMO) if p € f(¥)

(CNM1)  if ~p & f(T) and ¢ € f(T) (CNMO)  if ~p & f(¢'), vef(y')
then ~ ¢ f(T U ) then ~) ¢ f(p A ¢')
(RatM1) if ~¢ & f(T) (RatMoO)  if ~¢ & f(¢')
then f(T) C f(T Uyp) then f(¢') C f(p A ¢)
(RI1) i f(T) CT U (RI0)  if f(4) C Th(p A )
then f(T Ue) =T Ue. then f (@A) =Th(pA1)
(MON1) f(7T) € f(TUue) (MONO) f(p) € feAY).

O

Remark 3.4 The properties of pre-circumscriptions can be restricted to U, (U C ),
their name being subscripted by U &8 (RM)u is: if 71 € U, Ty € U, T1 C T then
f(T2) C f(T1) U Ts. Thus, (RMO) is (RM) 4,... Depending of the property, U must be
stable for intersections and/or unions. O

We use freely results (referenced as “known”) about preferential entailments coming from
[Sho88, KLM90, Sat90, Sch92, LM92, FL.93, Mak94, MR94a, Sch97, MR99]. All these results
are referenced, completed and precised in [MR99]. As already indicated in note 1 page 5,
this text concentrates its attention to the traditional (propositional) circumscriptions, and
does not give again the proofs for general (propositional) pre-circumscriptions or preferential
entailments.

INRIA



Propositional circumscriptions 11

Proposition 3.5 (known or obvious) For any pre-circumscription:

(RM1) and (CR1) are equivalent, as are (RMO) and (CRO).

(RM1) implies (CC1), (CNM1) and (RI1).

(RM) implies (CT), (CR), (CNM), (RI), (P’) and (CCc0), (CT) implies (Idem).

(DR) implies (DC), ((RatM)+(PC)) implies (DR) and (CNM).

Any full version implies its corresponding formula version, any formula version implies
its corresponding formula-only version: (CR) implies (CR1) which in turn implies (CRO).
Also, an infinite version implies its corresponding standard full version: (CRoo) implies
(CR) (notice that formula versions of (CRoo) could be defined, but we think that our text
gives already enough properties...) and (CCoo) implies (CC). O

3.2 Preferential entailments and their logical properties

Definitions 3.6 A preference relation in L is any binary relation < over C. We note I'L (7))
for the set of the elements 7' of T'(T) minimal for (T,=<): 7' € T(T) and no 7" € T'(T) is
such that 7" < T".

Using the correspondence between C and 771, we may also consider < as a relation over
M. We will indifferently note Th(u) < Th(v) or u < v. T (T) denotes the set of the
models of 7 minimal for <, and corresponds to I'(7):

P(T) =A{Th(n) / p € M(T)} and M(T) = {n € M | Th(u) € T(T)}.

The preferential entailment f = f is the pre-circumscription in £ defined by

f(m= () T =ThM(T)). C

TIer 4(T)

Remark 3.7 We have D['(f<(7)) = TCT<(T)) or equivalently, T(f<(T)) =
TC(M(T)). (Remind that TC(- --) denotes the classical topological closure.)

Our definition is the classical definition of preferential entailments in the propositional
case, contrarily to the definitions in e.g. [KLM90] which allows states (which, as noted in
[Sch97], is equivalent to allow copies of models), a complication useless for studying circum-
scriptions (propositional or predicate). O

Proposition 3.8 (known, the results involving (DCC), (CC), (CCo0) and (RI) are from
[MR99], including the characterization result in point 2 and most of the characterization
result in point 3)

1. Any preferential entailment satisfies (CT), (P’) and (CR), thus (RM1), (CC1), (CNM1)
and (RI1).

A preferential entailment may falsify (RI), (CNM), (RM) or (CRoo).

For preferential entailments, (RM) and (CCoo) (and (CC) when £ is enumerable) are
equivalent.

Moreover, as we deal with propositional preferential entailments, we get 2 and 3 below:
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12 Moinard and Rolland

2. Any preferential entailment satisfies: f(7)C m |_| AT'nT") (DCC).
T'eT(T) T" €T (T)

Any preferential entailment satisfying (RM) satisfies also (DC).

A pre-circumscription satisfies (P’) and (DCC) iff it is a preferential entailment.

3. If V(L) is finite, then a pre-circumscription satisfies (CR) and (DCC) iff it satisfies
(CR) and (DQ) iff it is a preferential entailment. Remind that in this case (RM) is
(RMO), thus also (CRO0) or (CR), and similarly (DC) is (DC0). O

As announced above, we try to give as far as possible a few indications about the cor-
responding results in the predicate calculus case.

Remark 3.9 The predicate calculus case:

0. In the predicate calculus case, any complete theory has as many models as we want
(and even more: we must go outside the notion of set!). Thus we must split the notion
of preferential entailments as given in definition 3.6 in two different notions: it is not
the same thing to start from a relation among C and from a relation among 771. We
get two characterization results.

1. For studying predicate circumscriptions, we must start from a preference relation <
defined among 771. In the predicate calculus, a preference relation < is any binary
relation among the class of all the interpretations 711, MM (T), T <(T) and f(T) are
defined exactly as in definition 3.6, except that I'(7") must be defined from 711 (T)
as given there, and f is called a preferential entailment.

A pre-circumscription f is a preferential entailment iff f satisfies the property of com-
mon points:

for any formula formula ¢, and any set of formulas 7, if I'(f(7)) NT'(¢) # 0 then
there exists 7' € I(f(7)) NT(¢), such that 7* € Nyiep(rmcrry LF(T))- (CP)

2. Here is what corresponds to the preferential entailment in the propositional calculus:
In the predicate calculus, a pre-circumscription f is a regular preferential entailment
iff f = f where < is any binary relation among the set of the complete theories C
and f- is defined as in definition 3.6, i.e. T'(f<(T)) =TC(T'<(T)).

A pre-circumscription f is a regular preferential entailment iff f satisfies (DCC) and
(P).

As generally predicate circumscriptions (first order or mized, i.e. “second order” in a
first order frame) falsify (DCC), they are not regular preferential entailments, thus,

the characterization result for preferential entailments which is useful for studying
predicate circumscriptions is the result given in point 1 above.
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3. If < is compatible with elementary equivalence (i.e. p' < v’ whenever p < v, Th(u) =
Th(p') and Th(v) = Th(v')) then the preferential entailment f- is regular.

From a more algebraic perspective, we get that a preferential entailment f = f,
satisfies (DCC) iff it is regular, iff it satisfies the following equality, for any set of
formulas 7

{T" /T eT(T),VT" e I(T), T' e T(f(T'NT"))} =T<(T). (Reg)

4. All the results of proposition 3.8-1 apply for the preferential entailments in the predi-
cate calculus, while the results of 3.8-2 apply only for the regular preferential entail-
ments.

Again, we refer to [MR99] for details and much more about the predicate calculus case.

Here is an obvious but useful result:

Proposition 3.10 The larger is the preference relation <, the stronger is the preferential
entailment f.. Formally: If 4 < v implies u <’ v, then for any T, f<(T) C f<(T). O

Indeed, when the relation increases, there are less minimal models.

Definition 3.11 Some particular preferential entailments have properties useful for circum-
scriptions:

1. A preference relation < satisfies the closure property ((cl) for short) iff for any 7 €
we have I« (T) = T(f<(T)) (ie. M<(T) = NMU5<(T))).

2. A preference relation < is safely founded ((sf) for short) iff, for any 7' € I'(T), if
T' ¢ T<(T), then there exists 7" € T'2(T) such that 7" < T".

3. < is well founded ((wf) for short) iff it is transitive, irreflexive, and there exists no
!

infinitely decreasing chain (75,,; < 77; for any i € N).
These properties may be restricted to subsets U of L, and are then noted as in remark
3.4, and, as in definitions 3.3 we use the notations (cl0) and (sf0) for respectively (cl) ¢ and

(Sf))d O

(cl) means that I'(7) is closed for the classical topology, thus its name (it is definability
preserving of [Sch92, Sch97] and faithful of [Mak94]). (sf) appears in a context very close
to circumscription as minimally modelable in [BS85], then it was confusingly called well-
founded in e.g. [EMRS85], and a closely related notion is smooth in [KLM90] and stoppered
in [Mak94]®. (wf) is a well known mathematical notion, which implies clearly (sf) while the
converse is false (see below, e.g. proposition 4.5).

3As it is used in [KLM90] or [Mak94] for their preferential models (see page 47 below), the notion of
smoothness or stopperedness implies only (CUMU) and not (PC), while in the “history” of circumscription
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14 Moinard and Rolland

Proposition 3.12 (known)

1. If < and <’ are two preference relations, < being irreflexive, and if f4 = f</, then
< =<

2. If < satisfies (sf), then < is transitive and irreflexive.

3. If V(L) is finite, then a preference relation satisfies (sf) iff it is transitive and irreflexive.
O

Proposition 3.13 (known or [MR99]) If < satisfies (sf), f< satisfies (PC) and (CUMU). O

There exist various partial converse results from which we extract the following ones, useful
for circumscriptions, and which are easy to state if not to prove (see [MR99] for the proofs
and also for more results of this kind).

Proposition 3.14 [MR99]

1. A preferential entailment f- satisfies (RM), (CUMU) and (PC) iff < satisfies (sf) and
(cl).

2. If V(L) is enumerable, then a preferential entailment f- satisfies (CUMU) and (PC)
iff < satisfies (sf). O

Remind that from proposition 3.12 there is only one preference relation < possible in these
two cases.

Let us complete our characterization results already given above, in propositions 3.8 (last
sentence of point 2, and point 3.) and 3.14. As the result we want now is easier to express
when the pre-circumscription f satisfies (PC), we will restrict our attention to this case,
which suffices when studying circumscriptions.

Definition 3.15 Let f be a pre-circumscription. We associate to f the preference relation
<y defined as follows: p<yv iff p#vand Th(p) C f(Th({g,v})).

Then we have the following results (as for any result in this section, see [MR99] for more
details):

Proposition 3.16 1. If a pre-circumscription f satisfies (DCC), (P’) and (PC), then
f = f<;,ie f is the preferential entailment associated to the preference relation <;.

the first motivation for introducing such a property was to get (PC) (see [BS85, EMR&5, Sho88|). The
analog of smoothness or stopperedness in terms of preferential entailment is what we call (gsf): A preference
relation < is quasi safely founded, or satisfies (gsf), iff for any 7 and any 7' € I'(T) — T'<(T) such that
T' £ T, there exists T € I'<(T) such that 7} < 7. Clearly, (sf) implies (gsf), and there is equivalence
if < is irreflexive. As (qgsf) is more complicated than (sf), and is of no use for studying circumscriptions, we
refer to [MR99] for more about (qsf). Let us give one small result here: If V(L) is finite, < satisfies (gsf)
iff there exists <’ which is transitive and with isolated loops (if 7' <’ T’ then for any 7} # 7' we have
T' A T) and T4 £ T') such that f<x = fi [MR9S].
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2. If V(L) is finite, we may start from more “natural” properties: if a pre-circumscription
[ satisfies (CRO), (DCO0) and (PC), then f = f_,.

Also in this finite case we have an easy way to express a “constructive characterization
result” a pre-circumscription f satisfies (CR0O), (DCO0), (CMO0) and (PC) iff <y is
transitive and f = f< .

O

Remind that, as < is irreflexive by definition, any preferential entailment f., may be
defined by one preference relation only.

Proposition 3.17 (known) U C L is stable for finite unions and intersections. If < satisfies
(cl)u, then f satisfies (RM)u and (DC)u.

Conversely, if a preferential entailment satisfies (RM), then there exists some preference
relation < such that f = f- and < satisfies (cl). Thus (cf proposition 3.12-1) if < is
irreflexive, then f. satisfies (RM) iff < satisfies (cl) (again, remind that we are in the
propositional case). O

We have given various properties of preferential entailments. Notice that we may also
mix some of these properties together, getting many more “new properties”. Cumulativity
is a good candidate for getting interesting combinations of properties, let us give here two
examples useful for circumscriptions:

Definitions 3.18 A pre-circumscription f satisfies super case reasoning iff:
for any Tl; T2 in J, it 7To - f(Tl) then f(Tz) = f(Tl N Tz); i.e.,
for any 71, T2 ine/, wehave f(T1NT2) = f(f(T1)NT2). (SCR)

A pre-circumscription satisfies super reverse monotony iff:
fOI' any T]_,TQ € J, if T]_ g f(Tz) then f(Tz) g f(T]_) L T2, i.e.
for any T1,To €, i T1 C f(T1NT2) then f(T2) C f(T1)UTo. (SRM)

Here are the formula versions (respectively “unary version” and “formula-only” version):
For any T €, 1,02 € L, if o1 € f(T,p2) then f(T,02) C f(T,¢1) Ugs.  (SRM1)
For any ¢1, 92 € £, if 1 € f(p2) then f(p2) € flip1) U o (SRMO0) O

Proposition 3.19 e A pre-circumscription satisfies (CUMU) and (CR) iff it satisfies (SCR).
Thus, a preferential entailment satisfies (CUMU) iff it satisfies (SCR).

e A pre-circumscription satisfies (RM) and (CUMU) iff it satisfies (SRM).
Thus, a preferential entailment satisfying (CUMU) satisfies (RM) iff it satisfies (SRM)
[FL93].

e (RM1) + (CUMUL1) is equivalent to (SRM1) while (RMO0) + (CUMUO) is equivalent
to (SRMO).

Thus, a preferential entailment satisfies (CUMU1) iff it satisfies (SRM1) and it satisfies
(CUMUO) iff it satisfies (SRMO0). O
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16 Moinard and Rolland

Again, we refer to [MR99] for the proofs of the equivalences appearing in definitions 3.18
and in proposition 3.19 and for precise references®. As (CR1) is equivalent to (RM1), and
(CRO) to (RMO0), (SRM1) and (SRMO0) may be considered as the formula and formula-only
versions of (SCR) also.

Here is another property of the preference relation which may be useful (“negatively”,
see below) for studying circumscriptions:

Definition 3.20 [LM92] A preference relation < is ranked ((rk) for short) iff it is a strict
order and: if po A p1 and pg < g1 then pg < py. O

Proposition 3.21 [LM92] A strict order relation < on a set E is ranked iff there exists
some linear strict order relation < on a set X and a mapping r from E to X such that x <y
iff r(z) < r(y). r(z) is the rank of z. O

Proposition 3.22 1. [LM92| If < satisfies (rk), f satisfies (RatM1) and (DR).
2. [MR99] If < satisfies (rk) and (cl), or is a strict linear order, f satisfies (RatM).

3. [MR99] Any preferential entailment satisfying (RatM) and (PC) satisfies (DR), and
also, as noted already in [LM92], any preferential entailment satisfying (RatM1) and
(PC) satisfies (DR1).

4. [IMR99| If < is irreflexive, then f- satisfies (RM)+(RatM) iff < satisfies (cl)-+(rk). O

4 Propositional circumscription

Predicate circumscription (see e.g. [McC86, PM86, Lif94]) has already been simplified into
propositional circumscription (e.g. [Sat90, EG93]). As a first step towards the study of
predicate circumscription, we think it is important to study thoroughly the logical properties
of propositional circumscription, which, strangely enough, have not been studied a lot so
far. We will see that even in the propositional case, the situation is sufficiently complicated
to be significative. We indicate, for each property for which it presents some interest, what
is the situation in the predicate calculus case (if this situation is known to us, see [MR99|
in preparation for more about the predicate calculus case).

4Here are a few indications, to the best of our knowledge. These equivalences are new, but the first
formulation of (SCR) and the two formulations of (SRM) appear (without name) with a few partial results
in [FL93, Mak94] (generally these texts are concerned only by preferential entailments satisfying already
(CUMU), which could explain why they were not interested in the equivalences given here). The formula
versions are ours.
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4.1 Definitions and first properties

Definition 4.1 (P,Q,Z) is a partition of V(£). P is the set of the circumscribed propo-
sitional symbols, Z of the wvariable ones, the remaining propositional symbols, in Q, being
fized.

A circumscription is a preferential entailment CIRC(P,Q,Z)= f- where
Ty < Tyiff {PeP /T, P}C{PeP /T,y E P} (C strict) and
{QeQ/Ti FQ}={QeQ/ T Q}-

If P =0, f< is the identity (we call it the trivial circumscription). O

As soon as P is not empty, there exist 7 and ¢ such that CIRC(P,Q,Z)(T) E ¢ and
T B ¢:

if Pe P, T =Th(0) and ¢ = =P, we get p € CIRC(P,Q,Z)(T) = Th({-P' | P' € P})
and p ¢ T.

Remark 4.2 Considered as a relation over 711, < is defined by:
p=<v iff PNnpCcPnrvand QNu=Qnuv. O

It is useful to remind here an easy consequence of this definition: The more propositional
symbols are circumscribed and/or allowed to vary, the stronger is the circumscription:

Proposition 4.3 Py, Py, Q,Z;,Z, being a partition of V(L), we get:
CIRC(PLUP,, Q,Z,UZy)(T) E CIRC(P1, QUPyUZ,y, Z)(T). O

Proof: Use proposition 3.10. O

In definition 4.1, we could suppose only P U QU Z = V(L) without any requirement
about disjoint sets (remind anyway our non classical definition of a “partition of V(L)” given
in section 2). Indeed, if we use definition 4.1 without this requirement, it is obvious that we
get CIRC(P,Q,Z) = CIRC(P — Q,Q,Z — P — Q). However, we will try to avoid using
this extended definition of CIRC(P,Q,Z), sticking to definition 4.1 as it stands, even if
this may sometimes complicate the notations (see e.g. corollary 4.23 below).

Remark 4.4 As a circumscription is a preferential entailment, we get that it satisfies (CR),
(CT), (Idem), (RM1), (CC1), (CNM1), (DCC), (P'), ...
As we will see, circumscriptions may falsify full (RM), (CNM) and also (CRoo).

From remark 3.9, we know that the “positive results” (first sentence) extend to predicate
propositional circumscriptions (first order or mixed or even full second order, as all these
are preferential entailments), except for (DCC). The negative results extend to predicate
circumscriptions also [MR99]. O
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18 Moinard and Rolland

In order to obtain other results, we must refine our study:

Proposition 4.5 1. The preference relation < associated to propositional circumscriptions
in definition 4.1 satisfies (sf) (thus it is transitive and irreflexive).

2. Also the opposite > of < satisfies (sf).

3. If P is infinite, < falsifies (wf). O

A (rather technical) bibliographical comment is in order here. To our knowledge, points 1
and 2 applied to CIRC(P,Q,Z) are new (point 3 is folklore), and the proof we give below is
thus new. However, the proof for point 1 is closely related, even if it is different, to the proof
about predicate mixed® circumscription (defined in remark 3.9-2 page 12): the associated
< satisfies (sf) for the universal theories, provided that only predicates (no function) are
allowed to vary (see [BS85, EMR&5, Lif94]%). Moreover, for what concerns the propositio-
nal case, using the following three correpondances, we get that point 1 is a consequence
of Observation 3.4.11 in [Mak94] (the other part of this Observation concerns precisely the
relations evoked in 1) below, which do not concern us directly here). Let us enunciate al-
ready these three correpondances, which will come later in this text. 1) The equivalence
between “sceptical Poole’s defaults without constraint” and formula circumscription remin-
ded in subsection 5.2. 2) The expression of any circumscription CIRC(P,Q,Z) in terms of
a formula circumscription without fixed propositions reminded in proposition 5.9-2, which
includes a result from [dKK89]. 3) The expression of any formula circumscription in terms
of an ordinary circumscription given in definition 5.1, together with the expression of any
formula circumscription in terms of a preferential entailment given in proposition 5.5. See
also our bibliographical comment for corollary 5.7-2.

Proof: 1. Transitivity and irreflexivity are obvious. Thus we already get (sf) restricted
to the theories 7 which have a finite set of models. The remaining cases concern theories
with an (eventual) infinitely decreasing (for <) chain of models. We give the proof for (sf)
in these cases.

< denotes the preference relation associated to CIRC(P,Q,Z) as in definition 4.1. We
suppose p € NMYT) — N (T), and also, for any v € TU(T), if v < p, then v ¢ M (T).
From Zorn lemma, we know that there exists (v¢)¢<, a maximal sequence such that vp = p,
and for any &€ < ¢ < X\, vg € MUT) and vgr < ve. Thus, X is a limit ordinal (because
ve ¢ TN (T)). We define the set X = Ne<x (e NP), as the sequence (vg N P)ecy is strictly
decreasing, we get X C veNP forany { < A. Wedefine A = TU{Q / Q € unQ}U{-Q / Q €
Q-plU{-P/PeP-X}. IfviE=A thenv T andforany E <A\, vNPC X CrveNP
thus v < vg, a contradiction with the maximality of (v¢)e<x. Thus A is inconsistent. By
compactness there exists an inconsistent set A' = TU{Q / Q € pNQ}U{-Q / Q €

5The preference relation < associated to the first order circumscription falsifies (sf), even without varying
predicate and for universal finitely axiomatizable theories, and in fact this circumscription falsifies (CMO0)
(ex. 5.2 in [MR94b]).

6The original proof, where all the predicates are circumscribed, is in [BS85]. [EMR85] and finally Lifschitz
have shown that this proof extends to the cases where fixed predicates and finally also varying predicates
are allowed.
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Q- p}U{=P,---—P,} where P, € P — X for any i such that 1 <i<ne€ N. As P, ¢ X,
there exists & < A such that P; ¢ ve, N P. Let £ = sup;<;<,, &, Ve is a model of A', a
contradiction with the inconsistency of A’. Thus, our initial assumption about u is false.
Notice that an easier proof can be given when V(L) is enumerable.

2. The proof for the opposite > of < is similar (see also corollary 5.7-4 below and its
comment).

3. See example 4.6 below. This last point, showing that the relation < is not well founded
in the traditional mathematical meaning of the expression, is given here in order to remind
that we certainly cannot restrict our attention to relations satisfying (wf) (as was proposed
in the pioneer [Sho88]) when studying circumscriptions, even in the propositional case. This
remark is folklore now, but from times to times it seems to have been forgotten. O

Example 4.6 [folklore] V(L) = P = {Pj},cN+- < is the relation associated to
CIR (P,@,@). We define p; = V(ﬁ) — {Pj}OSjSz'- We have p1 < po, p2 < p1,- -+, fit1 =<
piy e O

Proposition 4.7 Any (propositional) circumscription satisfies (PC) and (CUMU), thus
also (SCR). O

Proof: Use propositions 3.13 and 4.5 (and 3.19). O

This is to be related to the similar result about mixed predicate circumscription without
varying function, for universal theories: it satisfies (PC) (thus the weaker first order circum-
scription also) and (CUMU) (this result does not extend to the first order version [MR94b]).

4.2 When T is finite: the circumscription axiom

We have given a semantical definition of propositional circumscription, a syntactical defini-
tion is also well known, and we give a few words about it now.

Remark 4.8 In definition 4.1, we may intersect the sets P, Q,Z with V(7).
Precisely, for any formula ¢ € £ we have (remind the notations given in section 2):

CIRC(P,Q,Z)(T) E ¢ iff
CIRC(P(T),Q(T),Z(T))(T)U{~P / P € P (T)}  ¢.

Notice that the second CIRC is defined in the sublanguage £(7). O
The proof is straightforward and left to the reader.

Notations 4.9 If p = {¢;}icr is a set of formulas in £ (or of elements in V(L), assimilated
here to their corresponding formula), we will sometimes assimilate this set to the sequence
(¢i)icr (element of £7). Tf p = (¢;)icr and p’ = (¢})ier are two sequences, we note p = p’
for the sequence of implications (¢; = ¢})icr- At the end we are only interested in the
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set {p; = ¢} }icr, thus this abusive assimilation of sets to sequences, which simplifies the
exposition, should not provoke confusion.

We note here P = {Pi}iela 7 = {Zj}jeJ, Q= {Qk}k€K7 with V(l:) =PUZUQ. For
any set I, we note F(I) for the set of all the sequences (p;);cr, where each ; is either L
or T. We define the subsets (finite if 7 is finite) I(7) and J(T) of I and J respectively by
P(T) = {Piticr(r), Z(T) ={Z;}jes(1)- P = (¢i)icr(T) and z = (¢)jes(T) are sequences
of formulas in £. As usual in the literature about circumscription, 7[p, z, Q] denotes 7 in
which any occurrence of P; and Z; is replaced respectively by ¢; and gog (as Q is fixed, we
keep the Q1’s unchanged, and we replace only the P;’s and the Z;’s).

If T is finite, it is equivalent to a single formula and so is T[p, z, Q], thus we use (abusively,
assimilating this last set to a formula) the notation 7[p, z, Q] = 1 where 9 is a formula. O

Proposition 4.10 We use the preceding notations. If 7 is finite, we have:
CIRC(P,Q,Z)(T) =T UCIRCAX(P,Q,Z)(T) where

CIRCAX(P,Q,Z)(T) =
{Tlp,2,Q] = (p=P(T)=P(T)=p))) /PeF(T)), 2z€ F(J(T))} U
{~P | P e P*(T)}.

The set of formulas CTRCAX (P, Q,Z)(T) is the circumscription axiom schema, known
since [McC80, PM8&6], with two adaptations to the propositional case. The first one is a
simplification: restricting our attention to the formulas @;, ¢} which are T or L. The other
one is a complication: we cannot exclude the fact that P is infinite as soon as we want to
allow an infinite number of “individuals”, which may provoke the existence of infinitely many
P;’s in P, thus we must split the set P into the finite part P(7) (or any finite superset of
P(T) as in the proof of proposition 4.11 below) and its complement P*(7) in P.

When P is finite, the set CIRCAX (P, Q,Z)(T) is finite thus it is equivalent to a single
formula. O

This result is well known in the circumscription literature, being a simplifying adaptation
of the corresponding result for predicate circumscription [McC80, PMS86].

Proposition 4.11 CIRCAX satisfies the disjunctive equation:

For any finite sets 71 and 75, let us assimilate here 7, and 75 to the conjunctions of
their respective elements, and note 71V T 5 for the set having as only formula the disjunction
of these two conjunctions (thus Th(7T1V Ta) = Th(T1) NTh(T3)).

Th(CIRCAX(P,Q,Z)(T1VT2)) =

CIRCAX(P,Q,Z)(T1)UCIRCAX(P,Q,Z)(T>) (DE0) O

The “0” in (DEO) indicates that this property is restricted here to finite theories (assimilated
to formulas).

Proof: We have T1[p,z,Q]V T2[p,2z, Q] = (T1V T2)[p, 2, Q). Let us note here (71, 7T2)
for (71 U T2). We use the notations 4.9 and we denote the formula (p = P(71,72)) =
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(P(T1,T2) = p) by ¢[p].

CIRCAX(P,Q,Z)(T1) is equivalent to

{T1lp,2,Ql = ¢[p] /P € F(I(T1,T2)), 2€ F(J(T1,T2))} U {~P /P eP(T1,T2)},
and similarly for CIRCAX (P, Q,Z)(T2).

Also, CTRCAX(P,Q,Z)(T1V T>) is equivalent to

{(T1lp,2,Q] vV T2[p,2,Q]) = ¢[p] / p € F(I(T1,T2)), z € F(J(T1,T2))} U {~P/Pe
P*(T1,T2)},

thus, from the equivalence between (¢ V ¢') = 1 and {p = 9, ¢’ = ¥}, it is also equivalent
to

{T1[p,z,Q] = ¢[p],/ p € f(I(T1,T2)), VAS f(J(ThTQ))} U {—|P / P e P*(T1,T2)} U
{Tz[p,z,Q] = ¢[p] / p € f(I(Tl,Tz)), VAS f(J(ThTQ))} U {—|P/P S P*(Tl,TQ)}- O

Corollary 4.12 Any circumscription satisfies (RM0) and (DCO0). O

Proof: Again, we assimilate the finite sets of formulas to their conjunction.

e (RMO) uses the D part of the equality (DE0): d is stable for finite intersections,
also for any subsets 7,7 of £, TUT" = Th(T) U Th(T") and for any 7,7", 7" in
J, we have TUT"” C 7" iff (T € 7" and 7" C 7). Thus the side D of the equa-
lity in (DEO) means that Th(CIRCAX (P, Q,Z)) is a decreasing mapping from d to /- if
Th(T1) C Th(T2), with Th(T1) € &, Th(T>) € 4, we get Th(CIRCAX (P,Q,Z)(T>)) C
Th(CIRCAX (P,Q,Z)(T1)). Thus, this side D of (DEO) means that, over &, circumscrip-
tions are “antitonic” as defined in [KL95], which shows that they respect (RM)}A:(RMO).
The proof of this last affirmation appears in [KL95] and is immediate: As Th(y) C Th(pAy),
we get:

CIRC(P,Q,Z)W A ¢) = Th(t) A ) U CIRCAX (P,Q,Z)(% A 9) = Th(i) A ¢) U
Th(CIRCAX(P,Q,Z)(¢ A ¢)) € Th(y A ) UTh(CIRCAX(P,Q,Z)(y)) = Th(y) U
Th(CIRCAX(P,Q, Z)(y)) UTh(p) = CIRC(P,Q,Z)(¢) U ¢ (RMO).

e (DCO) uses the C part of the equality (DEO0): As we have Th(p V¥) C Th(p Av) =
Th(p) U Th(y) we get: CIRC(P,Q,Z)(¢ V) = Th(p V) U CIRCAX(P,Q,Z)(p V
#) C Thig v ) U (CIRCAX(P,Q, Z)(¢) U CIRCAX (P, Q,Z)(1)) C Th(g) U Th(t) U
CIRCAX(P,Q,Z)(p) UCIRCAX(P,Q,Z)(v)) = CIRC(P,Q,Z)(p)UCIRC(P,Q,Z)(v)
(DCO0). O

4.3 Refining our results about the logical properties

The preceding result did not even use the properties of preferential entailments, being an
immediate consequence of the writing of the circumscription axiom schema. The drawback
is that this result is limited to finite sets (it can obviously be extended, with some care
concerning the vocabulary, to finitely axiomatizable theories). Thanks to the study of pre-
ferential entailments, we may overcome slightly this limitation, for reverse monotony only.
We know from proposition 3.8-1 that any circumscription satisfies (RM1), which is already
better than (RMO). In a few particular cases, we get full (RM):
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Proposition 4.13 1. If P U Q is finite, then the circumscription satisfies (RM).
(RM) is falsified as soon as P U Q is infinite (and P # ).

2. A circumscription satisfies (RM) iff its preference relation < satisfies (cl). O

Again, the situation is similar in predicate calculus: first order and mixed predicate cir-
cumscriptions satisfy (RM1), but generally they falsify (RM) [MR99).

Proof:

1. PUQ is finite. Let u be in TC(714(T)) and ¢ be the conjunction of all the literals
satisfied by p made from PUQ. p € 71(¢)) and 711(1)) is an open set (¢ is a formula) thus
there exists v € T4 (T) such that v € M(). I ¢ Mo (T), let p' € T(T) be such that
pw<p,weget uNP=vNPand pNQ =vrNQ thus g’ < v, a contradiction. This shows
that p € M (T): < satisfies (cl). Use proposition 3.17: f satisfies (RM).

The following two counter-examples, which may easily be generalized, complete the proof.

2. “if”: Use propositions 3.14-1 and 4.7. “only if”: Use proposition 3.17. O

Again, a small technical bibliographical comment is in order. We will see in proposition
5.19 that a result related to the positive part (the first sentence) of proposition 4.13-1 is
equivalent to Observation 3.3.4 in [Mak94], if we take into account the correspondances evo-
ked in our comment about proposition 4.5. Even if [Mak94] evokes the negative part (second
sentence of proposition 4.13-1) in a comment following Observation 3.4.11, no indication for
this part is given there (see example 6.26 below).

Example 4.14 P ={P}, Z=0, Q = {Qi};c N-

We define the interpretations p, = {P} U {Qi}i>n, tw = {P}, v = 0 and the theory
T = Moe  Th(n) "Th(v). We get D(T) = {Th(pn)} e NUITh(), Th(v)} and T4(T) =
P(T) = {Th(,)} (indeed, Th(v) < Th(p.)).

Thus T'4(7) is not a closed set, and f = f falsifies (RM). We give here an explicit
counter-example: 71 = T, To2 = Th(p,) NTh(v) , thus T1 C Ta, f(T1) = T1 and
f(T2) = Th(v) € f(T1)UT2 = T2. We cannot choose a theory 7o which is finitely
axiomatizable (even “with respect to 71”) as we know that (RM1) is satisfied. O

Example 4.15 P = {P;},. N, Z=Q = 0.

We define the interpretations p, = {P;}izn, w = P, and the theory 7 = Th({P; V
P;}izj). We get thus Th(p,) € T<(T) for any n € N and Th(u,) ¢ T<(T) (Th(pn) <
Th(uy)): again T'2(7) is not a closed set, and f = f- falsifies (RM). O

Proposition 4.16 A circumscription satisfies (CNM) iff P and Q are finite or P has less
than two elements. O

Once again, the situation is similar in predicate calculus: first order and mixed predicate
circumscriptions satisfy (CNM1), but generally they falsify (CNM) [MR99].
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Notice that from this result we get that example 4.14 satisfies (CNM), which shows that
(CNM) does not imply (RM) for circumscriptions, and that example 4.15 falsifies (CNM)
(see example 4.18 below).

Proof: If P and Q are finite, f satisfies (RM) (proposition 4.13-1) thus also (CNM)
(proposition 3.5).

If P = {P}, let us suppose that 71 C To, Th(u) € T'(f(T1))NT(T2) and L € f(T1)U
f(T2). As Th(p) ¢ T(f(T32)), then Th(u) ¢ T(T>) and there exists p’ € 7(T ) such that
@ < p. We must have u' NP = () from definition 4.1, thus p' € MM (T1) N M<(T>2) and
Th(p') € D(f(T1)) NT(f(T2)) = L(f(T1) U f(T2)) = 0, a contradiction. Thus, f satisfies
CNM).

The following two counter-examples, in which CIRC (P, Q, Z) falsifies (CNM) and which
may eagsily be generalized, complete the proof. O

o

Example 4.17 {P;, P} C P, Q = {Q:},c N-

We define the interpretations p, = {P1, P2} U {Qi}ti>n, p = {P1, P2}, ¢/ = {P1} and
p" = and the theories 71 = ((,,c N Th(pn)) NTh(u') NTh(p") and To = Th(p) NTh(p').
We get Ty C T2 and Th(u) is in T'(f(71)) because Th(uy,) € T<(T1) for any n € N. Thus
p is a model of f(T1)U Ta. ' < p thus D(f(T2)) = {Th(y')} and Th(y') is isolated in
[(T1) because p' satisfies P, A —=P>. Moreover p” < p' thus Th(y') ¢ T'(f(7T1)). Thus,
L€ f(TU(Ts). O

Example 4.18 (example 4.15, continued).

{H}zeN:P,Z:QIQ

We define the interpretations pp, = P—{P,}, p =P, ' = {Ps;},c Ny and p”’ = {Pyi};c N
and the theories 71 = ((,c N Th(in)) N Th(p') N Th(p") and To = Th(u) N Th(p'). If
n = 4i, Th(u,) € T<(T1) because Py; € ', Py € p’, and Py; ¢ pg;. As Th(p) is limit of
the Th(u)’s, we get Th(s) € T(f(T+)). Thus, Th(s) € T(f(T1))NT(T5) = T(f(T1)UTa).
Now, T(f(T2)) = T<(T2) = {Th(u)}. As @' < i, Th() ¢ T<(T). Also, Th(x) is
isolated in I'(77), thus Th(x') ¢ T(f(7T1)). Thus D(f(T1)U f(T2)) =0. O

Here is a simple property true for circumscriptions without varying proposition and false
with varying propositions (and an infinite P).

Proposition 4.19 A circumscription satisfies (CRoo) iff P is finite or Z = . O

In the predicate calculus also, circumscriptions satisfy (CR) but generally they falsify
(CRo0), even if we restrict our attention to universal theories [MR99].

Proof: We provide here a proof which needs an enumerable V(L), which should suffice
for the not too mathematically oriented reader. Notice that below we will give a proof of
this result without any restriction on V(L) (see theorem 6.40).

f = f<, V(L) is enumerable.
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Let 7 = (;e; T+ and 7," € T (T) —T(Nie; f(T4)- Then, T' € TC(U;e; T(T4)) —
TC/'(Ul.eIF(f(Ti))), thus T € TC(Uz’eI(F(Ti)/ —T<(T%))). Thus, there exists a sequence
(Th)ne N Of elements all distinct such that 7,, € ['(T4,) — I'<(74,) and the limit of 77,
(n — oo) is T'. Let 77 € T(T;,) such that 77/ < 7. For any T; € C, there exists one
w such that 7; = Th(p) and we note T; NP for uNP. T NQ =T, NQ and the limit
of T,NQis T'NQ. Let 7" be an accumulation point of {77}, v if this set is infinite
(otherwise 7" is one of the 7, which corresponds to an infinite number of n’s and such that
T”ﬁQ:T/ﬂQ)-

e P is finite: Then, 7'NQ = 7'NQ and (7,,NP),,c v is stationary, thus we may suppose
T, NP =T'NP for any n. Thus, 7' NP C T'NP because 7,,NP C T,NP =T'NP and
(TnNP),c N is stationary. We get 7 < 7', which contradicts 7' € I<(T) as 7" € I'(T).

e Z = (): Same beginning as above, except that we choose T, € T'<(7;,), which can be
done because < is (sf). 7" is the limit of an infinite subsequence of (77,),. N- We may in
fact suppose that 7" = lim,,_, 7, it suffices to modify, if necessary, the 7'n from which
we started. For anyn € IN, 7. N Q = 7., N Q and the limit of 7, N Q is 7' N Q. Also,
the limit of 7, NQis 7" NQ, thus 7' NQ=T"NQ. If P € T" NP, there exists N € N
such that for any n > N we have P € T, NP, thus P € T, NP, thus P € 7' N P. Thus
T'"NPCT NP and,as 7' € T<(T) and T" € I(T), we get also T" NP = T'NP and, as
Z=0, T =T". Thus T' € T(N;c; f(T:)), because for any n € IN, there exists i € I such
that 7, € I<(7;). This contradicts our initial assumption.

We have proved that in these two cases, we have I'.(7) C T'((N;c; f(T4)), ie.
TCT<(T)) CT(Nier f(T4)), ie. T(f(T)) CT(Nier f(T4)), ie. f satisfies (CRoo).

The following counter-example proves that if P is infinite and Z # (), then
CIRC(P,Q,Z) falsifies (CRoo). O

Example 4.20 P = {P;},. N, Z={Z}, Q = 0. We define p, = {P;}i>n U{Z}, p;, =
{Ps}isn, to=1{Z}, p, =0 and T =Th(pn) N Th(py,), T=Npne NTn- We get f2(Tn)=
Th(u.,) (because Th(u,) < Th(uy,)) and Th(u,,) € T(T) (because any Th{uy,) is in T'(T)).
As py, NP =0, Thp,) € T(T) € T(f<(T)): T(Npe N f(Tn) = T(Nype N Th(py)) =

{Th(pm) b ne N U{Th(u},)} thus Th(p,) ¢ T(N,e N f<(Tr)) thus N, N f<(Tw) € F<(T):
(CRoo) is falsified. We could have chosen any non empty Z, any Q and any infinite P. O

As already noticed in [MR98], this counter-property has an important consequence: a
pre-circumscription falsifying (CRoo) cannot be expressed thanks to its “inaccessible formu-
las” by the natural way suggested in [Suc93] for predicate circumscriptions without varying
predicates, and reminded and made more explicit for propositional circumscriptions, still
without varying objects, in [SF96]. Inaccessible formulas are defined precisely in definition
5.28-1 below, and we postpone the complete treatment of propositional circumscription to
that respect to subsection 6.3.

This counter-result sheds new lights on the behavior of circumscriptions: it was known
that varying objects are necessary in terms of knowledge representation”. The falsification

7See the kangaroo example in [PM86]: in the presence of formulas such as Dead; < —Alive;, no cir-
cumscription without varying object can formalize the rule with exceptions: an individual ¢ is considered as
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of (CRoo) when varying propositions are present (and P infinite) shows that the price of
introducing varying propositions is high, as it provokes the failure of a powerful property.

We have already showned that circumscriptions satisfy (DCO) (see corollary 4.12). We
give now another proof of this fact, using the preferential entailment nature of the circum-
scription.

Before giving this other proof, let us notice that in the predicate calculus, it is known
that the first order predicate circumscription satisfies (DC0). See [MR99] for this result: as
in the propositional case, the easiest proof is similar to corollary 4.12, and a proof similar
to the following one exists also. However a proof similar to the following one does not work
for the “mixed” predicate circumscription (defined in the bibliographical comment about
proposition 4.5) because it falsifies (cl0): see [MR99] which uses an example appearing as
example 3.1 in [MR90] and already actualized a first time as example 6.3 in [MR94a)].

Our proof makes use of an easy lemma:

Lemma 4.21 1) If xNV(p) = v N V() then then p € NM(y) iff v € M(y).

2) If u € M~ (p) then pN'P C P(p).

3) f uNP C P(p), vNP C P(p) and unUW(p) = pnV(p), then p € M (p) iff
vel (p). O

Proof: 1) Obvious.

2) Let us suppose pu NP & P(p), then let us define p' = p— pN (P — P(p)). We have
W NP CpunPand ' N Q=pnNQ thus g/ < . We have also g/ N P (p) = p NV (p) thus
1 ¢ M () from 1).

3) Let us suppose g NP C P(p), uN V(p) = pnV(p) (thus vNP C P(p)) and
p € M(p) — M <(p). There exists p' € TM(¢) such that p' < p, thus we have: ' NP C
punNP =pnNP(p) =vNP(p). Let us define v/ = (' N(PUZ))U(rN Q). We have
V'NP(p) =/ NP = p' NP(p) thus g’ NV (p) =/ NP () and v' € M(p).

We have v NP =/’ NP CvNP(p) CvNP and ¥ NQ = vNQ thus v/ < v and
v ¢ MM _(p). As the hypothesis in point 3) are symmetrical, we can also prove that if
v ¢ M. () then p ¢ M (p). O

Proposition 4.22
The preference relation < associated to a circumscription CIRC(P,Q,Z) (see definition
4.1) satisfies (cl0). O

Thus, using proposition 3.17, we get that any circumscription satisfies (RMO) (which is sub-
sumed by the fact that it satisfies (RM1) from proposition 3.8-1) and also (DCO0) (which, as
(RMO), is already given in corollary 4.12).

alive, except if we have good reasons to think ¢ is dead. With varying predicates (propositions here) this is
possible by C’IRC({Deadi }iGIa Q, {Alivei}iej @] Z’).
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Proof: Let p € £ and Th(u) € T'(p) — T'<(¢).

e If uNP ¢ P(p) there exists P € (uN P) — P(p) such that Th(u) € T'(p A P).
For any Th(p') € T(¢ A P), P € p/ thus p/ NP & P(yp), thus Th(y') ¢ T'<(p). Thus
L AP)NT<(p) =0.

e Otherwise, uNP C P(p) and we define ¢ as the conjunction of all the literals built in
V(p) satisfied by p. We have Th(u) € T'(p A ). For any p' such that Th(y') € T'(p A),
we have p' N V(p) = pNV(p) because ¢ € Th(y'). From point 3) in lemma 4.21, we get
Th(p') ¢ T<(p) thus T(p A) NT<(p) = B. Thus T'(p) — T<(yp) is an open set, thus T'<(¢)
is a closed set: < satisfies (cl0). O

Here is a corollary of this result (and of propositions 4.3 and 4.13).
Corollary 4.23 (P,P1,P»,Q,Z) is a partition of V(L).
1. If 7 is finite, or if P U Py U Py U Q is finite, we get:
CIRC(PUP,Q,ZUP,)(T)UCIRC(PUP,,Q,ZUP,)(T) E
CIRC(PUP;UP,,Q,Z)(T).

2. In any case we get:
CIRC(PUP,UP,,Q,Z)(T) =
CIRC(PUP1,QUP,,Z)(T)UCIRC(PUP;,QUP,Z)(T). O

These results may be enunciated as:

1. “When the set of the circumscribed and fixed propositions appearing in 7 is finite, a
union of circumscriptions is as least as strong as the corresponding parallel circumscription,
provided that in the union the propositional symbols concerned are either circumscribed or
varying.”

2. “A parallel circumscription is as least as strong as the corresponding union of the
circumscriptions, provided that in the union the propositional symbols concerned are either
circumscribed or fixed.”

Proof:

1. Let us call <1, <5 and < the preference relations associated respectively to CIRC(PU
P1,Q,ZUP;), CIRC(PUP,,Q,ZUP;) and to CIRC(PUP{UP;,Q,Z). From definition
4.1 we get easily: If y < v then g <, v or g <5 v. Thus we get M (T)N MM _,(T) C
M. (T), ie., from proposition 4.13 (case P UP; U P, U Q finite) or 4.22 (case 7 finite),
TCIN, (T) N TCM =, (T)) € TCIML(T)), ie. MUf=,(T) U fo(T)) € MU<(T)),
ie. f%(T) - f<1(7-) u f%z(T)

Notice that alternatively we could prove this result, when 7 is finite, by using proposi-
tion 4.10.

2. It is a mere rewriting of proposition 4.3, in the case where Z5 = ), and written twice

(exchanging P; and P,), given here only for the sake of comparison with the preceding
result. O
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Proposition 4.24 If P U Q is finite, the circumscription satisfies (DC).

In almost all the other cases, circumscriptions falsify (DC1).

Precisely, if P U Q is infinite and P U Z as at least two elements (and naturally P is not
empty) then the circumscription falsifies (DC1).

Finally, if P is a singleton and Z = ), (DC1) is satisfied, but we still do not have full
(DC) if moreover Q is infinite. O

Once again, the situation is similar in the predicate calculus: first order and mixed predicate
circumscriptions generally falsify (DC1), while first order predicate circumscriptions satisfy
(DCO) [MR99).

Proof: We know that if P U Q is finite, the preference relation < satisfies (cl) from
proposition 4.13, thus f satisfies (DC) from proposition 3.17 (or we could use proposition
3.8-2).

The next four counter-examples complete the proof. O

Example 4.25 P = {P;}, . N, Z=Q =0.

Let us define Hi = P - {PQH_l}, Vv; = P - {Pzz'}, My = P, H = {P2i}ie N and v =
{Poit1}ic N-

We have TO({Th(m)}ie ) = {Th(pi)}ie v U {Th(p)} and TC{Th(vi)}ie N) =
{Th(vi)};e NU{Th(1,)}, thus there exists 7 € ¢/ such that T(T) = {Th(us), Th(vi) }ie NU
{Th(py), Th(p), Th(v)}. As p < ppn and v < v, for any n € N and also p < p, and v < p,,,
we get I (T) = {Th(p), Th(v)}. Th(p) and Th(v) being isolated in I'(T"), we may find two
formulas 1q,4» such that I'(7 U ) = I(T) — {Th(p)}, T(T U) = I(T) — {Th(v)}
and T(f(T U (¢1 V ¢2)) = I(f(T)) = {Th(u),Th(v)}. For any i € N we have
v £ p; and p £ v; thus Th(w;) € T<(T Uy) and Th(v;)) € T<(T U s). Thus,

Th(pw) € D(f(TU1))NL(f(T Ueh2)) = T(F(T Ugpr) U f(T Uz)) while Th(p,) € T(£(T)),
which contradicts (DC1). The proof works as soon as P is infinite, for any Z and Q. O

Example 4.26 P = {P}, Z = {Z}, Q = {Q:},. N-

We define p,, = {P}U(Q — {Q2n}), vn = {P}U(Q —{Q2n+1}), pw = {P}UQ, and also
Pn = Q—{Q2n}), p, = Q, v;, = {Z} U (Q — {Q2n+1}), v, = {Z}UQ.

We get TC({Th(jin)} e ) = {Th(jin) be 5 U {Th(. )} and also TCUTh(vi)} e ) =
(Th(vn)}ne § U {Th(u)}.  Similarly, we get TCUTh(,) e x) = {Th() e U
{Th(p;)} and also TC({Th(vp)}ne N) = ATMw) } e v UATA(1,)}-

Thus, the set {Th(pn), Th(py,), Th(vn), Th(v;))}he N YU {Th(p), Thp,), Th(v),)} is a
closed set and there exists 7" € ¢/ such that T'(7) is this set.

We define also the formulas ¢, = PV Z and 1, = —Z and the theories 71 = 7 U4, and
T2=TUs.

{ /\}7\)76 get D(T1) = T(T) — ({Th(pn) }ne n U {k}) and T(T3) = T(T) — ({Th(vp) e n U
v 1.

For any n € N, p, € M(T1) and v, € M (T2), thus Th(u,) € T(f(T1)) N

D(f(T2)) = D(f(T2) U £(T2).
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Foranyn € N, ), < p, and v}, < v, thus =P € f(T1NT2) and Th(p,) ¢ T(f(T1NT2)).
f falsifies (DC1). The proof works for any infinite Q, as soon as P and Z are not empty. O

Example 4.27 P={P;, P}, Z=0, Q={Qi};c N-

We define p, = {P1, R }U(Q—{Q2n}), vn = {P1, P2 }U(Q—{Q2n+1}), o = {P1, P2}UQ,
and also p’ln :/J’n_{Pl}a ,U‘:u = Hw — {Pl}a V’;L =UVn _{PZ}a V:.) =V — {Pz}

We get, as in example 4.26, TC({Th(pn)} e N) = {Th(ttn) }ne v U {Th(pw)} and also

TC{Th(vn)}ne N) = {Th(vn)}ne N U{Th(pw)}-

As in example 4.26 again, we define the theory 7 by

D(T) = {Th(pn), Th(p), Th(vn), Th(vp) }ne N U A{Th(pw), Thipy,), Th(v,)}-

We define also the formulas 9; = P; and 13 = P, and the theories 77 = 7 U and
To="T Us.

As in example 4.26, we get u/, ¢ TN(T1) and v/, ¢ TN(T>) for any n € N, thus
Th(pw) € D(f(T1)) NL(f(T2)) =T(f(T1) U f(T2)).- We have also =P, V=P, € f(T1NT>)
thus Th(p,) ¢ T(f(T1NT2)). f falsifies (DC1). The proof works for any Z, any P with at
least two elements, and any infinite Q. O

Example 4.28 P = {P}, Z =0 and Q = {Q:};c N-

e Let us suppose that (DC1) is falsified: there exist 7 and 1,12 such that, for 71 =
T U1y and To = T U 1y, there exists an interpretation g such that g € M(f(7T1)) N
MUf(Ta)) = MU (T2 N T2)).

Then, we may find sequences of interpretations (un),,c Ny and (v),,c v such that Th(u) =
limy,— oo Th(pn) = lim,_o Th(v,) and, for any n € N, p, € M (T1), va € M(T2),
pn € M (T1 NT2) and vy, ¢ Mo (T1 N Ta).

Thus, there exist sequences (y7,),c Ny and (v},),c N such that p, < pn, v, < vn, p;, €
NUT,) and v, € MYT).

By compactness, we know that these sequences possess subsequences which have a li-
mit, thus we may consider without loss of generality that these sequences themselves have
limits, which we will call i’ and ¢’ respectively (limits in the meaning of the topology of C,
assimilated to 777).

From p), < pn, we get ph, NQ = p,NQ thus, as Z = @ and P is a singleton, u), = p, —{P}
and similarly v}, = v,, — {P}.

limy, — oo (1, NQ) = limy, o0 (1, NQ) = pNQ thus 'NQ = pNQ. Similarly 2'NQ = vNQ.

As /NP =v'NP = 0, we get in fact y' = v/ € NMYT1)NTU(T ), thus g’ € M(p1 Vo).
Thus, there exist infinitely many n € N such that u!/, € 77(¢), which contradicts
pn € M(T1): f satisfies (DC1), and the proof applies a fortiori with any finite set Q.

e We define Hn = {P} U (Q - {QZn}); Un = {P} U (Q - {Q2n+1})7 My = {P} u Qa and
alS0 i, = fin — {PY, iy = i — {P}, v}, = v — {P}.

We get limy,—, o0 ftn, = limp 0o vy = i, and limy, oo g, = lim, oo v}, = 1!,

We define the theories 7, and T, by: I(T1) = {Th(pn),Th(v;)}en U
{Th(u), Th(,)} and T(T5) = {Th(v), Th()}ne U {Th(p), Th(aL )} We have
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Th(pn) € T<(T1) and Th(vn) € T<(T?2) thus Th(u,) € T(f(T1)) NT(f(T2)) =T(f(T1) U
f(T2)). Now, as =P ¢ f(T1NT2), Th(p,) ¢ U(f(T1NT2)): f falsifies (DC). Notice that
here the proof requires that Q is infinite. O

4.4 Two counter-properties, not so “rational”

We end our study of the properties of reasoning by circumscription by an easy application
of the study of such properties.

As a consequence of a careful study of propositions 3.21 and 3.22 and obviously related
results, it has been noticed already by Satoh in [Sat90] that a propositional circumscription
falsifies (RatM) as soon as P contains at least three elements: indeed, the set inclusion
falsifies (rk) as soon as there are at least three elements. However, the falsification of
rational monotony is even more radical (this also has been remarked by Satoh): a soon
as fixed propositions are present, two propositional symbols are enough to provoke the
falsification of (rk).

We make these results precise now:

Proposition 4.29 (slight extension of [Sat90, theorem 3]) ¢ If Q = () and P as at most two
elements, then CTRC (P, Q, Z) satisfies (RatM) and (DR).

Otherwise, any non trivial CIRC(P,Q,Z) falsifies (RatM0) and (DRO). This means
precisely: if Q # (0 (and P # () or if Q = () and P has at least three elements, (thus in most
of the cases), then the circumscription falsifies (RatMO0) and (DRO). O

Once again, the situation is the same in the predicate calculus: first order and mixed
predicate circumscriptions generally falsify (RatMO0) and (DRO).

Proof: As we extend slightly the result of Satoh (who was concerned only by the formula-
only versions (RatM0) and (DRO)), and as [Sat90] is (unjustifiably) ignored by many people,
even in the circumscription community®, we provide our own complete proof of this result.
If Q = 0, and if P has at most two elements, the relation < associated to CIRC(P,Q,Z)
is obviously ranked, indeed, we have p < v iff u NP C v N P, thus < shares the rankedness
property of the inclusion relation over a set of two elements or less. Also, in this case,
from proposition 4.13, we know that < satisfies (cl), thus we get (DR) and (RatM) from
proposition 3.22-1 and -2.

The following two counter-examples complete the proof. O

Example 4.30 (a similar example is given in [Sat90, proof of theorem 3])

P ={PU{Pi}ic1},Q={QU{Qr}rex}

Choosing ¢ = P and ¢' = PVQ, we get f(¢') = Th({(-PAQ)V(PA-Q)}U{=P;}icr) =
Th({-(P & @)} U {=Plict), p AN¢' = ¢ and f(p A ¢') = Th({P} U {=Pi}icr). Now
;glog ;P ¢ f(¢'). Let v = -(P < Q), we have ¢ € f(¢') and ¥ ¢ f(p A¢'): (RatMO0), is
alsified.

81n justifications of this comment, see below: 1) our comments about [LS97], page 30, and 2) our biblio-
graphical comments between proposition 5.24 and example 5.25 pages 46 and 47.
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This corresponds to the fact that < falsifies (rk) (cf proposition 3.22): Defining p; =
{P,Q}, u2 = {P} and p3 = {Q@}, we have ps A p1, ps < p1 but gz A ps. The fixed
proposition @ is clearly the cause of the failure of (rk) here, because if @) was not in Q, we
would have pz < po.

(DRO) also is falsified: we choose now ¢ = P < @ and ¥ = =P & @ (equivalent
to ~(P & Q). ¢V =T, thus f(pV ) = Th{=P}U {~Plicr), f(¢) = Th({P &
QH-Pihier) and f(1)) = Th({~P & QH{~Pi}icr). We get ~P € f(pV 1), =P ¢ f(¢) U
f(®): (DRO) is falsified. O

Example 4.31 (again, a similar example is given in [Sat90]) P = {A, B, C}U{P; }icr},Q =
0.

Choosing ¢ = BA(A & =C) and ¢' = (AA-C)V (mAANBACQ), we get f(¢) =
Th({(AABA-C)V(~ANBAC)}U{~Pi}ict), g’ = g and f(png!) = Th({p}0{~Pi}ier)-
Now —p is equivalent to =B V (A < —(C), thus ~¢ ¢ f(¢'). Let v = B & —~C, we have
P e f(Y)and ¢ ¢ f(eA¢'): (RatMO), is falsified.

This corresponds (again, cf proposition 3.22) to the fact that < falsifies (rk): Defining
m = {A4,B}, p2 = {B,C} and p3 = {A}, we have p» A p1, ps < p1 but ps £ po. The
failure of (rk) is provoked here by the fact that C falsifies (rk) as soon as it is considered in
all the subsets of a set with at least three elements.

(DRO) also is falsified: we choose now ¢ = =(A < (BAC)) and ¢ = ~(C < (A A B)).
V1 is equivalent to (AV C) A (mAV =BV =C), thus f(p V) = Th({(AAN-BA-C)V
(A A B AC)} U {=Pihicr), £(¢) = Th{(AA ~B AC) V (~A A B A C)} U {~P,}ier)
and f() = Th({(~AAN-BAC)V (AANBA-C)}U{=P;}ict). We get =B € f(o V),
-B ¢ f(p) U f(¢): (DRO) is falsified. O

It could seem that it is useless to write explicitly so obvious (and old) things, but this
is not the case, because it has interesting consequences. The consequences in terms of
knowledge representation of this falsification of (DR) and (RatM) are examined in section
7. There, we show why these properties are not very “rational” in fact, despite their names.
Indeed, we show in subsections 7.4 and 7.5 that it is precisely because these properties are
falsified by circumscriptions that circumscriptions are well adapted for translating rules with
exceptions. Thus, we do not share the point of view defended in [Fre98], where it is claimed
that it is a good thing to sudy the very particular circumscriptions which satisfy (DR0) and
(RatMO).

Let us give now one immediate technical consequence of this falsification of (RatM) by
circumscriptions. [LS97] has defined a cardinality-based circumscription NCIRC(P,Q,Z)
defined as CIRC of definition 4.1 except that the inclusion about P is replaced by card({B €
P/T; E B}) < card({B € P/T; |= B}). Obviously (see e.g. proposition 3.21), if Q = 0,
the relation < so defined satisfies (rk), thus NCIRC satisfies (RatM1) when no fixed
proposition appears. However, NCIRC also falls prey to example 4.30 (it is equivalent to
CIRC in this case, because P has no more than two elements), and it is easy to prove that
as soon as neither P nor Q is empty, <y falsifies (rk) and NCIRC falsifies (RatM1). This
proves that not only corollary 9 in [LS97] is false, but no such result can exist: when a given
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cardinality-based circumscription NCIRC contains fixed propositions, NCIRC(T) cannot
be equated to NCIRC'(T U T1) where T is some fixed theory (not depending of 7) and

where NCIRC' is another cardinality-based circumscription, without fixed propositions®.

5 Formula circumscription

5.1 Definition, first results and motivations

Instead of using a propositional circumscription, it is generally better to use another version,
called formula circumscription. Formula circumscription has been introduced as early as in
[McC86], but it has not been used a lot since, even if in many situations it is much more
natural and easier than ordinary circumscription of definition 4.1 (see examples in section
7). We give here the propositional version of the original definition.

Definition 5.1 L is a language such that Z, Q is a partition of V(L£). ® = {p;}icr is a set
of formulas in £ and 7T is another subset of £. The formula circumscription CIRCF of the
formulas of ®, with the propositions in Z allowed to vary and those in Q fixed, is as follows:
We introduce P;’s as new (not appearing in the language £) and distinct propositional
symbols, with the set P = {P;}¢;.

CIRCF(®;Q,Z)(T) = CIRC(P,Q,Z)(T U {yi; < P;}icr) N L, the propositional cir-
cumscription being made in the language £', which is £ augmented by P.

When Q is empty, we may simplify the notation as we know that Z = V(L), thus we
use the notation CIRCF(®) for CIRCF(®;0,Z) (notice that with this short notation, we
must know the vocabulary, as it does not appear here). We will see below that any formula
circumscription may be written in this way, even if this is not always desirable. O

It is well known and easy to show that we could replace & by = in this definition:
CIRC(P,Q,Z)(T U{p:i & P;}ics) N L = CIRC(P,Q,Z)(T U{p; = Pi}ict) N L.

Notice also that the notion of formula circumscription subsumes the notion of circum-
scription as defined in proposition 4.1:

Proposition 5.2 [folklore] P, Q,Z being as in definition 4.1, we have:
CIRC(P,Q,Z) =CIRCF(P;Q,ZUP).

(In CIRCF, the first occurrence of P is assimilated to the set of the formulas P for all the
propositional symbols P € P.) O

9For the interested reader, the result given in [LS97] is true if we replace Q (our Q) by Z (our Z) and
Q’ by Z': the trick given in [dKK89] for classical circumscription (see proposition 5.9 below) works also for
finite cardinality-based circumscriptions, but with varying propositions taking the place of the fixed ones,
and the only way of corollary 9 of [LS97] which remains true is a consequence of this result. See [Mo0i98] for
details.
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Proof: We have V(L) = PUQUZ. Let P = {P; };cr and let us define the set of the new propo-
sitional symbols P’ = {P/}.c1, L' being the language defined by V(£') = V(L)UP'. We have
by definition CIRCF(P;Q,ZUP)(T) = CIRC({P}}ic1,Q,ZUP)(TU{P; & P/}ici)NL.
From definition 4.1, we have obviously, CIRC(P',Q,Z U P)(T U {P; & P!}lic1) =
CIRC(P,Q,ZUP)(TU{P; & P!}ic;) and, for any T C £, CIRC(P, Q, ZUP')(TU{P; &

Alternatively, we could have defined directly CIRCF exactly as we have defined CIRC"

Definitions 5.3 Let @ be some set of formulas, and Q,Z be some partition of V(£). For
any p, we define the set of formulas ®, = {p € ® / p = ¢} =Th(p) N d.

We define the two preference relations <(s, @, z) and <(q; q, z) as follows:

L@ qzvif pNQ=rvNQand ¢, C P, and

p=@q,z iff uNQ=rvNQand &, CP,.

We define also the following relation: p ~(4; q, z) v iff p 2(#; q, z) ¥ and v =(s, q, z) K-

If Q is empty, we note <¢, <o and ~¢ instead of X(a,;0,z), <(#;0,2) and ~(s, 9,z
respectively.

We define the set «® = {—¢ / ¢ € ®}. O

From these definitions we immediately get:
Lemma 5.4 1la. p =(g;q, z) ¥ iff uNQ =vNQ and for any ¢ € @, if u |= ¢ then v |= ¢,
1b. p<@;q,zpyv iff uNQ=rnNQ,and

for any ¢ € @, if u = ¢ then v | @, and
there exists ¢ € ® such that p [~ ¢ and v |E .

le p=@,q2zv it w3 q 2z vandv Ae,aq,z) i
p2@q 2z v iff =< q,z) vor (exclusive or) v ~4, q, z) K-

2. For any p,v, we have always u < 1 v or v 2,y p. Thus, we have always exactly one
of the three possibilities: u <, v, v <y} #, Or p ~y,} v (comparability). Notice
that the strict order relation <.} is very particular because transitivity is trivial: we
cannot have p1 <y} p2 and pa <o) 3.

3 p3@aqznv Mt veqzu Thus p=@aqzv Mt v=eaq 2w
da. p=(e;q,z) v iff forany ¢ € @, n 2((4};q, ) V-

4b. p <(@; q, z) v iff
(for any ¢ € @, 1t X({4}; Q, z) ¥, and there exists ¢ € ® such that u <((,1; q, z) V)
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5. <(@; q, z) and =(g; q, z) are transitive, <(4, q, z) is irreflexive (thus it is a strict
order) while <(q, q, z) is reflexive (it is not an order relation, because antisymmetry
is missing).

~(s; Q, Z) 1S an equivalence relation.

6. IfZ =10 (i.e. Q=V(L)), we get p Z(a;q,0) ¥ iff p=v.
If & =0, we get, for any p and v, 4 X(¢,q, z) V-
If ® = L, we get, for any g and v, p j(l:-Q, 7))V iff u=vw.

In these three cases we get, for any p and v, p A(#,q, z) v, i-e. <(#;q, z) has an empty
graph.
O

An important consequence of these results (e.g. point 4b) is that in order to know <(s, q, z)
(which is the “useful relation”, see proposition 5.5 below) we need to know more than each
individual <({,}; @, z), we must know all the individual =((,3. , z), which is a much more
precise information (thus harder to get).

Now comes the alternative definition of formula circumscription, directly as a preferential
entailment:

Proposition 5.5 ® = {¢;}icr is a set of formulas in £. CIRCF(®;Q,Z) = O

f<(<1>; Q, zy’

Proof: Let £, L', P = {P;}ic1, Z and Q be as in definition 5.1. We know from definition
5.1 that we have, for any T C £, CIRCF(®;Q,Z)(T) = CIRC({P;}ic1,Q,Z)(T U {¢; &
Pi}ier) N L.

1 being an interpretation for L, we define the “extension of y” as the interpretation
u' for £’ defined by p/ = pU{P; /i € I,u = ¢;}. ' is a model of {P; & ¢;}icr and
we even get, for any 7 C L, that p is a model of T iff its extension p' is a model of
(TU{¢i & P;}icr). We define <', the preference relation associated to CIRC(P,Q,Z),
defined in £’ (definitions 4.1). p; being an interpretation for £', we define the “restriction
of u1” to L by pl = p1 NV(L). We have, for any interpretation p for £: p = (u')".

From CIRCF(®;Q,Z)(T) = CIRC({P;}icr, Q,Z)(T U {¢; & P}Zg) N L, we get that
CIRCEF is a preferential entailment f.» defined in £ by p <" v iff ¢/ <’ V.

As p' |E P; iff P; € y/ we get, for any interpretation p for £, p = ¢; iff P; € p/. Thus,
from definitions 4.1 and 5.3, for any interpretations p and v for £, we get p <(s, q, z) v iff
u =<'V ie. -<”:-<(q>; Q,z)- U

A formula circumscription with an empty (graph for its) relation p <(s,q, z) Wwill be
called a trivial formula circumscription (see three significative examples in lemma 5.4-6).

Notations 5.6 Notice that from propositions 5.2 and 5.5, we get that the preference relation
< associated to CIRC(P,Q,Z) (definition 4.1) is equal to <(p; @, z u p)- We will also
denote this relation by <(p, q, z)-
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Similarly we define the relation <X(p, q, z) as the relation X(p; q, z u p) of definition 5.3.
This is the traditional “large” relation associated to CIRC(P,Q,Z), i.e. the relation < of
definition 4.1 (more precisely as given in remark 4.2), where C in PNy C PNv is replaced
by the large inclusion C. O

Corollary 5.7 1. Any formula circumscription satisfies all the properties of preferential

entailments: (CR), (CT), (Idem), (RM1), (CC1), (CNM1), (DCC), (P'), ...

2. <(; Q, z) satisfies (sf), thus any formula circumscription satisfies also (PC) and
(CUMDU).

3. A formula circumscription is a preferential entailment which may be defined by one
preference relation only.

4. The opposite > (s, q, z) of <(#; q, z) satisfies (sf). O

Proof: 1. From propositions 3.8 (1 and 2) and 5.5.

2. From proposition 4.5 and the proof of proposition 5.5.

3. From proposition 3.12-1, indeed <(g, q, z) is irreflexive.

4. From lemma 5.4-3), we know that the opposite (4, @, z) of <(#; q, z) is the (unique)
preference relation associated to CIRCF(=®;Q,Z): (s, , z)==(-%; Q, z), thus points 2
and 4 are equivalent. O

A few bibliographical comments: Point 1 is folklore (except for (CC1) and (DCC) which
are ours). Point 2 is closely related to Observation 3.4.11 in [Mak94]: If we take into ac-
count the equalities fp(®) = CIRCF(—®) (proposition 5.14, a result from [Poo94]) and
CIRCF(%; P,Q) = CIRCF(®UQU—Q) (proposition 5.9-2, an elaboration from [dKK89)]),
the two results are indeed equivalent. See also our bibliographical comments following pro-
position 4.5.

We remind here the intuitive justification of formula circumscription with respect to or-
dinary circumscription (see also [McC86, PM86]). Let us suppose that we want to translate
the rule (with possible exceptions) birds fly (BF).

The traditional way is as follows'?: The language £ contains the propositional symbols
B; and F; (i € I), representing respectively the English sentences individual i is a bird and
individual i is able to fly. We use an extended language £', which adds to £ another set of
propositional symbols {E; };cy, representing the sentence individual i is an exception to the
rule (BF). We introduce 7 which is the set of formulas {(B; A —E;) = Fj;}ies. Till now, we
do not have translated our rule, as nothing says that the E;’s are really exceptional. This

10Remind that we use only propositional versions of circumscriptions while generally predicate versions
are used. However, for all the points concerned in our discussion, this makes no difference at all (in [MR99],
the same example is translated in terms of predicate versions of circumscriptions).
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is where circumscription comes: we circumscribe the E;’s, letting the F;’s to vary. That
is we use f = CIRC({E;}icr,{Bi}ic1,{Fi}ic1).- In this way, we have formalized the rule
(BF). Indeed, we get Fy € f(T U By) (if all we know about individual 1 is that it is a bird,
then 1 flies) and Fy ¢ f(T U (By A —F})) (if we know that individual 1 is an unflying bird,
then we do not conclude that it flies, i.e. we do not get a contradiction). Notice that this
example shows why a formalism dealing with rules with exceptions should allow to reason
non monotonically: f falsifies (MON) because Fy € f(T UBy), TUBy CT U (B, A—Fy)
and F1 ¢ f(Tl_l (Bl A _|F1)).

This is the way circumscription is generally used in order to formalize one rule with
exceptions. We have introduced a set of auxiliary propositions (the E;’s) which complicate
the language, and are not absolutely necessary when we read rule (BF) as such. There are
also other problems with this method, when several rules are involved (see section 7 below).

Thus, another method is sometimes used (not as often as it should be, in our opinion, even
if it is used already in [McC86], the second founding text about [predicate] circumscription).

Indeed, (B; A—E;) = F; is equivalent to (B; A —F;) = E; and, when we circumscribe E;
in a set T containing {(B; A =F;) = E;};cr and no other positive occurrence of E;, we get
(BiN-F;) © E;in f(T) (cf the comment following definition 5.1). Thus, minimizing the E;’s
in 7 amounts to “minimize the formulas” B; A—F;’s in the set of formulas T —{(B; A—F;) =
E;}icr- And the intuitive justification of this method is not more complicated than the
justification of the traditional method: we “minimize the unflying birds’.

Precisely, we get:

CIRC({Ei}icr, {Bitier, {Fitier)(T1 U{(Bi A —E;) = Fiticr) N L=

CIRCF({B; A —Fi}icr; {Bi}icr, {Fi}ier)(T1),

where CIRCF is defined in the language £ with V(L) = {B;, F;}ie1, CIRC is defined
in the augmented language £’ with V(L) = {B;, F;, E; }icr and T is any subset of L.

Now that we have defined formula circumscription, and also given a justification to
introduce it, let us study its properties.

As formula circumscription may be expressed in terms of ordinary circumscription, we
may roughly state that CIRCF has almost all the properties of CIRC. And indeed, there
is some truth in this affirmation. However, a new study is necessary to get the precise re-
sults and their precise applicability conditions, so we give here a few results about formula
circumscriptions.

Firstly, in the finite case, we get also an axiom schema, very similar to CIRCAX of
proposition 4.10.

We use the notations 4.9, except that here there is no P, thus we use 7|z, Q] to denote
T in which each occurrence of Z; is replaced by ¢;, which is L or T. Additionally, If & =
{ti}icr, we note ®[z] for {¢;[z]}ic1 where 1;[z] is the formula 1); in which each occurrence
of Z; is replaced by ¢;.
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Proposition 5.8 If T is finite and if I is finite (a condition in fact equivalent to: @ is
finite), we have:
CIRCF(®; Q,Z)(T) =TUCIRCFAX(®;Q,Z)(T) where
CIRCFAX (®;Q,Z)(T) ={(T[z, Q] = ((®[z] = ®) = (P = ®[z])))/ for any z € F(J)}.
The set of formulas CIRCFAX(®;Q,Z)(T) is the formula circumscription aziom
schema, known since [McC86], with the simplification that as we are in the propositional
case, we may restrict our attention to the formulas ¢; which are T or L. O

As proposition 4.10, this result is well known in the circumscription literature, being a sim-
plifying adaptation of the similar result for predicate formula circumscription. Notice that
under the conditions of this proposition, CIRCFAX (®;Q,Z)(T) is a finite set: indeed, we
may replace z € F(J) by z € F(J(T,®)), where J(T,®) is a finite subset of J correspon-
ding to (indexing) the finite subset Z(7,®) which is the intersection of Z with the finite
vocabulary of 7 U ®, thus CIRCFAX (®;Q,Z)(T) is equivalent to a single formula.

5.2 Eliminating fixed propositions gives yet another possible defi-
nition

Let us give here a useful result, given in [dKK89| for predicate circumscription. We give it

for propositional and for propositional formula circumscription:

Proposition 5.9 P,Q,Z being a partition of V (L), Q being equal to {Qg }reck, we intro-
duce a set Q' = {Q} }rex of new (not in V(L) and all distinct) propositional symbols.
1. Then we have, for any 7 in L:
CIRC(P, Q, Z)(T)=CIRC(PUQUQ, 0, Z)(TU{Qk & Q. }rex) N L
(the second CIRC being defined in the language £’, which is £ augmented by Q).

2. CIRCF(®; Q, Z) = CIRCF(® UQU-Q). O

As this result is well known, we could omit the proof (all we have done is adapting de Kleer
and Konolige’s result to formula circumscription, for which things are simpler because we
do not need an explicit extended vocabulary). However, let us give here a short proof, which
uses an easy lemma, which it is sometimes useful to remind:

Lemma 5.10 j(@ Q,z) = <suQu-qQ, thus <(@; Q, Z) = <PUQU-Q-

Remind (definition 5.3) that <euqu-q = X(suQu-Q; 8, Zuq) and also
<2uQuU-Q = =<(euUQU-Q; 9, ZUQ)- U

The lemma is an immediate consequence of the definition of <(4, @, z) (definition 5.3,
see also lemma 5.4, points 1 and 4). Now, reminding that CIRCF(®U QU -Q; 0, QU Z)
is what we also denote by CIRCF(® U QU —Q), proposition 5.9-2 follows from this lemma,
and proposition 5.9-1 (which is exactly de Kleer and Konolige’s result, restricted to the
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propositional case) follows, if we use definition 5.1 and proposition 5.2. O

Proposition 5.9 shows that formally, we may get rid of the fixed propositions in any or-
dinary circumscription: fixing a proposition amounts to minimize the proposition together
with its negation.

Thus, “the particular case” where Q is empty is not so particular: we may always write
a formula circumscription in such a way that Q is empty. As sometimes we will extensively
use this writing CIRCF(®) instead of CTRCF(®'; Q,Z), with ® = & U QU —-Q, let us
give again lemma 5.4 restricted to this case.

Lemma 5.11 (lemma 5.4 when Q is empty)

0. p=2pv if ®,C®, thus p<ev if &,Cd,.

la. p 2 v iff forany p € ®,if pu = ¢ then v = ¢,

1b. p<e v iff forany p € ®,if p |= ¢ then v = ¢, and
there exists ¢ € ® such that p [~ ¢ and v = .

le p<ev ff p=evandvAs p.

p=ev iff p<e vor (exclusiveor)v ~g p.
2. Nothing more (Q = ) already in lemma 5.4).
3. p=gv if v=_epu Thus p=<ev iff v=<_3p.

da. p 29 v iff forany p € @, p =) v.

4b. p < v iff (for any p € ®, p =<(,) v, and there exists ¢ € ® such that p <,y v).

5. <¢ and =g are transitive, <¢ is irreflexive (thus it is a strict order) while <¢ is
reflexive (it is not an order relation, because antisymmetry is missing).

~g is an equivalence relation.

6. For any ppand v, p <gv and (pu Xp viff 4 =v). In these two cases <3 has an
empty graph.
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Let us give now two remarks in order to justify one aspect of the choice of notations
made in the present text. Our notations may sometimes look cumbersome. We think that
this is not completely avoidable. Here we will argue in favor of our notation for formula
circumscriptions:

Remarks 5.12 1) We could have simplified our notations: From a formal perspective,
proposition 5.9 shows that, in definition 5.1, we could use only the shorter notation
CIRCF(9®) instead of CIRCF(®;Q,Z), because CIRCF($;Q,Z) = CIRCF(2UuQU-Q).
Thanks to proposition 5.2, we could even express any ordinary circumscription in this way:
CIRC(P,Q,Z) = CIRCF(P U QU —Q). But we do not think that this is always a good
thing to do. One reason is that the fact that some propositions are fixed is a useful indica-
tion: In proposition 5.8, we had as applicability conditions T finitely axiomatizable and &
finite, but we did not need Q finite. If we use the concise notation CIRCF(®) given above,
the eventual infinity of Q would be transformed into an infinity of ®, which does not seem
to be a good idea: for instance, proposition 5.17 below would become inapplicable in cases
when it can be applied as it stands.

Notice however that in some kinds of results, it is relatively harmless to use the concise
writing CIRCF(®), and we will use it extensively (e.g. in almost all the section 6 and also
already in subsections 5.4 and 5.5 below).

2) We could also have complicated our notations: Sometimes, mainly from a knowledge
representation perspective, it would be useful to define a formula circumscription from two
sets of formulas ® and ®”, the set ® being minimized as in definition 5.1 and the set ®”
being kept fixed as Q in definition 4.1. However, from proposition 5.9 (more precisely, from
an obvious extrapolation to formulas of this result), this addition is not necessary: fixing
a formula amounts to minimize this formula together with its negation: when we need to
“fix” some set " of formulas, we add the set ®” U —®" to & (we use this trick in subsection
7.5). Here we have decided not to introduce this complication in the notation of formula
circumscriptions, even if it might be useful for many uses of these circumscriptions. O

Now, we are ready to give, after definition 5.1 and proposition 5.5, a third way for
defining propositional circumscription:

Definition 5.13 [Po094, subsection 4.5] (see also [Mak94, subsections 3.3. and 3.4]) Let &
be a set of formulas in £. For any theory 7 € ¢/, we define the set of sets of formulas
M(®,T) by: $ € M(®,7) iff 1) ¥ C®, 2) T UV is consistent, and 3) ¥ is maximum
(for C) satisfying 1) and 2).

We define the pre-circumscription fp(®) by:  fp(®)(T) = ﬂ (Tuw).
VeM(®,T)

fp(®) is called the sceptical deduction by the set ® of Poole’s defaults without constraint.
O
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For the reader familiar with the terminology of default logic (see [Rei80]), “Pooles defaults
without constraint” are the Reiter “normal defaults” (thus the expression “without constraint”)
“without prerequisite” (thus the “Poole’s defaults”) studied in [BQQ83, Bes89], with the sim-
plification here that only the intersection of all the extensions is considered (thus the ex-
pression “sceptical”).

Proposition 5.14 [Po094, Theorem 4.5.1] The sceptical deduction by the set ® of Poole’s
defaults without constraint is equal to the formula circumscription of the set —~®:

fp(®) = CIRCF(-9).

Proof: We give here, in our terms, the proof appearing in [Po094| (proof of Theorem 4.5.1,
point 3 < 1, reduced to the case of propositional calculus). We consider the preference
relation <==<_¢. T €.

CIRCF(~®)(T) C fp(®)(T):

Let us suppose ¢ ¢ fp(®)(T). Thus, there exists ¥ € M(T,®) such that we have
0 ¢ T U®=Th(TUT). Thus, T U ¥ U {—p} has at least one model pu. Let us suppose
p ¢ T (T). Then there exists v € T1U(T) such that v < p. Thus (definition 5.3 of <_g)
there exists a formula ¢’ € —® such that v = ¢’ and p E —~¢'. Asp E ¥, ¥ C ® and
v <_a i, we get v = ¥, Thus, v = T U U{¢'}, thus (T UT) £ —¢', thus —¢' ¢ T, ie.
¢ ¢ =¥. Remind ¢’ € =®, thus ¥ C P U {—~¢'} C ®. Also, as p =T U T U {—-¢'}, we
know that TU QU {—¢'} = T U (T U {~¢'}) is consistent. This contradicts the maximality
condition for ¥ in the definition of M (7, ®), thus it cannot exist such a model v and we get
€M (T) CIUf<(T)). Thus, there exists a model u of f- (7)) such that pu = . Thus
¢ ¢ f<(T) = CIRCF(~®).

fp(®)(T) € CIRCF(=2)(T):

Let us suppose ¢ ¢ CIRCF(—®)(T), thus there exists a model p € 770(T) such that
= —p. We consider the set ®, (as defined in definition 5.3). We have 1) &, C &,
and 2) 7 U @, is consistent, because 4 = 7 U &,. Let us suppose that there exists
¥ € & — &, such that 7 U &, U {¢} is consistent, then, 7 U ®, U {¢} has a model v.
We have then v = &,, v =% and ¢ ¢ &, thus &, C &,, i.e. p <g v from lemma 5.11-0,
i.e. v <. p from lemma 5.11-3. As v |= T, this contradicts u € 71 (T), thus nos such
can exist. This establishes that the set ®, is maximal among the sets satisfying 1) and 2),
thus ®, € M(7,®). Thus,as p =T U P, U {-p}, we get o ¢ TH(T UD,) =T U P,, thus
¢ ¢ Nueron) (T U T) = £p()(T).

Notice that we have in fact proved a result slightly stronger than what we have announ-
ced. Indeed, from this proof, it is easy to see that we have 711_(T) = UWEM@),T) M(Tu®),

while the announced result is equivalent to TC(M4(T)) = TC(Uvema,1 M1 u D).
This shows that the equivalence between formula circumscription and fp is even slightly
deeper than the pure equality CIRCF(—=®) = fp(®). O

Thus, as we have seen, < of definition 5.3 is studied in subsection 4.5 of [P0094], and
also in Observation 3.4.11 of [Mak94]. [Poo94] makes a detailed and explicit comparison with
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circumscription (ordinary predicate circumscription, “without fixed predicates”). However,
and rather strangely, none of these two authors make the explicit comparison with formula
circumscription, which is the comparison to make. May be the reason is that these two
authors were not aware, at that time, of the results from [dKK89], from which we have
obtained our proposition 5.9: at least this would explain the (useless) exclusion of the fixed
predicates evoked above.

Notice that [Fre98] studies propositional fp(®), and also <-g'! without any reference, ei-
ther explicit or implicit, to circumscription, which is, to say the least, rather strange. Indeed,
the original notion of default reasoning, as defined in [Rei80], must be considerably simpli-
fied in order to get the “Poole’s sceptical inference without constraints”™ we must restrict
our attention to normal prerequisite free defaults and, more importantly, to the intersection
of the classical defaults “extensions”. Thus, this is no longer what is generally called “default
inference”. It has been observed till their introduction [BQQ83, Bes89] that the inference
by normal prerequisite free defaults consists in considering maximally consistent subsets.
[Poo94] and, to some extend, [Mak94], have made this point of view, and the relation with
circumscription, clear and explicit in the “sceptical case”. But this remains (at least in the
propositional case) a method of reasoning much closely related to the circumscription for-
malism than to the default tradition. And the results about circumscription should not be
ignored, or treated as if they were ignored. The importance of the result of Poole (and
Makinson) is that it describes the restrictions that must be made on “default reasoning” in
order to obtain this exact correspondance.

Once the correspondance of proposition 5.14 is obtained, this provides a new point of view
from which we may consider formula circumscription, and this allows to use the literature
about these particular “default inference” systems when studying formula circumscription,
and conversely!2.

Let us give one example here.

Proposition 5.15 [Mak94, Observation 3.3.6] If =® is in ¢/, then we get, for any 7 € JJ

T if LeTU-d
CIRCF(®)(T) = { Tu-® ifit is consistent. O

The case when —® is deductively closed is a rather degenerated case, a fact which was not
too unexpected. This result gives precisely what happens then. Here is Makinson’s proof:

Proof: CIRCF(®) = fp(~®) from proposition 5.14. We have -® € /.

111Fre98] considers only finite sets of formulas 7. However, this is not a great restriction because most
of the results given there, including, from its own conclusion, its “main result”, concern only the case when
V(L) is finite also.

12 As remarked by Poole, this correspondance is not so clear in the predicate calculus case: we have no
longer exact equality between the two formalisms as they are classically described. However, even in the
predicate calculus case, we may learn a lot from the remaining correspondance. Also, under a few conditions,
we have exact equivalence again (see [Po094] for details).
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If T U~ is consistent, then we take =® as our set ¥ in definition 5.13 and M(T,—-®) =
{¥}, thus fp(—~®)(T) =T U-d.

We suppose now L € 7 LU —=® and also ¢ ¢ 7. By compactness, there exists ¢ € T
such that L € (=®) U1, thus L € (=®) U (¢ A ), thus )V —p € =®. As p ¢ T, we
know that 7 U {—¢} is consistent, thus 7 U {—¢ V =9} is consistent. Thus, there exists
¥ € M(~®,T) such that —p V —9) € ¥, thus ~p € U Uy C ¥ UT, thus p ¢ ¥ LT, thus,
as U € M(—=®,7), ¢ ¢ fp(—®)(T) from definition 5.13. This proves: fp(=®)(7) C T, i.e.
CIRCF(®)(T) C T. Asweknow T C CIRCF(®)(T) anyway, we get CIRCF(®)(T)=T.
O

Notice that, as in proposition 5.14, we could even show easily a slightly more precised
T it MUT) NI (-@) =6
result: 1<, (T) = { NMUT)NM(=®) otherwise.

Let us examine now a similar particular case:

Proposition 5.16 1. If ® € J, then we get, for any 7 €

T f7TE®
Th(DMUT) = TN(®)) if T  @.

2. CIRCF{e})(T) = CIRCF(Th(p))(T) =
CIRCF(-Th(-p)(T) = {

CIRCF(®)(T) = {

T ifTEe
O TU—Mp lfTbéL,O

Proof: 1. ® € JJ thus ®, = ® N Th(p) € J and m( x) = TMU(®) U {u} (finite union of
closed sets). Thus, ® C @, iff (®,) C TN(D,) iff v € NY(®) U {u}. Thus we get p < v
iff ® C‘I>1ff1/€ and,ugém()Ths m +(T)
uem and(foranyllem( T) we have u ¢ ()oruem( )) iff
peMUT ) and (u ¢ MY® ) or for any v € MUT) we have v € T(®)) iff

(

n € MUT) and (u } ® or ) M(%)).

U
iff

if M(T) € ()
Thus M-, (T) = { M@) it NUT) ¢ M), ie.
itfTE®
CIRCF(®)(T) = f<.(T) = { ThMUT) = M(®)) if T £ @.

2. ¢ in some formula in £. Let us define f(7) = { ;:Ll - g ;: I[; :2

If & = Th(p) we get TU(®) = NM(p) and TTUT) = TU®) = TUT) NN (~p) =
NMUT U —p), thus Th(NMYT) — NMU(®)) = Th(T U—-p) = T U —p. Using point 1, we get
CIRCF(Th(p))(T) = f(T).

Also we get p <g,y v iff {p}, C {p}, iff p £ p and v = ¢ iff p £ Th(p) and
v |= Th(yp) iff, as seen in the proof of point 1, u <rp(p) v. Thus < 1==<Tp(y), i-e.
CIRCF({p}) = CIRCF(Th(y)).
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Finally, we know that T UTh(—¢) = T U-¢ and also that 7 Li— is consistent iff 7 £ .
Thus, from proposition 5.15, we get CIRCF(=Th(—))(T) = f(T). Alternatively, we could
easily prove directly <(,1==_74(-y), Which would give another proof for Makinson’s result
in this particular case. O

5.3 Refining our study of the properties of formula circumscription

Proposition 5.17 Any formula circumscription CIRCF(®; Q,Z) in which @ is finite sa-
tisfies (DCO). O

Proof: Use corollary 4.12 and definition 5.1: this gives (RMO) (subsumed by (RM1), a pro-
perty of any preferential entailment) and (DCO). Alternatively, we could give a direct proof
in the lines of the proof of corollary 4.12, thanks to proposition 5.8. O

Notice that this result does not extend to infinite ®, even when Q is empty, as the
following example shows.

Example 5.18 V(L) = {P,},c N-

We define the interpretations Hn = {Po, Pl, Pgn}, VUp = {P(], Pl, P2n+1}, Mo = {Po, Pl}

We get limg, o0 i, = limy 00 Vp = fhey-

We consider the formulas ¢, = Py A Py A Papy1 A /\k<n(_‘P2k+1 A —Pay).

Thus we get v, € M(,), MWn) € NPy A P, po ¢ D(,) and, if n # m,
m(d’n) ﬁ?71’(1/)m) = 0.

We define < by: p < viff p={Py} and v € NPy A P;) — Une N M (n)

or p={P1} and (v = p, or there exists n € [N such that v € m(d}n))

Then < is transitive and irreflexive.

We get, for any n € N, p, € M (P,) because {P,} £ p,, and v, € N _(P) because,
as vn € NMU(pn), {Po} # tin-

D e TCOMN (Po) N TCIM () = MU f=(Po)) IS (P1) = MU f<(Po) U
<(£1)).

We get also 7L< (Po vV P1) N TPy A P1) = 0 because if u € TNU(Py A P1) and {P1} £ u,
then 1 ¢ U,e N (%), thus {Po} < p. Thus, as p., € TPy A P1) and as NPy A Py) is
an open set, we have TL(f<(Po)U f<(P1)) € TC(M(PoV Py)), ie. MU(f<(Po)Uf<(P1)) €
MUf<(PoV Pr)).

This shows that f falsifies (DCO).

It remains to prove that f- is a formula circumscription.
We define the set of formulas & = {¢ € £ / for any p,v such that y = ¢ and p <

v then v = ¢}.
We will prove now that we have indeed CIRCF(®; §,V(L)) = CIRCF(®) = f«, i.e

<==<3.
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If p < v then ®, C &, from the definition of ® (see definition 5.3 for the definition of
®,).

If u={Po}, we have v € TM(PyAP.), Py AP, € ® and p ¥ Py A P, thus ®, C ®,, i.e.
M <g V.

Similarly, if 4 = {P;}, we have also p <¢ v.

Let us suppose now p < v, thus p # v.

If 4 € MYPy A Py) then there exists ¢ such that 71(p) € MMUPy A P1), p = ¢ and
v = —¢p, which contradicts ¢ € ®, a consequence of 7(¢) C M(Py A P;). Thus we get
7! ¢ m(P(] N Pl)

If u € NM(PyA—Py) and p # {Ps}, then there exists ¢ such that 77(p) C NPy A-P}),
{Po} ¢ M), u = ¢ and v |= —¢p, which contradicts ¢ € @, a consequence of 711(p) C
NM(Py A=Py) and {Py} ¢ M(e).

Thus we get that if g € 7Py A —P1), then necessarily p = {P,}.

If u = {Py}, then let us suppose v ¢ T1L(Py A P;). Then there exists ¢» such that
M) CNMUPy A—PL), {Po} € TM(y) and v |= —p. If we define p = (Py A Py) V 1, we get
@ € ®. Indeed, if 4/ < v' and i |= ¢, then v/ € NM(Py A Py) from the definition of <, thus
V' = . We have also p = ¢ and v }£ ¢, a contradiction with g < v. Thus, if p = {F},
then v € MY Py A Py).

It is also easy to see that we have Py A —),, € ®. Also, {Po} = Po A —)n, thus, still with
p={PR}, we get v | Py A —tby,, thus v ¢ M (y,).

We have established that, if u € 7(Py) (remind that we know u ¢ 71L(Py A P1)), then
p={Fo} and p < v (see definition of <).

Let us suppose now p € m(—'PO A Pp), then the same argument as above shows that we
must have 4 = {P;} and v € 71U(Py A P;). Now, as we have p,, = lim, .o ftn, it can be
shown that TC(UU,.c N (1)) is equal to the set {u,} U Une N TU(tr), which is thus
a closed set. Thus, if v ¢ {p.} U U, N 7U(1y), then there exists a formula ¢ such that
M) CNMUPy A P, M) N (U e N M(pn)) = 0 and v |= 1. If we define ¢ = Py A ),
it is easy to show that we get ¢ € ®. Then, as we have {P;} &= ¢, we have also v |= ¢ thus
v £ 1, a contradiction with v = 9. Thus, v € {pu} U U,e Ny 1(¥n) and {Pi} < v from
the definition of <.

We have established that, if u € 7(P;) (remind that we know u ¢ 71L(Py A P1)), then
we have p = {P;} and p < v.

Let us suppose p € 11L(=Py A =P;). Then there exists a formula ¢ such that 77(p) C
NM(=Py A—P.), p = ¢ and v [~ ¢. Then, as TM(p) € NNY(~Py A ~P1), we get ¢ € @, a
contradiction. This proves u ¢ TN(=~Py A —Py).

Thus, we have proved that in any case, if 4 <¢ v, then g < v, which, together with the
previous result, gives <=<g. O

Proposition 5.19 (partially in [Mak94, Observation 3.3.4]) If ® is finite, then CIRCF(®)
satisfies (RM) and (DC). O
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Notice that [Mak94] evokes neither formula circumscription nor (DC). Also Theorem 7.17 in
[FL93] gives the result for fp and (RM) (and (CUMU) by the way) and the authors seem
to claim that they have found the result before Makinson (they cite Makinson for other
results and not for this one, while preliminary versions of [Mak94] appeared around 1990),
however, [FL93] makes no connection with circumscription, even implicitly, while Makinson
gives the preference relation associated, which is a first step towards the connection with
formula circumscription.

As in our context it is much more natural to use proposition 4.13, we give our own proof
here.

Proof: Let 7 be a subset of £ and P a set of propositional symbols P, not in £, in one-to
one correspondance with ®. Then, from definition 4.1, we have, with 7o = {¢ & P,},ca,
CIRCF(®)(T) = CIRC(P,0,V(L))(T UTo) N L from definition 5.1. As & is finite, so
is P and from proposition 4.13-1 we know that CIRC(P,(,V(L)), defined in the lan-
guage £ extended by P, satisfies (RM). If 7 C 7" C L, then TUTo C T" U Ty thus
from (RM) CIRC(P,0,V(L))(T" U To) € CIRC(P,0, V(L)) (T UTo) U (T"UTo) =
CIRC(P,0, V(L)) (T UTo)UT", thus CIRCF(®)(T") C CIRCF(®)(T")uT": CIRCF
satisfies (RM). From proposition 3.8-2 we get (DC). O

Notice the difference with proposition 5.17: Here, for a formula circumscription
CIRCF(9';Q,Z) = CIRCF(®' U QU —Q) we require that ' U QU —Q is finite, i.e. that
®’ U Q is finite. This is a stronger assumption than &' finite, the condition of applicability
of proposition 5.17. When this stronger assumption is satisfied, proposition 5.19 subsumes
proposition 5.17. We already know from examples 4.14 and 4.15 that the condition ® is
finite is necessary here to get (RM) (remind that CIRC(P,Q,Z) = CIRCF(PUQU-Q)).
Moreover, example 5.18 shows that CIRCF(®) may falsify (DC0) when ® is infinite.

Proposition 5.20 1. If ® is finite, then <(4, , z) satisfies (cl0).

2. If ® is finite then <4 satisfies (cl). O

Proof: 1. See the proof of proposition 5.5 which relates < (¢, q, z) to the preference relation
<’ associated to CIRC(P,Q,Z) where, as ® is finite, the added formulas ¢; < P; are in
finite number. From proposition 4.22, we know that <’ satisfies (cl0), and it is easy to show
that then <(s, q, z) satisfies (cl0).

2. From corollary 5.7-2 and proposition 5.19, together with proposition 3.14-1. O

Here is another result, which is good to remind, even if it is easy to prove. Proposition
4.3 cannot be extended fully to formula circumscription. All we have left now is the obvious:

Proposition 5.21 The more varying (or equivalently the less fixed) propositions a formula
circonscription contains, the stronger it is:

CIRCF(®;Q,Z1UZy)(T) = CIRCF(®;QUZ2,Z,)(T). O
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However, in the general case, we have neither CIRCF(®; U $2;Q,Z)(T) E
CIRCF(®1;Q,Z)(T) nor CIRCF(®1;Q,Z)(T) E CIRCF(®1U®3;Q,Z)(T) (see example
below). Indeed, from lemma 5.4-1a we know that the graph of <(s,us,; @, z) is included in
the graph of <(s,; q, z), but we do not have such a result for the relation <(¢,; q, z), as the
following example shows.

Example 5.22 &, = {A}, P, = {-=AVB},Z =V (L) = {4, B}, thus ®;U®, = {A,-AVB}.

We have: =A € CIRCF(®1;0,Z)(T) = Th(-A), A ¢ CIRCF(®, U ®2;0,Z)(T) = Th(=AV -B),
and  —B ¢ CIRCF(3,;0,Z)(A) = Th(A), =B € CIRCF(®, U ®5;0,Z)(A) = Th(A A —B).

Notice however that we have =B € CIRCF(®2;0,Z)(T) = Th(AA —-B). This, together
with the preceding results, is related to the following proposition. O

Proposition 5.23 1. For any finite sets ¥y, W5 and 7 we have
CIRCF(¥; Q,Z)(T)UCIRCF(¥y; Q,Z)(T) E CIRCF(¥, U¥y; Q,Z)(T).

2. For any finite sets of formulas ®; and ®2, and any 7, we have

CIRCF(®,)(T)UCIRCF(®;)(T) = CIRCF(®, U ®,)(T). O

This may be enunciated as: in the conditions of applicability, “a union of circumscriptions is
at least as strong as the corresponding parallel circumscription” (see also corollary 4.23-1).

Proof: We define &, = ¥, U QU -Q (i € {1,2}), then, as CIRCF(¥;; Q,Z) =
CIRCF(®;) we may use the same proof for the two cases. Thanks to lemma 5.11-4, we get:
L <eue, Vv it p <g, vand p 2¢, v and (v Ae, p or v Ae, p). Thus we have: If
I <o, U, V then p <g, v or p <, v. Thus we get mﬂ,l (T ﬂmﬂ,z (T) C m<¢1w2 (7M.
In the conditions of point 1 or 2 we know that these three sets are closed from the cor-
responding point of proposition 5.20. Thus we get TC’(mﬁ,l(T)) N TC’(?'nﬂ,2 (7)) ¢

Tc(m<<1>1u<1>2 (T)), ie. m(f<<1>1 (T) U f<<1>2 (T)) g m(f<<1>1u<1>2 (7—))5 ie. f<<1>1u<1>2 (T) g
f<<1>1 (7-) U f<<1>2 (T) o

Using CIRC(P,Q,Z) = CIRCF(PUQU-Q), we get as a consequence the result given
in corollary 4.23-1. Alternatively, we could have used corollary 4.23-1 in order to prove
proposition 5.23.

5.4 A characterization of formula circumscription in the finite case

We begin now the study of the following “converse” of results such as corollary 5.7: when we
have a given f., what are the conditions which assure us that f- is a formula circumscription.
As we know that <(s; q, z) and (s, q, z) satisfy (sf), we must have as a condition that <
and its opposite > satisfy (sf). We will prove that this simple condition is indeed sufficient in
the finite case. In the finite case, a relation < satisfies (sf) iff it is transitive and irreflexive,
iff its opposite > satisfies (sf). None of these equivalences remain in the infinite case (as the
infinite case is rather technical, we will postpone it to section 6).
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Proposition 5.24 V(L) is finite here.

1. (Independently also in [Cos98], and in [Fre98].) A preferential entailment f- is a
formula circumscription iff < satisfies (sf), ie iff < is irreflexive and transitive.

2. A pre-circumscription f is a formula circumscription iff it satisfies (CR0), (DCO0),
(CUMUO) and (PC). O

Proof: 1. < satisfies (sf), i.e. from proposition 3.12-3, < is is irreflexive and transitive. Also
from proposition 3.12-1 we get that there is only one possible <. Let p be an interpretation
for £ and 6,, be the conjunction of all the literals of £ satisfied by p, thus 770(8,,) = {1} and
Th(0,) = Th(p). Let us define also ¢, =6, V'V, , 0, and ¥ = {w"}uem' We consider

the following formula circumscription: f = CIRCF(¥), that is the circumscription of all
the formulas %),,, with all the propositional symbols varying. We prove f = f., remind that
<y denotes the relation naturally associated to this formula circumscription (see definition
5.3 and proposition 5.5).

If p <vand p = @y, then p' < por p' = p, thus g/ < v (< is transitive), and also
v = . Finally v =4, while p & ¢, (< is irreflexive) thus p <y v.

If pAv,then p =, and, as v = @, iff p < v or p=v, we get (v £ ¢, or v = p), in
any case: p Ag V.

2. Tt suffices to remind that, as we are in the finite case, we have 1) and 2) below:

1) A pre-circumscription is a preferential entailment iff it satisfies (CR0) and (DCO0), or
equivalently (RMO0) and (DCO0): see proposition 3.8-3.

2) A preferential entailment satisfies (CUMUOQ) and (PC) iff it may be defined by a pre-
ference relation, which is thus unique, satisfying (sf): see proposition 3.14-1. O

A few bibliographical comments are in order here. To our knowledge at the time of wor-
king, this result was new. Notice however that we knew Theorem 2, one of the fundamental
results in the very interesting pioneer [Sat90]'3. This Theorem 2 constitutes an important
part of proposition 5.24. Indeed, in our terms, it may be stated as: If V(L) is finite, a
pre-circumscription satisfies (CR0), (DCO0), (CUMUO) and (PC) iff it is a preferential en-
tailment associated to a relation satisfying (sf) (i.e. transitive and irreflexive). This is the
best [Sat90] could obtain, as it did not deal with the formula version of circumscriptions,
but only with the circumscription of definition 4.1. Thus Satoh was very close to the full
result, which is, as the easy proof given above shows, a rather natural extension of his result.

At the time of printing, we have discovered that the result given in Theorems 13 and 14
in [Fre98] is roughly equivalent to proposition 5.24-1. Moreover, the proof of Observation
11 in the referenced text, used as a lemma to get this result, is exactly the proof that we
have given above (see also below our comment following our lemma 5.32)! This indicates
probably that the proof is relatively natural. As already written, [Fre98] does not refer at all

13Theorem 4.13 in [Fre93] is a clone of Theorem 2 of [Sat90], not evoked there.
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to circumscription, even if the object of all this paper is obviously formula circumscription'4.
Thus, at least for what concerns propositional circumscription, we could think that this result
still had something new in it, after all...

However, we have discovered, roughly at the same time, that [Cos98| had also this result:
it is its Theorem 7'5, and this time, the subject is clearly sated as “propositional formula
circumscription”. Costello’s proof is close, but slightly different from our (and Freund’s)
proof. Again, no result related to proposition 5.24-2 is made by Costello, who acts also as
if he ignored [Sat90].

Thus, this result was to be discovered now! Who is next?

[Cos98, Theorem 15] is a very interesting extension of this result. Indeed, Theorem 15,
together with a well known result from [KLM90], may be expressed as follows in our terms:

“If V(L) is finite, then any pre-circumscription f satisfying (SRMO0) may be expressed
thanks to a formula circumscription in an extended (finite) language.”

Precisely, it is stated that there exist sets I' and {3} of formulas in this extended language
such that for any set of formulas 7 in £, f(T) = CIRCF((I')(T U B) N L (Def-f), where
CIRCF is defined in the extended language.

We refer the interested reader to [Cos98] for the proof of this result, which extends
significatively the “expressive power of formula circumscription”, as written by Costello. Let
us just write a few indications about Costello’s result. Costello refers to the preferential
models of [KLM90], which are what we have called multi-preferential entailments in [MR9S].
A multi-preferential entailment is defined as a preferential entailment, except that the multi-
preference relation <., is defined in a set W of “copies of models” (see remark 3.7): this
provides a simulation of the predicate calculus preferential entailment as defined in remark
3.9-1, applied to the propositional case. From [KLM90, Theorem 5.18], we know that in
the finite case a pre-circumscription satisfies (CR0) and (CMO) iff it is a multi-preferential
entailment f.  where <,, is irreflexive and transitive on W. From proposition 3.5, we know
that (RM) implies (CT), which in the finite case is equivalent to (RMO) implies (CT0), and
from proposition 3.8-3 we know that (RMO) is equivalent to (CRO), thus (RMO0) +(CMO)
is equivalent to (RMO0) + (CUMUO), which is itself equivalent to (SRMO) from proposition
3.19.

Now, it is easy to show that any pre-circumscription f defined in £ by (Def-f) satisfies
(CRO) (i.e. (RMO)) and (CMO) (i.e., in the presence of (RMO0), (CUMUQ)). Thus, using
Costello’s result reminded above, we get the following equivalence:

“If V(L) is finite, then a pre-circumscription f in £ satisfies (SRMO) iff

14[3at90] is still not evoked, which does not help the reader to make useful connections with the previous
works on the subject.

15 At the time of printing (October 1998), we have only a quasi definitive version, from the web site of the
Artificial Intelligence Journal, http://www.elsevier.nl/locate/artint. Minor modifications, including the
numerotation, may occur in the published paper, which is abstracted in the number of August (1998).
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there exists a finite language £’ containing £ and two sets I and {3} of formulas in £’
such that, for any 7 in £, we have f(7T) = CIRCF(IT)Y(T uUpg)NL (Def-f),
where CIRCF is defined in the extended language £'.”

The reason why we do not put these last two results (delimitated by “[...]”) as “proposi-
tions” is only that, as we have discovered Costello’s result, which is the main part of these
two results, only at the time of printing, we did not have the time to put here in our terms
Costello’s proof (or another proof) for his theorem 15. Thus we must refer the reader to
[Cos98] for part of these proofs and results, while for all our propositions and theorems in
sections 4, 5 and 6, either we provide a proof, or we consider the result as easy or well-known.
Otherwise, these two results would be attributed a number as a “proposition”, because we
think that they are important.

It is interesting to compare this last result to proposition 5.24-2: we have “lost” (DCO)
and (PC). In order to get a better understanding of this result (thus also of Costello’s
result), let us examine informally why we loose these two properties, from the two sides of
the equivalence.

From the side of a pre-circumscription satisfying (CR0) +(CUMUO), i.e. a multi-
preferential entailment f.,  associated to an irreflexive and transitive multi-preference rela-
tion <,,, let us give two simple examples:

Example 5.25 e V(L) ={P}. fm = f«,, where <, is defined by: the two interpreta-
tions @ and {P} have respectively 0 and 1 copy, and <,, has an empty graph. Thus,
<m is irreflexive and transitive. f,, is defined by: f,(7T) = Th(P) for T = Th(P) and
T =Th(T) and fm(7T) = Th(L) for T = Th(L) and 7 = Th(=P). The reader not
familiar with the preferential models of [KLM90| may check directly that f,, satisfies
indeed (CRO) and (CUMUO) (equivalent to (CMO) in the presence of (CR0)). However
(PC) is falsified as f,(—P) = Th(L).

e V(L) = {P,Q}. fm = [z, where <, is defined by: the three inter-
pretations @, {P} and {Q} have one copy, while the fourth interpretation
{P,@} has two copies, and we have {P} =<, {P,Q}i, {Q} <m {P,Q}s,
and nothing else. Thus, <, is irreflexive and transitive. f,, is defined by:
fm(T) = T for T € {Th(L), Th(=P A =Q), Th(P A =Q), Th(—~P A Q), Th(P A
Q), Th(P), Th(Q), Th(=P), Th(=Q), TM(P & -Q), Th(P & Q), Th(=P V
—Q), Th(—=P V Q), Th(P V =Q)}, fm(Th(P Vv Q)) = TK(P & =Q) and fi(T) =
Th(-PV-Q). Again, it is easy to check directly that f,, satisfies (CR0) and (CUMUO).
However (DCO0) is falsified as Th(P & —Q) = fn(PV Q) € fm(P)U fr(Q) =
Th(P A Q).

O

Thus in these two cases, no formula circumscription CIRCF(T) defined in £ can be
such that fn,(7) = CIRCF(T)(T) for any 7 in £. However, and we examine now
the other side of the equivalence, this does not prevent a pre-circumscription f defined
as in (Def-f) to falsify (PC) and (DCO0). Indeed, it may well happen that 7 U 3 is
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inconsistent even if T is consistent, thus (PC) is not necessarily true for f. Also, it
may very easily happen that (CIRCF(I')(T1 U 8) U CIRCF(T')(T2 U B)) N L is not in-
cluded in (CIRCF()(T1 U p) N L) U (CIRCFI)(T2 U B) N L), which explains why
f does not necessarily satisfy (DCO0). For the failure of this inclusion, let us suppose
CIRCF(I)(T1Up) = Th(Q = P) and CIRCF(T')(T. U B) = Th(Q) with V(L) = {P}.
Then (Th(Q = P)UTh(Q))N L = Th(P A Q)N L = Th(P) while Th(P) ¢ (Th(Q =
PnL)UTh@Q)NL)=Th(T)NnL. O

Proposition 5.24 does not extend to the infinite case, a fact also noted in [Fre98] for the
first point of this proposition (see example 6.1 below).

Clearly, various sequences of formulas may be used to define a given formula circum-
scription (we will examine precisely this point in subsections 5.5 and 6.2).

5.5 Two kinds of equivalence between sets of circumscribed formu-
las

As promised above, and before examining the characterization result in infinite case, let us
examine the situation about variations of the set ®. Precisely, we will give conditions under
which two sets of formulas ® and @' give rise to the same formula circumscription. From a
knowledge representation perspective, and also from a formal perspective, two kinds of such
“equivalences” are to be considered.

Definition 5.26 ® and ®’ are two sets of formulas. ® and ®' are c-equivalent, noted
® =, 9, iff CIRCF(®) = CIRCF(®').

® and ' are strongly c-equivalent, noted ® =,. &', iff, for any set ®” of formulas, we
have CIRCF(® U ®") = CIRCF(®' U 9").

Clearly, if ® =,, ®', then ® =, ®'. O

The interest of the strong version, from a knowledge representation perspective, comes from
the fact that often (see various examples in section 7), when another informal rule, or even
only another individual, is added to our knowledge, this corresponds to the addition of some
formula(s) to the circumscribed formulas. If we have only the standard equivalence, we may
loose this equivalence in this operation, while with the strong equivalence, we know that
this equivalence is respected when we add new formula(s).

Notice that for the sake of simplicity, we consider Q = () in these definitions (remind
that CIRCF(®) = CIRCF(®;0,Z)), if this is not the case, lemma 5.10 shows that we may
without problem use the trick given by proposition 5.9 in order to be in this case.

We need a few definitions now.

Definitions 5.27 Let ® = {¢; }icr be a set of formulas:
The A-closure of ® is the set @" = {A ., ¢;/ for any finite J C I}.
The V-closure ®V is defined similarly. T € &, L € ®V (J =0).
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The AV-closure of ® is the set @V = (®")V = (®V)" (the last equality comes from
distributivity).

®” (respectively ¥, or ®"V) is called a set closed for A (respectively for V, or for A and
V). O

Definitions 5.28 Let f be a an application from ¢ to £ (which may be a pre-
circumscription, but not necessarily, see definition 6.34), < be a preference relation and
® be a set of formulas.

1. A formula @ is accessible for f iff there exists a theory T such that ¢ ¢ T and ¢ € f(T).

The set of the formulas inaccessible for f is

Iy=CL— U (f(T)-T)= ﬂ (L~ (f(T)=T)).
Ted Ted

If f is the preferential entailment f_, we note I for Iy.

2. The set of the formulas positive for < is the set Pos(=<) of the formulas ¢ such that,
if =@ and p < v, then v | .
If <=<g of definition 5.3, we note Pos.(®) for the set Pos(<g), and we call this the
set of all the formulas positive, in the extended acception, with respect to ®.

If <==4 of definition 5.3, we note Pos,,(®) for the set Pos(=<s), and we call this the
set of all the formulas positive, in the minimal acception, with respect to ®. We will
see that this “minimal” acception corresponds to the most classical acception. O

A formula is inaccessible for f iff it cannot be obtained as the result of applying f to
some theory not containing this formula already. One role of the inaccessible formulas for
circumscriptions, evoked after example 4.20 above, is developed in [MR98| and reminded in
subsection 6.3 below.

We develop in this text another important role of these inaccessible formulas with respect
to formula circumscription: we will prove that in the finite case, I; is the greatest (for set
inclusion) set ¥ such that f = CIRCF(®) = CIRCF(¥) (proposition 5.33-1b below), and
we will also examine the situation in the infinite case (theorem 6.15 and related results
below).

Notice that, as we expect for a set of “positive formulas”, Pos(<), is always closed for A
and V (see proposition 5.29 below).

Notice also that we will see in section 6 that we need sometimes a third notion of “formulas
positive with respect to ®”, however this third notion concerns formula circumscriptions in
the infinite case, but not the propositional circumscriptions of definition 4.1.

Proposition 5.29 1. For any pre-circumscription, I is closed for A.
2. For any < satisfying (sf), we have Pos(<) = 1.
3. For any <, the set Pos(<) is closed for A and V.
4. & C Posp,(P) C Pose(®).
5. ®"V = Pos,,,(®) O
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Proof 1. Obvious.

Notice that Iy is not necessarily stable for V (see points 2 and 3 just below, and also
remark 6.35-2).

2. ¢ € Pos(<), T € J. We suppose that there exists p € TTUT) — M(p). From (sf),
there exists v € T, (T) such that v = p or v < p. As ¢ is positive, we get v ¢ TN(p).
We have established: if TIU(T) € TM(), then M- (T) € M), thus M(f<(T)) Z M(p).
This means: if ¢ ¢ T, then ¢ ¢ f.(7). This establishes ¢ € Iy = 1.

If now ¢ ¢ Pos(<), there exist u € T — 7M(¢) = M (~y) and v € N(p) such that
v < p. We define T = Th(u) N Th(y), ie TUT) = M) U {u}. As u ¢ NMp), we
get T # Th(p): T C Th(p). As v < u, we get: Mo (T) = M<(p) € NM(p). Thus,
MUF<(T)) €M), ie. ¢ € f<(T), and also ¢ ¢ T: We have established: ¢ is accessible
for fu, o ¢ Ip..

3. Remind that 770(p1 V ¢2) = TM(p1) U M(ps) and M(p1 A @) = M(1) N TM(p2).
The result is then immediate.

4. Obvious.

These two inclusions may well be strict, even in the finite cases. Let us take a simple
example: V(L) is any non empty set and ® = (). Then < is always satisfied and <4 has an
empty graph, thus we have Pos,,(®) = Pos(=2¢) = {T, L} and Pos.(®) = Pos(<¢) = L.
For a more significative example, see subsection 6.2.

5. We have ® C Posy,(®) from 4 and from 3 we get that Pos,,(®) is closed for AV, thus
N C Posy, ().

The difficult point is then Pos,,(®) C "V, that we prove now:

Let us suppose ¢ € Posy,(®) = Pos(<Zs). If ¢ = T or ¢ = L, we know that ¢ is in "V,
Thus, we may suppose that there exist 4 and v such that 4 |= ¢ and v |= =¢. Then, &, € &,
from the definitions of <¢ and of Pos(=¢) (definitions 5.3 and 5.28-2 respectively). This
means that to any such couple (i, v) we may associate one formula O(u,w) € Pp—Py. Then,
for any v such that v E -, {m(ga(u,y))}u,:¢ is an open cover of 711(y), which is closed
thus compact. Thus, there exists a finite subcover. Thus, to any such v, we may associate a
formula ¢,, corresponding to one of these subcovers: we take for ¢, the disjunction of the
all formulas ¢, ) involved in this finite cover. As each ¢, . is in ®, we get ¢, € V. Also
we have T(¢) € M(y,) and v ¢ M(e,), ie. ¢ = @, and v = —p,.

Now, {m(ﬁcp,,)},,,:ﬂp is an open cover of 71(—¢) from which we may extract a finite
subcover to which corresponds a formula 1, a disjunction of formulas —p,. As each ¢, is
in ®V, we have ¢/ € (=(®V))V = =((®¥)") = =(®"V). We have also TM(=p) C NM("), i.e.
- = 4'. But 9 is a disjunction of formulas =, which all satisfy ¢ | ¢,, i.e. ~p, E g,
thus we get ¢’ = —p. Thus we get ¢ = —)’. This means ¢ € ®"V.

We have established: Pos,,(®) C ®"V, thus Pos,,(®) = &"V.

Clearly, we could rewrite this proof in the finite case (V(L£) finite): we could get some
simplifications and some more precisions. We leave this to the interested reader. Anyway,
our proof works a fortiori in the finite case. O
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Let us give already a few significative examples of these kinds of “positive formulas” in
the case of propositional and formula circumscriptions. This will explain the name “posi-
tive formulas” that we have chosen: these sets generalize the traditional notion of formula
“positive in P”. Notice that some results are well known or immediate, but that some other
results are more tricky, and the proof is then postponed later in the text.

Remarks 5.30 1. Let ® be an arbitrary set of formulas. It seems rather natural to call
all the formulas in the set ®"V formulas positive in ®, which justifies our notation
Pos,,(®). And we think that there are also good reasons to call the formulas in the
(generally) greater set Pos.(®) positive in ®, in an extended acception, thus our name
for this set.

In the case of propositional circumscription, we may be more precise.

2. Indeed, let P,Z be some partition of V(L).

The set (P UZ U -Z)" is the set of the formulas positive in P, in the traditional
meaning.

Thus, let (P,Q,Z) be as in definition 4.1. Remind that f. = CIRC(P,Q,Z) =
CIRCF(®) where ® is the set of formulas ® = PUQU -Q, i.e. <=<(p, q, z)==a-

We consider also the relation X==<¢==(p, q, z) (cf definition 5.3 and notations 5.6),

2a. The set (PUQU-QUZU—-Z)"V is the set of the formulas positive in P, in the
traditional meaning.
The set &V = Pos(=X) = Pos,,(®) is is the set of the formulas positive in P,
in the traditional meaning, and made in the vocabulary of P U Q, i.e. without
element of Z.
For the (sometimes) greater set Pos(<) = Pos.(®), see below points 2b and 2c
of these remarks. Again, we hope to have given enough arguments to convince
the reader that there are good reasons to call this set the set of all the formulas
positive in (P,Q,Z), in an extended acception.

Let us give already the results concerning the most significative particular cases
now:

2b. If Z = () or if P is infinite, then Pos(<) = Pos,,(PUQU—Q) = Pos.(PUQU-Q).
This is the set of all the formulas positive in P in the traditional meaning (the
formulas equivalent to a formula without any negative occurrence of an element
of P), and which do not contain any element of Z. The proof is given below in
proposition 6.32-1c.

2c. If P is finite and Z # 0, the set Pos(<) is more complicated. In order to deal
with this case, [MR98] provides a syntactical definition of the notion called there
“formula positive in P with Z varying”, corresponding to the “extended” acception
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called here Pos(<) or Pos.(P U QU —Q). See below proposition 6.32-2 where
these results are reminded.

The set which could be called the set of the “formulas positive in P with Z
varying”, in the “classical” acception is the set noted here Pos(=X) = Pos,, (P U
QuU-Q). Tt is much simpler, being the set of all the formulas positive in P in the
traditional meaning and without any occurrence of an element in Z (formulas in

VPUQ)). O
For the following results, it is convenient to establish two easy lemmas

Lemma 5.31 For any sets of formulas ® and ¥, if ® C ¥ C "V, we have <g==y, thus
a fortiori <g=~w, i.e. CIRCF(®) = CIRCF(¥). O

Proof: We prove <g==pav:

From lemma 5.4-1a, we get that if 4 < v then g <gav v (use p =1 V2 iff p = 1
or g =2 and p = o1 A2 Hf p | 1 and p = o).

Now, from lemma 5.4-4a, we get that if & C ¥, then if g <¢ v then u <3 v, thus in
particular if g <gav v then p <g v.

This gives <g==pAv, as announced.

Thus <p==y iff <grv==<gav. Now, if ® C ¥ C "V we get &V = ¥*V. O

Lemma 5.32 (Independently also in [Fre98| for the first equality.) If V(L) is finite, then
we have CIRCF(®) = CIRCF(Pos.(®)) = CIRCF(1,). O

This result is an immediate consequence of Property 5.6 in [MR98]. Also, we have dis-
covered at the time of printing that the first equality had appeared as Observation 15 in
[Fre98], with exactly the same (natural) proof that the one we had found, and that we give
below.

Proof: Let us use the notations of the proof of proposition 5.24-1: M(y,) = {v €
M/v=porpu=<v}and ¥ = {¢“}uem' We have shown in this proof that if f = f< isa

formula circumscription, i.e. if there exists some set of formulas ® such that f = CTRCF(®),
ie. if <==<go, then f = CIRCF (%), i.e. <¢=<w.

From their definition, it is clear that any 1, is in Pos(<) = Pos.(®). Thus ¥ C Pos.(®).
Also, Pos.(®) is stable for V, thus ¥V C Pos.(®). We prove the converse now Let us
suppose ¢ € Pos.(®). If u = ¢ and p < v then v |= ¢, thus TL(s . Thus
Up=o M) € M(p). Now, for any p we have pu € M(,), thus Wf u|=so{'u} C
Uu‘:@m(wu). Thus we have 71(¢) = Uu‘:q)m(@bu), Le. ¢ =V, z,bu. Thus ¢ € ¥V,
This establishes Pos,(®) C ¥V, thus Pos.(®) = ¥V.

Thus we have ¥ C Pos.(®) C ¥"V. From lemma 5.31 we get CIRCF(¥) =
CIRCF(Pos.(®)), i.e. CIRCF(®) = CIRCF(Po0s.(®)), i.c. <0==pos.(a)-

From corollary 5.7-2 and proposition 5.29-2 we know that Pos.(®) = Pos(<s) = I,
O
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This result does not extend to the infinite case (example 6.18 below), however it extends
to any propositional circumscription CIRC (P, Q,Z) of definition 4.1 (propositions 6.16 and
6.32-4a).

Proposition 5.33 ® and ¥ are sets of formulas.
la. ® =, Viff < = <y and, if & =, U, then Pos.(®) = Pos.(¥).

1b. If V(L) is finite we have the two equivalences: ® =, ¥ iff <p = <y iff Pos.(®) =
Pos (7).

Moreover we have <&==pos, (3)==Pos,. (@) and Pos.(®) is the greatest (for C) set ¥
satisfying ¥ =, &.

2a. & =, VU iff <p = <y iff P0s;,,(P) = P0sy, (V). Also Xo==pnrv, thus <¢=<apav.
2b. Pos,,(®) = &MV is the greatest (for C) set ¥ satisfying ¥ =,. & (cf lemma 5.31).
3. dU{p) = ®iff BU{p) =, ®iff p € V. O

Proof:

la. The first “iff” is an immediate consequence of proposition 3.12 (points 1 and 2) and
corollary 5.7-2.

If <¢ = <w, we get obviously Pos(<e) = Pos(<w), i.e. Pos.(®) = Pos.(¥).

Notice that example 6.18 below shows that the converse is false: in the infinite case, we
may have Pos.(®) = Pos.(¥) and CIRCF(®) # CIRCF(¥), ie <¢ # <w.

1b. The first “iff” comes from 1la. For the second “iff”, clearly if <¢=<g, then Pos(<qe
) = Pos(<w), i.e. Pos.(®) = Pos.(¥).

We suppose now Pos.(®) = Pos.(¥), then from lemma 5.32 we know that <e==<y.

The maximality of Pos.(®) comes from the fact that we have anyway ® C Pos.(®),
thus, if ¥ =, ®, as we have Pos.(¥) = Pos.(®) from 1a, we get ¥ C Pos.(¥) = Pos.(P).

Notice that the result <¢==p,;, (#), and the maximality of Pos.(®), is also an immediate
consequence of property 5.6 in [MR9S].

We will see below that most of the results of this point 1b do not extend to the infinite
case. However, some of these results remain true in some important cases. Let us just say
here that we still get <e=<pos,, (®)==<Pos.(®) for propositional circumscriptions of defini-
tion 4.1 with ® = PUQU—Q (see proposition 6.32-4a below), but not necessarily for infinite
formula circumscriptions (see example 6.5 below).

2a.
First “iff”, “if” part: From lemma 5.4-4a), if <¢==y, then for any set ¥’, we have

Seuw ==guw (thus <euw==<wuw, i-e. f, o = f<gie)-
First “iff”, “only if” part: We suppose X¢#=y. Clearly, if <¢#=<y, then & #Z, ¥ thus
® #,. V. Let us suppose then that we have <g=~<y and <g7#=yg. Thus, there exists g and

INRIA



Propositional circumscriptions 55

v such that we have e.g. p <o v, v ¢ p, and u Ay v, v Ay p. Now, as pu # v, there exists
a formula ¢ such that p = ¢ and v £ ¢. We consider the sets ® U {¢} and ¥ U {p}. We
get, from lemma 5.4-4b, v <guse} - Also, v Awugey i (indeed v Ag p thus v Aguge) p)-
This establishes O U {p} Z. ® U {p}, thus ¥ %, 9.

Second “iff”, “only if” part: Obviously, if <¢==y, then Pos(=2¢) = Pos(Xy), i.e.
P05, (®) = Posy, (9).

Second “iff”, “if” part: it is a consequence of the second sentence of this point 2a,
examined just below. Indeed, let us suppose that we know that <g==gav. Thus if
POS(j@) = Pos(j\p), ie. if @V = TNV, we get fp==prv="=prv==y.

Second sentence: From lemma 5.31 and its proof, we already know that <¢==<gav, thus
<p==<pAV.

2b. From proposition 5.29-5 we know that Pos,,(®) = ®"V.
Now, if ¥ =,. ® we know from 2a above that we have ¥V = ®*V. As ¥ C ¥V, we get
¥ C "V, which establishes the maximality (for C) of the set ®"V.

3. dU{p} =, iff U {p} =, & iff p € V.

First “iff”: Let us suppose now that we have ® U {¢} = ®, i.e. <pu{p}==s, i.e., from
lemma 5.4-4a, that p <,y v whenever u <o v, and also that we have gy (,}#=e. Then,
from lemma 5.4-4b, there must exist some p,v such that p <o v, v 2o p, p A} v,
v A¢e} M, which is impossible from lemma 5.4-2. This means that if ® U {¢} =, ®, then we
must have also <gu{,}==9, thus ® U {¢} =sc ®.

Second “iff”: As we have p € @V iff (BU{p})"Y = ®"V, point 2a above gives the result.
O

We address now various problems which are technically more complicated than the pre-
ceding ones.

6 More technical results about circumscriptions

6.1 Characterization of formula circumscription (infinite case)

Remind that the finite case has already been solved above (see proposition 5.24). The infinite
case is much more complicated and needs yet a few more technical definitions and results,
which may be skipped by a reader not too mathematically oriented...

Firstly, here is an example showing that a naive extension to the infinite case of the first
point of proposition 5.24 does not hold. Notice that the second point does not extend so
easily either: we need more that full (CR), even together with full (RM), (DC), (CUMU) and
(PC), to be sure that we have a formula circumscription (see [MR99] for a counter-example).

Example 6.1 V(L) = {Pi},c N- vi = {Po,P1,---,Pi} (i€ N),v=V(L), p={P1}. We
define the preference relation < by p < v, for any n € IN, and otherwise p’ A v'.
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Clearly, < satisfies (sf) and its opposite > also. However, it cannot exist any set ® of
formulas such that CTIRCF(®) = fs. We will prove rigorously this point below, which
comes from the fact that we have lim;_ », v; = v, but that we require g A v and v £ v; (see
example 6.22). O

At the time of printing, we have discovered example 8 in [Fre98| and example 1 in [Cos9§],
which are significantly more intricate than example 6.1, and that we will examine below (see
example 6.21). These two examples are in fact the same example. [Fre98] does not evoke cir-
cumscription, but it proves in an ad-hoc way that it is not a fp (which is equivalent to prove
that it is not a formula circumscription from proposition 5.14). [Cos98] deals with formula
circumscription, but it is not concerned in proving whether it is a formula circumscription
or not: all it does is proving that some (arbitrarily chosen?) reflexive relation associated to
this preferential entailment cannot be a <¢. Thus, in some way, our example still remains
the first one about formula circumscription...

We need a few more technical definitions now.

Definitions 6.2 < is some preference relation and ® is some set of formulas.

1. For any p, we define the sets of interpretations M (u) = {v / p < v} (set of successors
of u), my(p) = {v / v < pu} (set of predecessors of p), C<x(p) = M, Um, (set of
elements comparable with p).

2. We note Mg, mge and Cg respectively for M., m<, and C<, (<¢ as in definition
5.3).

3. We define the equivalence relation p =< v iff M(p) = M4(v) and m<(p) = m<(v).
Again, we note =4 for =_,.
Remind (definition 5.3) that we note p ~g v iff &, = ®,.

4. If = is some equivalence relation among 771, we note =’ [u] for the equivalence class
of p. O

Remarks 6.3 1. Obviously we have that y ~¢ v implies p =4 v, while the converse is
generally false.

2. ~g[p] is closed in 77, and more precisely ~g [u] = TN(®, U {=p / ¢ € & — Th()}).

The proof is easy: remind from definition 5.3, that ®, = &, iff v = ®, and v [ ¢ for
any p € & — &, = ® —Th(p).

Notice that {v / u <& v} is closed also, being equal to T1U(®,,).

However, the set =4 [p] is not necessarily closed, i.e. is not necessarily the set of all
the models of some theory (see examples 6.5 and 6.24 below). O

Lemma 6.4 @ is a set of formulas. If &, C ®,, then u <p v or p =¢ v. O
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Proof: By the definitions of <, <o and ~¢ (definition 5.3) we have ®, C &, iff 4 <o v iff
(n <o v or p ~¢ v). Then, use remark 6.3-1. O

Here is an example showing that, contrarily to the finite case, we cannot always take
the set Pos(<) = I, as our set ®, even if f is a formula circumscription (cf points 1 of
proposition 5.33). This shows that we must find another set in the infinite case.

Example 6.5 V(L) = {P;},c n- Vi = {Po,P1,---, P} (i€ N),v=V(L), p={P1}. We
define the preference relation < by v < v, and p < v, for any n € N, and otherwise p' A v'.
Notice that, as in example 6.1, we have lim;_, ., v; = v, but we require p A v.

< is obviously (sf) and its opposite > also. f< is a formula circumscription, indeed
f<=CIRCF(®) with & = {p € Pos(<) / pE ¢ iff v |= ¢}.

We have here M_(p) = M4 (v) = {vi};c y and m<(p) = mo(v) =0, thus p = v.

If p € (Pos(<))u, then M~ (u) = M<(v) € M) thus v € M(y). Thus (Pos(<)), C
(Pos(<))v- As we have Py € Pos(<), v |= Py and p [E Py, we get (Pos(<)), C (Pos(<)),
and pt <pog(<) V. This shows <#=<p,s(<), i.e. CIRCF(Pos(<)) # f< = CIRCF(®).

Thus, in this example, Pos.(®) = Pos(<) cannot be taken as set of formulas to be
circumscribed: CIRCF(®) # CIRCF(Pos.(®)), which shows that we need a more refined
definition in the infinite case: see definition 6.10 below.

Notice also that the set = [v1] = {v;};c v does not contain v, thus it is not a closed set
(cf the last remark 6.3-2). O

Lemma 6.6 & and ¥ are sets of formulas. If ® C ¥ C Pos.(®), and if ¥, C ¥,, then
p<evorpu=ev. O

Proof: We suppose ® C ¥ C Pos.(®). If ¥, C ¥, then a fortiori &, C ®,. If &, C ®,,
we get 4 <o v and if &, = ®,, we get p ~¢ v thus p=¢ v. O

We must introduce now two (rather technical but essential) definitions, < and Pos,(<):

Definition 6.7 < being a preference relation, we define the preference relation < by:

=y iff for any formulas ¢, such that p = ¢ and v = 9,
H there exist p' € MM () and v/ € M(y) such that p' < .0

Remarks 6.8 1. If y < v, then g < v (choose ' = p and v/ = v in the definition of <).

2. If V(L) is enumerable, we have (proof straightforward):

p < v iff there exist two sequences (p;);c v and (v;);c v such that lim;_.. pu; =
W, lim; . v; = v and, for any i € N, p; < v;.

3. If V(L) is finite, we have X =< (immediate consequence of 2).

See more about the finite case in the comments following theorem 6.15 below. O
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Proposition 6.9 < is a preference relation, ® is a set of formulas.
1. If p < v then (Pos(<)), C (Pos(<))..
2. If p <3 vthen p <g vor p=¢ (v). O

Proof: If 4 < v, then, for any ¢ € (Pos(<)), C Th(u), we know that for any ¢ € Th(v) there
exist i € TM(p) and v’ € N(v)) such that ' < v'. As ¢ € Pos(=<), we get v/ € T (y), thus
v € TC(M(p)) — indeed, as the set of all the 711(¢) for all the ¢/’ € £ is an open base of
neighbourhood, we have shown that any open set containing v has a non empty intersection
with 770(¢) — and we know that we have T'C(M(¢)) = M(p). Thus ¢ € (Pos(<)),.

The result about the case of a formula circumscription, i.e. <=<g, thus Pos(<) =
Pos.(®), follows immediately, using lemma 6.6. O

Definition 6.10 < being a preference relation, we define the set of the formulas positive
for <, in the restricted acception, by:

Pos, (<) = {p € Pos(<) / for any p,v, if u<v, p Avand v E ¢, then u = ¢}.
If ® is a set of formulas, then we note Pos,(®) for the set Pos,(<3). O

Proposition 6.11 1. Pos,(<) C Pos(<). Moreover, if 4 < v then (Pos,(<)), C
(Posr(=<))w-

2. If ® and ¥ are sets of formulas such that ® C ¥ C Pos.(®), then ® =, ¥ iff, for
any p,v, if p =¢ v then ¥, ¢ ¥, (strict inclusion, notice that by symmetry we could
clearly add “and ¥, ¢ ¥,”). O

Proof: 1. Pos,(<) C Pos(<) is clear from definition 6.10. Now, from the definition of
®,, (definition 5.3) and from proposition 6.9-1, we get then (Pos, (<)), C (Posy(<))y.

2. Let us suppose ® C ¥ C Pos.(®) and also p <4 v, then &, C &, thus ¥, — ¥, # (.
Moreover we have ¥ C Pos.(®) thus ¥, C ¥,, which establishes ¥, C ¥, i.e. p <y v.

If p <y v, ie. ¥, C ¥,, then from lemma 6.6 u <o v or p =g v. Also, we have,
from the preceding result, <y = <o iff 4 <o v whenever ¥, C ¥,, which establishes the
equivalence. O

Here is an interesting result, which was not completely obvious from the definitions.

Proposition 6.12 1. For any set of formulas ®, we have ® C Pos,(®).
Pos,.(®) is stable for A and V. Thus: Pos,,(®) C Pos,(®) C Pos.(P).

2. If V(L) is finite, then Pos,(<) = Pos(=), thus Pos,(®) = Pos.(®). O
Proof: 1. Let us suppose ¢ € ®,u 43 v,v € M(p) and p X v. Then, (Pos.(®)), C
a

(Pos.(®)), thus, as & C Pos.(®), &, C ®,. If u ¢ 7M(p) then &, C &, i.e. p <a v,
contradiction. Thus, ¢ € Pos,(®).

INRIA



Propositional circumscriptions 59

The stability for A and V of the set Pos,(®), and more generally for any set Pos, (<),
is an easy consequence of the definition of Pos,(<). The two inclusions follow: remind that
P05, (®) = "V and Pos.(®) = Pos(<a).

2. If V(L) is finite, then the definitions 6.7 and 6.10 may be simplified: p < v iff 4 < v,
thus Pos,(<) = Pos(<). Taking <=<g gives Pos,(®) = Pos(<3) = Pos.(®). O

We are close to our goal now, we need just to introduce one property of the preference
relation.

Definition 6.13 Let < be a preference relation. We say that < satisfies the property of
formula circumseription ((fc) for short), if the following condition holds:
(fc): If (Pos,(=<))u C (Posy(<))y, then p <vor p=,v. O

Lemma 6.14 If an irreflexive and antisymmetrical preference relation satisfies (fc), then it
is transitive. O

Proof: Let us suppose that < is irreflexive, antisymmetrical, and satisfies (fc). Let us suppose
also pg < p2 and pgy < pz. Then gy < po and pe < pg from remark 6.8-1, thus (Pos,(<
Nur € (Posy (<)), and (Posp(<))u, € (Posp(=<)),, from proposition 6.11-1. Thus (Pos,(<
Dus € (Posp(<))u, and, from (fc), we get pq < pg or py =< ps. Now, if gy =< ps3, we get
pa < p1 (from ps < p3), which contradicts either antisymmetry (if gy # ps) or irreflexivity
(if p1 = po). Thus, we must have py < p3. O

Theorem 6.15 A preferential entailment f- is a formula circumscription iff the preference
relation < is irreflexive, antisymmetrical and satisfies (fc).

A pre-circumscription f is a formula circumscription iff f = f., and <j is antisymme-
trical and satisfies (fc). O

Remind from lemma 6.14 that transitivity is a consequence of these conditions. Moreover,
we get from this theorem, together with corollary 5.7 (2 and 3), that if < is irreflexive,
antisymmetrical and satisfies (fc), then < and its opposite satisfy (sf), and also that the
opposite of < satisfies (fc)) (remind that from irreflexivity we are in a case of uniqueness of
the preference relation < associated to f-).

Before giving the proof of this theorem, let us examine the (easy) finite case.

We suppose V(L) finite here, thus < =< and Pos,(<) = Pos(<) (see remark 6.8-3 and
proposition 6.12-2).

(fc) in this case is thus: if (Pos(<)), C (Pos(<)),, then p < v or p =< v. From
lemma 6.14, we know that < is transitive. Thus < satisfies (sf) and its opposite = also from
proposition 3.12-3.

Conversely, let us suppose that < is (sf), i.e. that it is irreflexive and transitive. Then <
is clearly antisymmetrical. From lemma 5.32, we know that <=<p,44) thus from lemma
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6.4 we get that if (Pos(<)), C (Pos(<))v, then g < v or g = v, which is (fc) in the finite
case.

Thus, if V(L) is finite, < satisfies irreflexivity, antisymmetry and (fc) iff < is transitive
and irreflexive, i.e. iff < satisfies (sf).

Proof of theorem 6.15:

First sentence:

If f. =CIRCF(®), then <=<g¢ and < is irreflexive and transitive, thus antisymmetri-
cal. If we have (Pos,(<)), C (Pos;(<)),, as we know ® C Pos,(®) from proposition 6.12,
we get , C ®,,1i.e. p Z¢ v. If we have also v <4 p, then we have y ~¢ v thus p = v
from the first remark 6.3. This establishes (fc).

Conversely, let us suppose that < is irreflexive and antisymmetrical and satisfies (fc).
We want to prove that f is a formula circumscription, i.e. that there exists some set ¢ of
formulas such that p < v iff &, C ®,. We will prove that we may take the set Pos,(<) as
our set .

If p < v, then (Pos(<)), C (Pos(<)), thus (see the proof of proposition 6.11-1)
(Posy (<)) C (Posp(=<))y. If (Posy(<)), = (Posy(=<))y, then from (fc) we get v < p
orv=_pu If v=_ pu,as wehave u < v anyway, be get u < p, a contradiction with irreflexi-
vity. Otherwise we have v < p, which, as we have p < v anyway, contradicts antisymmetry.
Thus we must have (Pos, (<)), C (Posy(<))w.

Conversely, let us suppose that (Pos, (<)), C (Pos,(<)), and also y A v. Then, there
exists ¢ € (Pos,(=)), — (Posy(<))u, also, from (fc), we get p = v.

We prove now that M, must be a closed set: Otherwise, there exists v’ € TC(M,)—M,.

From v € TC(M,) we get p < v', and also, using p =< v, v < V. Thus, from
proposition 6.11-1, (Pos. (<)), C (P0sy(<))w- As ¢ € (P05, (<)), C (Posr(<)).,, we get
v' € M) and, from definition 6.10, we get 1 € TL(¢), a contradiction with ¢ ¢ (Pos,(<)),
and ¢ € (Pos,(<)), C Pos,(<).

Now, let us consider some ' € M,. We get v < v/ thus there exists ¢}, € (Pos,(=<)), —
(Posy(<)),: indeed, we have shown above that if y1 < v, then (Pos,(<)), C (Pos,(<)),.
Let us consider the set {T1(¢',) /v € M,}. This set is an open cover of the compact M,
(remind that p = v thus M, = M, and we have shown that M, is closed, thus compact
in this topology) thus there exists a finite subcover. As Pos,(<) is stable for V, there exists
a formula ¢, € Pos,(<) such that M, C M(yp,) and v ¢ TM(yp,): indeed, there exists a
finite set of formulas {1;}icr such that M, C UieIm(q/zi) and, for any i € I, ¥; € Pos.(<)
and v ¢ 77(¢;); we may choose ¢, = Vier ¥i- Let ¢’ be the formula ¢ A g, and B be the
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subset of 71: B = ( U my) — MY ).
vellle)

We prove now that this set B is closed: Otherwise, there exists ¢’ € TC(B) — B
and we get u' ¢ TN(p): indeed, B C MM(~¢) thus TC(B) C TC(M(~p)) = M(-yp).
Let v/ be in M(y'). If p' < v/, then (Pos,(<))y C (Pos.(<)), (proposition 6.11-1),
thus by (f¢), g/ < v/ or p/ =4 V', thus, as p' ¢ B, y' =< v'. As v' € T(p) and
@ € Pos,(<), we get i/ € 1M(yp), a contradiction. Thus x’' F ¢/, which means that there
exist ¢, ¢, such that y' € ‘m(%,), v € M, and, if u”" € m(w;,), v € M), then
' £ V" MM(¢') is compact, thus there exists a formula ¢ such that p' € M(¢) and, if
e M), v" € M), then " £ v". As our v”, we may take v/ here. We have shown
that, for any v/ € M(y'), and any "’ € NM(+)'), we have " £ v/, thus, from the definition
of B, we have proved 71(1)') N B = § a contradiction with x4’ € TC(B). B is then closed,
thus compact.

If 4 € B, then (Pos, (<)), Z (Posy(<)), . Indeed, otherwise we would get p < p’ or
p = ' from (fc), for any v/ € M(p') such that g’ < v’ we would get p < /' (remind that
from lemma 6.14, < is transitive), thus v’ € M,,, which contradicts M) N M, =0, an
immediate consequence of the definition of ¢'. Thus, there exists a formula ¢, € (Pos,(<
Du — (Posy(=<)). From the compactness of B, there exists ¢ € (Posy(<)), such that
B C MM(—1)) (same argument as above, for the existence of ¢,,).

We define 9 = ¢ A —¢' and we show now that 1’ € Pos,(<). If u' € 7(y') and
p =< i, then p" € TM(3) because ) € Pos,(<) C Pos(<). If u" € My'), as p' € myn
(because p/ < p'") and p' ¢ B (because i’ € T(1) and B C M), we get i’ € M)
from the definition of B. Thus u' € M(p,) because p' € M(~¢'). Thus, ¢, € Pos(<),
i € MYyp,), which contradicts u” € T(y'). Thus, we get p” € T(+)') which proves
' € Pos(<).

Let us suppose now that ¢/ < v/, p/ £ v/, and v/ € M(y'). Then v/ € M(y)) and,
as 1 € Pos,(<), p' € TM@). If u' ¢ NM(Y'), then p' € M') thus i’ € M) and,
as ¢ € Pos,(<) C Pos(<), V' € MAp). As v ¢ N(y'), we get v/ € M(p,) and, as
¢, € Pos.(<), i’ € NM(p,), which contradicts u' € TN(¢").

Thus we get ¢’ € (Pos,(<)), — (Posr(<))v, which contradicts our initial hypothesis.

We have established p < v iff (Pos, (<)), C (Pos;(<))., i.e. (see definition 5.3 and
proposition 5.5) fx = CIRCF(Pos,(<)).

Second sentence:

Use the first sentence, together with proposition 3.16, reminding that any formula cir-
cumscription satisfies (PC) and, being a preferential entailment, satisfies also (DCC), (P').

The interest of this last formulation is that as anything here is defined in terms of f, if
we have a pre-circumscription described by the value of f(7) for any 7 € ¢/, we may find
whether it is a formula circumscription or not. Notice that we get also the following result:
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A pre-circumscription f is a formula circumscription iff it satisfies (DCC), (P'), (PC),
and the preference relation <y is antisymmetrical and satisfies (fc).

In order to use this result, or the second sentence of the proposition, it may also be useful
to remind propositions 3.8 (last sentence of point 2, and point 3), 3.14, and 3.16. O

Notice that theorem 6.15 solves a problem stated as open in [Mak94]. In the remarks
following his Observation 3.4.11, Makinson evokes this unsolved problem and states that,
from proposition 5.19 (his Observation 3.3.4) we know that sometimes an infinite set ® may
be necessary. It is hard to see how the author came to this conclusion as no counter-example
to (RM) for a formula circumscription with an infinite ® is evoked in [Mak94] (see example
6.26 below). Anyway, this seems to indicate that Makinson was conscious that the finite
case was easy, but that the infinite case could be more difficult. In fact, as we have seen
above, the main difficulty does not come from the possible (and not too unexpected) infinity
of ®, but rather from the fact that there exist formula circumscriptions f = f- for which
the set Pos(<) = Iy of their inaccessible formulas cannot be taken as the set of the formulas
to be circumscribed (see example 6.5 completed in example 6.23, and remark 6.17, see also
example 6.28 below for a comment about a “difficult case”). Ordinary classical propositio-
nal circumscription CIRC(P,Q, Z) falsifies (RM) as soon as P U Q is infinite (and P is
not empty), while in this case we may well choose (in place of the even more obvious set
PUQU—Q) the set of the inaccessible formulas as our set of formulas to circumscribe, and
we know also a syntactical description of this set (see subsection 6.2 below): this fact shows
that the falsification of (RM) is not a good indicator of the complexity of the problem.

Proposition 6.16 Let < be a preference relation.
f< is a formula circumscription iff f2 = CIRCF(Pos,(<)).
Moreover, in this case, Pos, (<) is the greatest set (for C) ® such that CIRCF(®) = f.
If @ is some set of formulas, for any set of formulas ¥, we have
CIRCF(®) = CIRCF(9) iff Pos,(®) = Pos,.(¥). O

Proof: We have seen in the proof of theorem 6.15 that if f, = CIRCF(®), then we
have CIRCF(®) = CIRCF(Pos.(<)). Moreover, we know from proposition 6.12-1 that
Pos,.(®) = Pos,(<e) is the greatest possible set ¥ (for C) such that CIRCF(®) =
CIRCF(%) (ie. ® =, 7).

The last result follows easily. O

Remark 6.17 We do not have the same equivalence with Pos(<) instead of Pos,(<):
Obviously, if fo = f< with < and <’ irreflexive (which is always the case for formula
circumscriptions) we have Pos(<) = Pos(<’).
However, we may have two different formula circumscriptions f, = CIRCF(®) and
f<r = CIRCF(®') such that Pos(<) = Pos(=<') (i.e. Pos¢(®) = Pos.(®')). O

To establish this result, which completes (negatively) lemma 5.32 and proposition 5.33-1a
above, we need only to give the following example:
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Example 6.18 We consider the following interpretations: u,v, p;(i € IN) with lim;_, o p; =
 and no other limits with respect to these interpretations.

We counsider the following two preference relations:

<: ' <V iff (¢ = por ' =v) and there exists i € IN such that v/ = p;.

<"tV iff e <V oor (@ =vand v = p).

We get Pos(<) = Pos(<') because if ¢ € Pos(<) and v = ¢ then p, = ¢ for any
n € N thus p = .

Now, < and <’ are irreflexive and different, thus f4 # f.

It remains to show that f- and f-/ are two formula circumscriptions.

Indeed, it is easy to show that Pos,(=<') = Pos(<') is a “good” set of formulas for f.:
CIRCF(Pos(<') = fx.

Now, it is also easy to show (we leave the details to the reader) that Pos,(<) is a “good”
set for f, i.e. fx = CIRCF(Pos,(<)).

Pos. (<) ={p € Pos(<) | pE ¢ iff v = ¢} # Pos(<).

Thus, this is a case when CIRCF(®) # CIRCF(Pos.(®)) (see lemma 5.32). Indeed,
from proposition 6.16 we know that Pos,(<) is the greatest set ¥ such that /- = CIRCF(¥)
and we have just shown that Pos.(<) # Pos(<), which, as we have Pos,(<) C Pos(<)
anyway, is equivalent to Pos,(<) C Pos(<), i.e., with ® = Pos,(<), Pos,.(®) C Pos.(®).
From propositions 6.12-1 and 6.16, we get then CIRCF(Pos.(®)) # CIRCF(®). O

At the time of printing we have discovered Theorem 8 [Cos98] (see note 15 page 47),
which is presented as another “characterization of what minimizing infinite sets of formulas
can capture”, which means that this is presented as a characterization result of propositional
formula circumscription. We argue now against this presentation of the result (not against
the result itself, which is correct and may have some interest). In our terms, this result is
very similar to (and simpler than) proposition 5.29-5:

Proposition 6.19 As in [MR98], let us call a set E of interpretations finishing for a prefe-
rence relation < iff v € E whenever 4 € E and p < v.

1. For any set of formulas @, a set F is finishing for <4 iff it is an intersection of unions
of sets 711(yp) where each ¢ is in ®.

2. [Cos98, Theorem 8] A preference relation < which is reflexive and transitive is equal
to =g for some set of formulas & iff any set finishing for < can be obtained as an
intersection of unions of sets 771(¢), where each ¢ is in Pos(=<). O

[Cos98] gives a proof, to which we refer the interested reader. We provide here our own proof
(which is not so different by the way), which takes its inspiration in our proof of proposition
5.29-5, but is much simpler as we allow infinite unions and intersections here, so we do not
need to use compactness. We prefer to give firstly another related result in point 1, which
explains what happens, making clear the connection between Costello’s result (our point 2)
and proposition 5.29-5 (a direct proof of point 2 alone would clearly be shorter).

Proof:
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1. Tt is obvious that any union and any intersection of finishing sets is a finishing set.
From definition 5.28 we see that a formula ¢ is in Pos(=<) iff 711(¢) is finishing for <. Thus,
as any ¢ € ® is in Pos(=<4) from proposition 5.29-4, we get that any intersection of unions
of sets 711(p) where all the ¢’s are in & is a set finishing for <g.

We prove now the other way:

Let us suppose E is finishing for <¢. If E = @ or E = 711, we know that E is the union,
or the intersection, of 0 elements. Thus, we may suppose that there exist g and v such
that p € E and v ¢ E. Then, &, ¢ ®, from the definitions of < and of finishing sets.
This means that to any such couple (u,) we may associate one formula ¢, ,) € &, — ®,.
Then, for any v such that v ¢ E, we have: E C | ,cp m(go(u,,,)) (1) , where any ¢, .)
isin ®, C ® (2), and, as p(,.) ¢ ®u, we get v ¢ m(cp(u,,,)), thus v ¢ UueEm(go(u,,,))
(3). From (1) we get E C (,¢p UueEm(cp(u’,,)). From (3) we get, for any v' ¢ E,

VI ¢ nygE Up,eE' m(so(,u,ll))
Thus we have E =, ¢p U, cr M (), where, from (2), any ¢, ,) is in &.

2. Clearly, for any set of formulas ®, the set of all the intersections of unions of m(go),
where ¢ is in ® is the set of all the intersections of unions of 711(), where ¢ is in Pos(<s
) — @/\V‘

If X==¢, as we know <e==pos(<,) from proposition 5.33-2a, we get from point 1 that
the sets finishing for < are all the intersections of unions of 771(¢), where ¢ is in Pos(<s).

Conversely, if < is a preference relation such that there exists no set ¢ of formulas such
that the sets finishing for < are exactly all the intersections of unions of sets 711(¢) where
each ¢ is in @, then a fortiori, for & = Pos(=<), we have that the sets finishing for < do not
coincide with all the intersections of unions of sets 71(¢) where each ¢ is in Pos(=<). Thus,
from point 1, we get that < cannot be equal to any <y. O

We have shown how this result follows from the definition of <. We will show now
that this result does not help to determine whether a given pre-circumscription f, or even a
preferential entailment f~, is or is not a formula circumscription. Indeed, when we are given
a pre-circumscription f, or a preferential entailment associated to an irreflexive preference
relation <, we are not given a reflexive preference relation < such that f = f. where <’ is
defined by p <’ v iff p < v and v A pu. Using proposition 3.16, together with the various
characterization results given in this text, in propositions 3.8 (last sentence of point 2, and
point 3) and 3.14, and also with the results known for formula circumscriptions, if we are
given a pre-circumscription f which is candidate to be a formula circumscription, it is easy
to define its associated irreflexive preference relation <y. Then, using theorem 6.15, or
proposition 6.16, we may (even if it is not always an easy task) determine whether it is a
formula circumscription or not. While from proposition 6.19, we do not see how to do this:
to any irreflexive preference relation < may be associated a fairly great number (generally
non enumerable as soon as V(L) is infinite, and otherwise proposition 5.24 is enough) of
reflexive preference relations <, which should all be tested by this not too friendly property
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of the finishing sets. It is not better (and possibly worse) than trying all the sets of formulas
® and checking directly whether f = CIRCF(®) — i.e checking whether p <y v iff &, C @,
— or not. We provide below various examples in which theorem 6.15 or proposition 6.16
allow to determine whether a given f. is a formula circumscription or not, while we do not
see any way of using proposition 6.19 for this purpose: see examples 6.20, 6.21, 6.24, 6.25
and 6.26. [Cos98] does not provide any example of the use of theorem 8 in order to determine
whether a given pre-circumscription or preferential entailment is a formula circumscription
or not.

Notice that we could also use any alternative definition given in this text such as in
proposition 5.14. But we would not call such results “characterization results”. And, for
example, we do not see how a discussion such as the one we had just above about a comment
made by Makinson could be conducted from proposition 6.19.

Let us begin by a simple example in order to justify above comments.

Example 6.20 V(L) is infinite, f is the identity, thus f = f- where < has an empty graph.

If we want to use proposition 6.19, we must consider all the reflexive and transitive pre-
ference relations < such that g < v iff g < v and v £ p. As 770 is not enumerable, the set
of all these relations =< is not enumerable: it includes (among many other possibilities) all
the relations < defined by: po < vy for two different given interpretations po and vg, p < p
for any p, and nothing else. And, for each of these relations <, we should test the rather
hard to test condition given in proposition 6.19.

This is an example where it is easier to check directly all the sets of formulas ® and to
wait one such that CIRCF(®) = f. If we are lucky, we begin by a good one (indeed, ) and
L are among the good ones!), but even otherwise, this is not more complicated than using
proposition 6.19.

With theorem 6.15 or here indifferently with proposition 6.16, all we have to do is to
show that < =< (obvious), thus Pos,(<) = Pos(<), and Pos(<) = L (obvious also). Then,
if we use theorem 6.15, we only need to check that £, C L, implies p < v or p =< v, which
is immediate: £, = Th(yp), thus £, C L, implies g = v, thus g =4 v. If we want to
use proposition 6.16 instead of the theorem, it is not more complicated: we check whether
f = CIRCF(L) or not, obviously the answer is yes, as CIRCF(L) is the identity in /. O

Let us give now an example evoked above, coming from the recent literature:

Example 6.21 (cf example 8 in [Fre98] and example 1 in [Cos98|). V(L) = {P;};c N- S is
the subset of 711 containing all the interpretations v; = {P;}, for any i € N. [Fre98] (once
translated in terms of formula circumscription) defines < by p < v iff p ¢ S and v € S.
[Cos98] does not evoke < and defines only the reflexive relation <X by p < v iff 4 < v or
p=xv,ie iff (¢ SandveS)or(p¢ Sandv ¢ S)or (ue€ Sandv €S). Then clearly
we have p < v iff p 2 v and v & p.
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As Freund’s proof is rather intricate and is completely ad-hoc, let us give our own proof.
Any interpretation v; = {P;} is the limit of a sequence of interpretations not in S (e.g.
{P;} = lim,—w{P;, P,}). Also the interpretation po = @ is not in S, but it is the limit
of interpretations of S: pg = lim;_. o v;). Thus, from remark 6.8-2 we get v; < po. From
proposition 6.11-1 we get (Pos,(<)),; € (Posy(<))u,- However, we have neither v; < po
(by the definition of <) nor p; =< po (m,, = M — S while m,,, = §). < falsifies (fc), thus
f< is not a formula circumscription from theorem 6.15.

[Cos98] is not concerned by the fact of knowing whether f- is a formula circumscription
or not, however it shows, using its theorem 8 (proposition 6.19-2) that < as it has defined it
does not correspond to any <. As clearly we could have chosen many other reflexive and
transitive relations <’ such that u < v iff p <’ v and v A’ p, this is far from proving that
f< is not a formula circumscription.

For the interested reader let us see more precisely what happens in this example. < is
ranked with 2 ranks: we may define the rank (see proposition 3.21) by r(u) =0iff p ¢ S
and r(u) = 1 iff g € S. Thus f = f satisfies (RatM1) and (DR), also < satisfies (sf)
(finite number or ranks) thus f satisfies (CUMU) and (PC). We have TC(S) = S U {uo}
(indeed, po is the only element not in S which may be obtained as limit of elements in .S) and
TC(M—S) = M (see above). Thus from remark 6.8-2, we get p < p' iff ' € SU{po}. Thus,
(pu=p and p Av)iff (p€ Sand ' €85) or (' = po)). Pos(<) =Th(S)U{L} (indeed,
no formula except T is satisfied by all the interpretations not in S) and Pos,(<) = {T, L}.
As CIRCF({T, L}) = identity we get that f cannot be a formula circumscription from
proposition 6.16. O

Let us re-examine three already given examples, in the light of these new definitions and
results:

Example 6.22 (example 6.1 continued):

In example 6.1, we get clearly u < v. Also, if ¢ € Pos,(<)),, then ¢ € Pos(<) and
p € TM(p), thus M, C NM(y), thus, as v is limit of the v,’s, v € TN(¢), thus ¢ € Pos,(<)),:
this establishes (Pos, (<)), C (Pos;(<))..

However, we have neither g < v nor g =< v (indeed M, = 0§ # M,,). Thus < falsifies
(fc). O

Example 6.23 (example 6.5 continued):
In example 6.5, we have 4 < v and also Pos, (<) = ® = {p € Pos(<) [ p = ¢ iff v = ¢}.
O

Example 6.24 V(L) is infinite, g1, g2 and p3 are three distinct interpretations for £, < is
defined by: p < v iff g = p1 and v = po.

It is immediate to see that < =<, Pos(<) = Pos,(<) and that < is irreflexive, antisym-
metrical and it is easy to see that < satisfies (fc). Thus f = f< is a formula circumscription
from theorem 6.15, and, from proposition 6.16 we may take Pos(<) as our set ® of circum-
scribed formulas: f = CIRCF(Pos(<)).
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Now, = [us] = T — {1, s} is not a closed set.

This example shows that, as announced in remark 6.3-2, the set =g [] is not necessarily
closed.

Notice that example 2.2 1 in [Sch97] (appearing already as examples 1.3-1 and 1.9-1
in [Sch92|) is similar. Schlechta gives it as an example of a preferential entailment fal-
sifying (RM) and where < falsifies (cl). Indeed, it is clear that 0. (T) = MM — {us},
thus NMYF(T)) = TCM(T)) = P: < falsifies (cl). From proposition 3.14-1 we
get that f. must falsify (RM). This is easy to check directly (see also [Sch92, Sch97]):
T =ThT),T" =Th({p1,pu2}). Then f(T) =T and f(T") = Th(u1). Thus, T C T" while
F(T") =Th(p) € F(T)UT" =T" = Th({p, p2}) = Th(m) N Th(ps): [ falsifies (RM).
Apparently Schlechta was unaware of the fact that his example is an example of formula
circumscription, thus that it is yet another example of a formula circumscription falsifying
(RM). Moreover, it is an “easy” formula circumscription, as <= < thus Pos, (<) = Pos(<).

As a last comment about this example, we show now that even in such an “easy case” of
formula circumscription, we cannot always choose for our relation <¢ the reflexive relation
=< defined by

p2viff (u<vorp=.v) (Def-x).

This illustrates one reason of the difficulty of using proposition 6.19-2 as a characteri-
zation result of formula circumscriptions. Indeed, this choice of < seems the most natural
candidate for a reflexive relation. By the way, this is the proposal made in [Cos98, example
1], which is a (rather particular) case where it works. Thus, the present example shows that
it is not clear which reflexive relation must be considered in order to check the condition of
proposition 6.19-2.

So, let us define < as in (Def-<), in the case of the present example. We have already
seen that =_ [us] is not closed, and precisely we get =_ [us] = T — {u1, p2}, thus TC (=<
[3]) = T and the same is true for any p different from p; and py instead of pz. Thus, u < v
iff ((p = ps and v = p; for any (4,j5) € {(1,1),(1,2),(2,2)}) or {p, v} N {1, u2} = 0). Thus,
Pos(=x) ={T, L} and,as CIRCF({T,L}) = identity, we get fx # CIRCF({T,L}). From
lemma 5.31 together with proposition 5.29-5 (or alternatively from proposition 6.19-2), this
shows that < cannot be equal to any <¢. O

Example 6.25 (example 5.18 continued):

In example 5.18, we get Pos,(<X) = Pos(<): indeed, we have shown that f, =
CIRCF(®) where ® is the set called now Pos(<). If p < v then p = {Pp} or p = {P1}.
The two sets M(p,) and Mp,; are closed sets, thus we get < =<.

Notice that the fact that < =< and Pos,(<) = Pos(<) shows that this example is not
“so complicated”, which indicates that it is “relatively easy” for a formula circumscription to
falsify (DCO).

Another comment about this example: we have already shown in example 5.18 that f

is indeed a formula circumscription, by a “lucky guess” of the set ®. Now that we have
theorem 6.15 and proposition 6.16, we may get this set & without any guess. Indeed, as
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Pos,.(<) = Pos(=<), we know that f- is a formula circumscription iff the set Pos(<) (which
is also known as the set 1) may be chosen as our set ®. This shows the power of our
characterization results. O

Example 6.26 [Mak94] gives, after Observation 3.4.8, an example of a preferential en-
tailment f. which falsifies (RM) (thus < falsifies (cl)). The example is more complicated
than Schlechta’s example, (see example 6.24 above), and we prove now that Makinson’s
example is not a formula circumscription. This constitutes another illustration of the power
of theorem 6.15.

Makinson’s example is as follows: V(L) = {Pi};c N, ¥ = V(L). < is defined by p < v
for any finite subset x of V(£) and nothing else. Obviously, < satisfies (sf) and its opposite
relation also, and < is transitive and irreflexive.

Makinson shows that (RM) is falsified by choosing 7 = Th(T) and 7" = Th({P;}i>1)
(the P;’s being considered as formulas here). Thus v = Py and for any finite p, p £ T,
thus M (T") = {v} = MU(f<(T")) and Py € fo(T"). Also, M _(T) = M — {v} thus
M(f(T) =TCM(T)) =M, ie. f2(T)=T. We have T C 7" while f_(T)UT" =
TUuT"=T"and Py ¢ T" thus fx(T") € f<(T)uT".

We show now that f is not a formula circumscription. From our results, it is almost
immediate: let us choose p' = v — {Fy}. As py/ = lim,_.{P1, P, -- P,}, where each
interpretation {Pi, Pa,--- P,} is a finite subset of V(L), we get p/ < v from remark 6.8-2.
From proposition 6.11-1 we get (Pos,(<))u C (Pos,(<)),. However, we have neither p/ < v
(by the definition of <) nor p’ = v (my = (0 while m, is the set of all the finite subsets of
V(L)). < falsifies (fc), thus f- is not a formula circumscription from theorem 6.15.

As in the preceding examples, we do not see how proposition 6.19 could be used in order
to show that f- is (in examples 6.20, 6.24 and 6.25) or is not (as in the present example) a
formula circumscription.

For the interested reader, let us give now a few more results, in order to see precisely
what is the situation here. < is defined by g/ < v for any interpretation g’ for £ and nothing
else. Indeed, V(L) is enumerable, thus we may use remark 6.8-2, and any interpretation
p' is limit of some finite subsets of V(L). Pos(<) is the set of all the formulas which have
no finite subset of V(L) for model, together with the formulas in Th(v). As any consistent
formula has some finite subset of V(£) for model, we get Pos(<) = Th(v) U{L}.

We have (' < p" and p/ £ p”") iff (' is an infinite subset of V(L) and p”’ = v). Thus,
from definition 6.10, Pos.(<) = {¢ € Th(v) / p |E ¢ for any infinite u} U {L}. Thus
Pos,(<) = {T,L1} and (Posy(<)), = {T} for any interpretation p and (Pos,(<)). C
(Posy (<)) is satisfied for any interpretations p’ and p”. And, clearly, we do not have
always p' < p” or ¢/ =2 p” (choose e.g. ' = v,u” # v). Not only < does not satisfy
(fc), but it is “very far from satisfying (fc)”. Let us consider now proposition 6.16: once we
know Pos.(<) = {T, L}, it suffices to remark that f5 # CIRCF({T,L}) = identity. In
some way, we have shown that “if f. was a formula circumscription, then it should be the
trivial formula circumscription”, thus it would satisfy (RM). This shows why this example
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is far from being an example of formula circumscription falsifying (RM) (see our comment
following the proof of theorem 6.15). O

Now, in order to justify in part the complexity of the definitions given before theorem
6.15, let us make the following remark.

Remarks 6.27 1. As proved by example 6.28 below, we cannot replace property (fc) by
any of the easier following properties in theorem 6.15 (< is supposed transitive and
irreflexive):

(feo): If (Pos(<))u C (Pos(<))v, then g < v or p = v.
(fecoo): f p<v,then py<vorp=2v.
If < satisfies (fcg), from proposition 6.9-1, we know that < satisfies (fcog).

2. However we know, from propositions 6.9-1 and 6.11 together with theorem 6.15 that
if an irreflexive and transitive < falsifies (fcg) or (fcoo), then f- cannot be a formula
circumscription. O

We have already used the trick given in point 2, with (fcgg), in order to show that example
6.26 is not a formula circumscription. As (fcgo) is much simpler than (fcg), which is itself
much simpler than (fc), this shows that it is “relatively easy” to prove that such examples
are not a formula circumscriptions.

We give now an example which is not so easy to that respect.

Example 6.28 V(L) = {P;},c N-

We define the following interpretations: p, = {Pait1}i<n, p, = {P2i}i<n,
k
W =ty U{Po(nyr)+1}s

#=A{Pais1}ic N> b ={Pritie N, and v = 0.
Let us call S the set of all these interpretations.

We define < by: 1) For any n,kin N, g, < p/* and g/, < p'*,
2 p<v,v<py, =<y, and
3) nothing else.

We have: limy_, o #,Z =y, lim, oo o = p, and limy,_, o ), = p’. With regard to the
preceding interpretations, there exist no other limits, thus S is a closed set.

Notice also that <, and its opposite relation >, satisfy (sf).

For any n € N, we have also p, =< p!,.

If (Pos(=))u C (Pos) <))y and v/ A v", then v’ and v" must belong to the closed set
S, more precisely we have either v/ = v = pul, or v/ =v" =y’ or v/ = p,, and v" = pl,.
Then, it is easy to check that < satisfies (fcg), thus also (fcgo).

If p € (Pos,(<))y, then p' € 7(¢p) thus there exists N € N such that for any n € N,
n > N implies u!, € M (p). As for any n > N we have 1) u, =< p!, from remark 6.8-
2, 2) i, € M(p), 3) p!, £ pn, and as we have also ¢ € Pos,(<), we get un, € T(p).
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Then, we get u € 7 (p). We have thus g < v and (Pos,(<)), = (Pos.(<)),, which
shows that f. # CIRCF(Pos,(<)) thus, from proposition 6.16, f- cannot be a formula
circumscription. O

We introduce now yet another set of formulas and its associated property for <. Fortu-
nately, we will see that in the “interesting cases”, neither this set nor this property are new,
they just provide another way to see what happens. We could have taken directly these
alternative set and property in our proof of the characterization theorem, but, even if these
definitions with a “ ' ” may look simpler than the definitions without the “’”, the proof of
theorem 6.15 would be exactly as complicated. And we think that the definitions without
the “’” are more “natural” after all.

Definitions 6.29 < being a preference relation, we define the set

Pos!. (<) = {p € Pos(<) / for any interpretations p and v,
if p A v, (Pos(<)), C (Pos(<)), and v |= ¢, then p |= ¢}.

We call (fc’) the following property of a preference relation <:
(fc'): for any p,v, if (Pos,.(<)), C (Pos,.(<))y, then p <vor p=,v. O

Proposition 6.30 1. If f. is a formula circumscription, then Pos,(<) = Pos,(<).
2. In any case, Pos..(<) C Pos,(<) and (fc’) implies (fc). Also, Pos,.(<) = (Pos..(<))"V.

3. If < is irreflexive and transitive (thus in particular if f is a formula circumscription),
then (fc’) is equivalent to (fc). O

Proof: 1. From proposition 6.16, we know that f. = CIRCF(Pos.(=<)). If ¢ € Pos.(<),
v ¢, p £ vand (Pos(<)), C (Pos(<)),, then, as Pos,(<) C Pos(=<), we get (Pos,(<
)u C (Posp(<)), and, as p A v, we get (Pos,y(<))y ¢ (Pos,(=<)),, thus (Pos,(<)), =
(Posy(<))y. Thus, ¢ € (Posy(<)), and g = ¢. Thus Pos,(<) C Pos,(<).

The inclusion Pos!.(<) C Pos,(<) is an immediate consequence of the fact that, if u < v,
then (Pos(<)), C (Pos(<)), (proposition 6.9-1).

2. If o € Posi.(<), 0 A v, p X vand v | ¢, then (Pos(<)), C (Pos(<)), from
proposition 6.9-1 and u = ¢. Thus ¢ € Pos,(<).

Now, we suppose (fc’) and (Pos,(<)), C (Posr(<)), then, as Pos| (<) C Pos,(<), we
get (Pos,(<))u C (Pos; (<)), thus, from (fc’) we get p < v or p =< v: we have (fc).

The stability for A and V of Pos, (<) is immediate from the definition.

3. Irreflexivity and transitivity give antisymmetry, thus if we have (fc), f< is a formula

circumscription (theorem 6.15) and Pos,(<) = Pos,.(<) (point 1 above) thus (fc) and (fc’)
are identical. O
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6.2 Description of the sets of “positive formulas” associated to
CIRC(P,Q,Z)

After all these more or less technical results, let us provide to the patient reader a few simple
and illustrative examples. We describe syntactically all the “sets of positive formulas” defined
in this text which correspond to a propositional circumscription. Notice that some of the
results proved here have already been stated above (e.g. in remarks 5.30-2 and in the proof
of proposition 5.33-1b).

Notations 6.31 If Y’ is a subset of V(L£), let Y be some finite and consistent sets of literals
from Y’ (each element of Y is either an atom in Y’ or the negation of an atom in Y’, and
if a literal Y is in Y then its complementary =Y is not in Y).

We define the two formulas \/(Y) =V cy ¢ and A(Y) = A
V(Y)=Land A(Y)=T.

If, for any Y € Y', Y contains either Y or =Y, the set of literals Y is complete in Y'. O

pey ¢- EY =10, as usual

Proposition 6.32 The case of propositional circumscription CIRC(P,Q,Z) (see
also remarks 5.30):

0. < is the preference relation associated to CIRC(P,Q,Z) (see definition 4.1), that is
also the preference relation associated to CIRCF(P; Q,P U Z) (see propositions 5.2
and 5.5) or equivalently to CIRCF(®) where @ is the set of formulas ® = PUQU-Q
(see proposition 5.9-2).

Thus <==(P, Q, Z)=<-

We consider also X==(p, q, z)==s (see notations 5.6).

We have Pos(=X) C Pos(<) = I (proposition 5.29, points 4 and 2 respectively).

Also, from the equality CIRC(P,Q,Z) = CIRCF(®) we have
Pos(<) = Pos.(®) and Pos(=X) = Pos;,(®) = "V (see remarks 5.30-2 and proposi-
tion 5.29-5).

la. If ¢ € Pos(<), then ¢ is positive in P (traditional meaning, i.e. p € (PUQU-QU
ZU-Z)M).

1b. "V C Pos(<).
Moreover ¢ € Pos(X) iff V(p) C P U Q and ¢ is positive in P (traditional meaning),
ie.,
Pos(=) = o"V.

lc. If P is infinite, or if Z = ), then Pos(<) = Pos(X) is the set of all the formulas made

in the vocabulary P U Q (meaning without any element of Z) which are positive in P
(traditional meaning), i.e. Pos(<) = Pos(X) = ®"V.
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2. If P is finite, then Pos(<) is the set of all the formulas in V(L) which are disjunctions
of formulas of the kind A(P,) A A(Q;) A (A(Z:) vV V(P — P,)), for any subset P, of
P and any finite sets Q; and Z; made of literals of Q and of Z respectively.

Alternatively, we may also describe Pos(<) as the set of all the formulas in V(L) which
are conjunctions of formulas of the kind \/(P,) V V(Q;) V (V(Z;) A A(P — Py)).

If V(L) is finite, we may consider only the sets of literals Q,; complete in Q and Z,
complete in Z.

3. C, is a closed set iff P is finite.

4a. Posy(<) = Pos(=), i.e. Pos,(®) = Pos(®).

Thus <==0==Pos, (®) == Pos.(d)> ie. CIRCF(@) = CIRCF(POSm(Q)) =
CIRCF(Pose(®)).

4b. If P is infinite, or if Z = (), then Pos,(<) = Pos(<) = Pos(=x) = ®"V.

O

Proof:

la. Let us suppose ¢ € Pos(<) = I; and ¢ = @1 V-V @, a reduced disjunctive normal
form of ¢. This means that each ¢; is a conjunction of literals, the ¢;’s are all distinct and,
if ¢’ is a conjunction of literals such that ¢; = ¢’ and ¢; # ¢', then ¢ [~ .

We suppose also that =P appears in ¢;, for some P € P. We call ¢} the conjunction
(eventually T) of all the other literals of ¢;. Let p be a model of ¢}. If p & P, then u = ¢;
thus g = ¢. Otherwise, with v = p — {P}, we have v < p and v = ¢; thus v = ¢ and,
as ¢ € Pos(<), again u = ¢. Thus, we have 7L(y;) € M(y), a contradiction with the
assumption that we started from a reduced form of ¢.

1b. This comes from Pos(=X) = P0s;,(®) = "V and Posy(®) C Pos.(®) = Pos(<)
(proposition 5.29-4 and -5).

Let us give also a direct proof of the first part of the result, as an illustration of what
happens in the case of propositional circumscription:

We suppose ¢ € (PUQU-Q)"Y, ie. V(p) C PUQ and ¢ is positive in P in the
traditional meaning.

Let 1 V---V ¢, be a reduced disjunctive normal form of ¢.

If ¢ = ¢1, ¢ is a conjunction of atoms in P and (possibly) other literals from Q. Let p
be a model of ¢ and p < p'. Then, we define "’ = (' N(PUQ))U(NZ). We have p C p”
thus, from the nature of ¢, we have also p” = ¢ and, as ¢ does not contain any Z € Z, and
as /' N(V(L) —Z) =p" N(V(L) - Z), i = ¢

If ¢ is a disjunction of ¢;’s, each of these ¢; is in Pos(<) from the preceding case, and,
as
Pos(=<) = 14 is closed for V, ¢ € Pos(<).
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le. If Z = 0, then V() C P U Q and we have already the conclusion from 1a and 1b.

We suppose now that P is infinite and Z # (). From 1a and 1b we know already that if
V(p) C PUQ, we have p € Pos(<) iff o is positive in P. We suppose now V(¢) € P U Q,
and o1 V- -V, is a reduced normal disjunctive form of ¢ € Pos(<). Let Z be some element
in Z appearing in ;. Let us call ¢} the conjunction (eventually T) of all the literals of ¢;
which do not contain an element of Z. Let P be some element of P not appearing in ¢. Let
1 be a model of ¢}, then there exists a model p’ of ¢; such that p’'N(PUQ) =pun(PUQ).
Let us define also v = p U {P}. Then, p/ < v thus v |= ¢. P does not appear in ¢ and
(pUv) — (uNv) = {P}, thus u = ¢. Thus, M(y}) € M(y), which contradicts the fact
that we started from a reduced form of ¢.

2. P igs finite, thus, for any P, C P, P, and P — P, are finite.

a)If o = A(Po)AAQ)A(A(Z) vV (P —P,)), for some subset P, of P and some finite
consistent sets Q; and Z; made of literals of Q and of Z respectively, then ¢ € Pos(<):

Let =9 and g < v. Then, as uyNP Cv NP, v = A(P,). Also,as punNQ =vnNQ,
v E A(Q,). Finally, as unP Cv NP, v = V(P —P,) and we get v = ¢. This establishes
¢ € Pos(=).

Thus, as Pos(<) is stable for V, any disjunction of such formulas is in Pos(=<).

b) Let us suppose ¢ € Pos(<) and o1 V ---V @, is a reduced normal disjunctive form of
®-

We may write ¢; under the form A(P,) A A(Q;) A A(Z;) for some subset P, of P and

some finite consistent sets Q, and Z; of literals respectively from Q and from Z. We define
o, = A(Po) AAQ) AVEP —P,) if P, # P (if P, = P, y; is already as we want it).
We suppose also ¢; # T (otherwise ¢ is already as we want it, being an empty disjunc-
tion). Let v € M(y}). Let u € M(p;), we define ' = P, U (¥ N Q) U (uNZ). Then
yNP=P, CvNPand ' NQ =vnNQ, thus p' < v. Also, ¢/ | ¢; from the defini-
tion of 4/, thus ' |= ¢ and, as ¢ € Pos(<), v = ¢. Thus, TM(p;) € NM(p). We define
¢ = oV (Vi ¢)), we get then M) = N(¢'), ie. ¢ = ¢/, thus ¢ = /[ (i V ¢}).
Now, ;i V¢ = A(P) ANQ) A(A(Z) vV V(P —P,)): ¢ can be written as a disjunction
of formulas of the form indicated in the present proposition.

Now, if V(£) = PUQUZ is finite, it is obvious that we may restrict our attention to the
formulas A(Q;) and A(Z;) corresponding to sets of literals Q; and Z; which are complete
respectively in Q and in Z. Indeed, any formula A(Q;), for any set of literals Q from Q,
is the disjunction of some formulas A(Q;), where all the Q;’s of the disjunction are sets of
literals complete in Q. And the same applies for Z.

But we may prove more in this case (see also [MR98]): the set of all the formulas
APIANQ) A A(Z) V(P —=P,)), for all the subsets P, of P and all the sets of literals
Q; complete for Q and Z; complete for Z defines an V-basis of the set Pos(<). This means
that this set is the (unique) smallest (for C) set X such that Pos(<) = XV.

We will prove this fact (announced and proved in an partially informal way in [MR9S§]).
For any set of formulas X, we call (as in [MR98]) Xy the set {¢ / v € X, o & (X — {e})"}.
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We have that X\ is the smallest set ) such that XV = )V, precisely: XV = (Xy)V and if
XV = )YV then X, C Y. We call X, the V-basis of the set of formulas X. Thus, we will
prove that (Pos(<))v is the set described above.

Let us call X this set, i.e. the set of all the formulas A(P,)AA(Q)A(A(Z)VV(P—P,)),
for all the subsets P, of P and all the sets of literals Q; complete for Q and Z; complete
for Z.

As already noticed, it is clear that we have XV = Pos(<) (= Iy.).

Let us suppose ¢ € X, ¢ = ¢1 V --- V ¢, where each ¢; is distinct from ¢ and is in X,
and also ¢ = A(P.) A NAQ) A (A(Zi) vV V(P — Pyg)), for some subset P, of P and two
sets of literals Q; complete for Q and Z; complete for Z. Let p be such that uNP = P,,
p E AQ,) and p = A(Z;). Then, p | ¢ thus there exists ¢ € {1,---,n} such that
pE0i = ANPOANQ)AAZ) VYV (P —P.)) where P!, C P and Q; and Z; are two sets
of literals complete for Q and Z; respectively.

As uNP =P, and p = A(P)), we get P, C P,,.

As = A(Q) and = A(Q)), we get @, = Q.

IfP, =P, ulf V(P —P,) thus p = A(Z;) and Z; = Z;. In this case we get ¢ = ¢;, a
contradiction with our hypothesis.

Thus, we must have Pl, C P,. Let us define p/ = u — (P, — P.,), we have u' |= ¢;, thus
u = ¢ and ¢ E A(P,), a contradiction.

This shows that our hypothesis does not hold, i.e. no formula in X may be a disjunction
of at least two different formulas in X: X is the V-basis of Pos(<).

The results for conjunctions instead of disjunction are proved in the same way (the dua-
lity is perfect here). In particular, if V(L) is finite, we establish in the same way that
the set Y of all the formulas \/(P,) V V(Q)) V (V(Z;) A A(P — Py)), for any set P, C P
and any sets of literals Q; and Z;, complete in Q and in Z respectively, is the A-basis of
Pos(=<): (Pos(=<))a = Y (replace V by A in above definition of the V-basis). This means
that Y* = Pos(<) and a set X is such that X" = Pos(<) iff (Pos(<))x C X C Pos(<).
Any such set X' can be taken as the set X such that CTRC(P,Q,Z) = fx (see definition
6.34 and proposition 6.39 below, and [MR9S]).

3. Let us suppose p N P finite. Then m, = ‘77L({VPQmP -P}U{-P/PecP—pu}uU
ENQ)U{-Q /Q € Q— p}. Thus, m, is a closed set, being the set of all the models of
some theory.

Similarly, if P — 4 = P — (u N P) is finite, then M, is a closed set. Thus, if P is finite,
Cy =m, UM, is a closed set.

Let us suppose NP infinite, for example {P,.},,c y € pNP. We define the interpretations
tn = pt — {Pn}. Then we have lim, o ptn, = pt and pn, € my,. Thus p € TC(m,,).

Similarly, if P — p is infinite, then y € TC(M,,). Thus, as clearly p ¢ C,,, if P is infinite,
we get p € TC(C,) — Cy: Cy is not a closed set.
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4a. We know from proposition 6.11-1 above that it suffices to prove Pos(<) C Pos;(<).

Let ¢ be in Pos(<), and two interpretations be such that p=<v, g A v, and v = ¢. As
(PUQU—Q) C Pos(<), from proposition 6.9-1 we get (PUQU-Q), C (PUQU-Q),,
ie. uNPCrvNPand pNnQ=vNQ. As u £ v. we must have in fact yNP =vNP. We
split now the proof in two cases.

Case 1: Let us suppose P finite.

We define b = A(uNP) A A(=(P — p)). Then p € M(),v € M) and, as p=<v,
there exist g/ and v in 71(y)) such that g/ < v/. Thus, g NP C v/ N P, a contradiction
with g’ =4 and v’ |= ¢ which forces ¢/ NP = v’ NP. Thus we cannot have our hypothesis
if P is finite.

Case 2: P is infinite here.

From 1c. above, we already know that we have: Pos(<) = Pos(=) = (PUQU-Q)"V.
Thus, it is obvious that we have u = ('6.

Cases 1 and 2: Thus, in any case, ¢ € Pos,(<) from definition 6.10. This proves:
Pos(=<) C Pos,(<), thus Pos(<) = Pos,(<), i.e. Pos,(®) = Pose(®).

We deduce now easily <=<e=<pos,,(®)==<Pos.(®)- Indeed, we know already
<=<8&==<Pos,,(#) from propositions 5.29-5 and 5.33-2a and <==<p,;, (<) from proposition
6.16, and we have just proved Pos.(®) = Pos(<) = Pos,(<).

4b. If P is infinite or Z = (, we know from 1c above that Pos(<) = Pos(xX) =
(PUQU-Q)". From 4a we know Pos,(<) = Pos(<). O

Let us give here a small additional property, in order to get a better understanding of
the structure of one of the sets considered:

Remark 6.33 Let S be the set of the formulas positive in P (in the traditional meaning)
and made in the vocabulary PUQ, i.e. S=(PUQU-Q)"V.

If P is infinite, then, if we have two distinct formulas ¢ and 4 in S such that ¢ E ¢, we
may always find a third formula ¢’ in S, distinct from ¢ and from ¢, such that ¢ | ¢’ and
¢’ = 1. Indeed, as P is infinite, there exists some symbol P € P which appears neither in
@ nor in ¥ and we may take the formula ¢ V (¢ A P) as our formula ¢’.

This result is clearly no longer true if P is finite: Taking e.g P = {P,P},Q = {Q},
and any set for Z, we may consider for instance ¢ = Py A =Q and ¢ = (P1 V P2) A =Q. We
have p € S, 9 € S, ¢ # 1 and ¢ |= 1, and there exists no formula ¢’ € S, distinct from ¢
and 1, such that ¢ = ¢’ and ¢’ =4. O

6.3 Propositional circumscription from what they cannot do

We give now in this “technical section” the complete proof of a result already announced
in [MRO8] (see preliminary discussion above, after example 4.20). We examine precisely

16 We can show in the same way that more generally, for any formula circumscriptions CTRCF(®) (i.e.
for any set of formulas ®), if Pos(<¢) = Pos(=<4), then Pos;(<¢) = Pos(<s) = Pos(=<s).
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when (and how) propositional circumscriptions may be expressed easily in terms of their
inaccessible formulas.
We need a definition and a few results.

Definition 6.34 [SF96, MR98| An X-mapping f is some mapping from ¢/ to £ such that
there exists some subset X of £ such that ¢ € f(T) iff (T Up)NX CTh(T).

The X-mapping f associated to a set of formulas X will be noted fx.

If fx is the X-mapping defined by the set of formulas X, we note I'x for Iy, (see definition
5.28-1 for the definition of Iy).

As with pre-circumscriptions, if 7 ¢ ¢/, we will define fx(7) as fx(Th(T)), thus X-
mappings may be also considered as mappings from £ to £. O

Remarks 6.35 1. Beware that X-mappings are generally not pre-circumscriptions. It
is immediate to show that they respect extensivity: for any 7, we have T C fx(T)
thus, as fx(7) = fx(Th(T)), Th(T) C fx(T). However, fx(T) is generally not
deductively closed. Indeed, it is easy to show that fx(7) is a union of (possibly more
than one) elements of ¢J, thus fx may be considered as a mapping f from ¢/ to the set
of the unions of elements of (see [MR98] where these mappings are called S-mappings
when, as here, they satisfy 7 C f(T)).

2. Let us remind here a result from [MR98], which completes a comment made above in
the proof of proposition 5.29-1: If V(L) is finite, and if the pre-circumscription f is an
X-mapping, then if I; is also stable for V, f is a preferential entailment. O

Proposition 6.36 Any X-mapping fx satisfies the following properties, where
X, T,T",T" are subsets of £ (not necessarily in ¢/) while 71, 72,7 ; are in ¢/.

1. strong cumulative transitivity: If T1C fx(T) and ToC fx(T U T1) then T1 U T, C
fx(T) (sCT).

2. [SF96] cumulative transitivity for general mappings from £ to L:
IfT7T CT" C fx(T) then fx(T") C fx(T) (CT,)

Thus, when an X-mapping is a pre-circumscription, it satisfies (CT) as we have defined
it in definition 3.2.

3. m fx(T:) € fx(ﬂ Ti)-
iel i€l
Thus, when an X-mapping is a pre-circumscription, it satisfies (CRoo) as we have
defined it in definition 3.2.

4. restricted cumulative monotony: If T C T" C T1 C fx(T), then T1 C fx(T")
(rCM) .
This is a kind of “(CM) restricted to the theories”.
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5. An X-mapping is a pre-circumscription iff it satisfies (CM), iff it satisfies (CM1).
[SF96] Thus, any X-mapping which is a pre-circumscription satisfies (CUMU). O

A small bibliographical comment: Point 2 and the second sentence of point 5 are from [SF96].
Points 1 and 4 appear in [MR98], and our “restricted cumulative monotony” is different from
the restricted cumulativity as introduced in [SF96]'7.

Proof:
0. Let us give a small obvious “lemma”, useful for our proofs:
From definition 6.34, we get, for any 7, fx(7T)NX CTh(T)N X.

1. We suppose T1C fx(T) and T5C fx(7T U T1), where 77 and T are in /. Let us
suppose @ € T1 U T45. Then there exist ¢; € T1 and @2 € T such that ¢ = @1 A g, thus
TUe CTUTyUgps, from ToC fx(T UT1), we know that (T UT1Uea)NX CTUT,
thus (TU@)NX C(TUT1)NX. Now, for any ¢ € T U T there exists ¢} € T such that
Y € TUg}, from T1C fx (T) we know that (TUp})NX C Th(T), thus (TUT1)NX C Th(T),
thus (TU @) NX CTh(T). ie. ¢ € fx(T). Thus T1 U T2 C fx(T): fx satisfies (sCT).

We show now that a consequence of (sCT) when fx is a pre-circumscription is (CT).
This proof is useless as anyway fx satisfies (CT,) from point 2 proved below, and in this case
(CT,) is (CT), but we give it in order to justify the name “strong cumulative transitivity”.
We think in fact that for mappings from 7 (or £) to £ such as the X-mappings, the
“interesting property” corresponding to the idea of (CT) is (sCT).

We suppose now that fx is a pre-circumscription and that 7 C 7" C fx (7). We have
T1=Th(T") € and, as fx(T) €, weget T1 C fx(T). Th(T") = TUT;. Let us define
also To = fx(T") = fx(TUT"), we have To € J because fx is a pre-circumscription.
Thus by (sCT), we get T1U T2 C fx(T),ie. T"U fx(T") C fx(T). As T" C fx(T")
from remark 6.35-1, we get 7" U fx(T") = fx(T"), thus fx(T") C fx(T): fx satisfies
(CT).

2. We suppose 7 C 7" C fx(T) and ¢ € fx(T"). Then (T" Up)NX C Th(T") and,
from T C T", (TUp)NX CTh(T")NX. From T" C fx(T) weget Th(T")NX C fx(T)nX
and from point 0 above fx(7)NX CTh(T)NX. Thus (TUp)NX CTh(T): ¢ € fx(T).
Thus fx(T") C fx(T): fx satisfies (CT,). If fx is a pre-circumscription, we get (CT) as
we have defined it in definition 3.2.

3. Let us suppose ¢ € (\;c; fx(T3:), then for any ¢ € I, (T; Ug)N X C T, thus
Nier(TiUP)INX) C Mgy Ti, thus (M (T5U))NX C Mgy T, thus (Miey To)Ue)NX C
ﬂiEI T’i’ Le. p € fX(ﬂz'GI Tl)

170One way of this badly named restricted cumulativity is a variation around the property called LLE in

[KLM9O0]: fx(7) = fx(Th(T)). We do not have elucidated what is the other way, which has nothing to do
with (CTg) or (rCM).
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When fx is a pre-circumscription, we have called this property (CRoo).

4. We suppose 7 C 7" C T1 C fx(T), then for any ¢ € T1 we have (T Up)N X C
Th(T). Let us suppose p € Ty and z € (T" Up)N X, then,as 7" C T,z € T1Up =T
and, as T1 C fx(T), z € fx(T)N X, thus € Th(T) N X from above result. As 7 C T”,
we get £ € Th(T"). This establishes (7" Up)NX CTh(T"),ie. ¢ € fx(T"): fx satisfies
(rCM).

5. We suppose that fx is a pre-circumscription here and also T C 7" C fx(T). As fx
is a pre-circumscription, 71 = fx(7) isin<¢/ and we have T C 7" C T C fx(T), we apply
(rCM) and we get fx(7T") C fx(T): fx satisfies (CM). Thus fx satisfies (CM1).

Conversely, let us suppose that fx is an X-mapping satisfying (CM1) (more precisely,
the writing we have given for (CM1) in definitions 3.3, applied here to the mapping fx which
is not supposed to be necessarily a pre-circumscription, we should write “(CM1,)” but we
do not think this is necessary here). Then, from point 2, we know that fx satisfies (CT,).
Notice that it is not immediate to get that fx satisfies thus (CUMU1) (same remark as for
(CM1)). We need a short proof because fx is not supposed to be a pre-circumscription: if
¢ € fx(T), then TUyp € fx(T), thus we get (CT1,): if p € fx(T), then fx(TUyp) C fx(T).
Together with (CM1), this gives (CUMUL): if ¢ € fx(T) then fx(7) = fx(T Up).

Let us suppose ¢ € fx(7T) and 9 € fx(T). Then, from (CUMU1), fx(7T) = fx(T Uyp)
thus 9 € fx (7T U¢). Thus, using (CUMU1) again, fx((T Up)Uv) = fx (T Ue) = fx(T).
As (TUp)Uy = TUpAY, and as from remark 6.35-1 we have p A € fx (T UpA), we get
YAy € fx(T). Asit is obvious from definition 6.34 that if ¢ € fx (7)) then Th(p) C fx(7T),
this establishes fx (7) € ¢/: fx is a pre-circumscription. O

A consequence is that a pre-circumscription which may be expressed as an X-mapping
must satisfy (CUMU) and (CRoo).

Here is an easy lemma:
Lemma 6.37 For any pre-circumscription f, and any 7 € ¢/, we have f(T) C fr,(T). O

Proof: fr, is the X-mapping (definition 6.34) defined by the set Iy (definition 5.28-1).
This result is an immediate consequence of the definitions of X-mappings fx and of the
set Iy of the inaccessible formulas for a pre-circumscription f. O

Proposition 6.38 For any X-mapping, we have f = fr,. Moreover, Iy is the greatest (for
C) set Y such that f = fy. O

X-mappings may then be considered as mappings based upon their inaccessible formulas,
and let us say then that the “X” in the name X-mapping comes from “InaCCeSSible”...

Proof: Notice that this result is a consequence of theorem 3.2 of [MR98]. We give an
easier direct proof here, as we do not need all the general results about X-mappings given
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in [MRO8]. Let us suppose f = fx for some set X. Let us suppose ¢ ¢ Iy: there exists
T € J such that ¢ € f(T) —T. As f(T) = fx(T), we get from definition 6.34 that
TUep—TC L— X, thus we have proved: £L—I; C L — X, ie. X CIy.

Let us suppose now ¢ € f(7T), with 7 € J. Then, TUp —~T C f(T)-T C L — Iy,
thus (TU@) NIy CT =Th(T),ie. ¢ € f1,(T) from definition 6.34.

Let us suppose now ¢ € fr,(T), with T € JJ. Then, from definition 6.34, we get
(TUe)NIp CT,ie. TUp—T C L — Iy and from above result £ — Iy C £ — X. Thus
v € fx(T) = (D).

These last two results show: fx = fr,.0

Notice that if we particularize this result for pre-circumscriptions, we get that a pre-
circumscription f is an X-mapping iff f = fr,.

Thus, expressing a pre-circumscription f (or even a more general mapping from L to L)
in terms of X-mapping is a (rather natural even if it may seem somehow paradoxical) way
to express f thanks to its inaccessible formulas. This explains the title of this subsection.

Before giving our result about propositional circumscription, let us remind a last general
result about X-mappings, which will precise the nature of the set of the inaccessible formulas:

Proposition 6.39 [MR98, theorem 3.2-3] For any set of formulas X, we have Ix = X*. O

Proof: Remind the definition of Ix in definition 6.34. We know from proposition 6.38 that
we have X C Ix.

We have already remarked that any set Iy (thus Ix) is stable for A.

Thus, we have X" C Ix.

We want to prove the converse.

Let us suppose that ¢ € Ix for some set X of formulas. Let us consider the theory
T =Th(Th(p) N X). Then we have (T U¢p)NX =Th(p)NX C T thus ¢ € fx(7T) from
definition 6.34 thus ¢ € T because ¢ € Ix = Iy, . Thus we have Th(p) =T.

By compactness, we know that there exists a finite subset {t;};cr of T = Th(¢)NX such
that A\;c;vi = . We have ¢ |= 1; because ¢; € Th(p) N X and Th(T'h(p) N X) = Th(p),
thus we get ¢ = A,;c; ¥i. Now, each ¢; being in X, we get o € X". O

Here is our detailed result, which states precisely which propositional circumscriptions
(of definition 4.1) are X-mappings, and which describes then the set of the inaccessible
formulas.

Theorem 6.40 A propositional circumscription is equal to an X-mapping iff Z is empty or
P is finite.

When a propositional circumscription f = CIRC(P,Q, Z) is an X-mapping, for any set
of formulas X, we have f = fx iff X" = Pos(<(p, q, ))- U

Notice that this result concerns propositional circumscriptions of definition 4.1 and that in
this case we have Pos(<(p, q, z)) = Pos.(P U QU -Q). Also, as any X-mapping satisfies
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(CRoo) (proposition 6.36-3), a consequence of this result is “the positive part” of proposition
4.19. Thus, together with example 4.20, this provides a proof of proposition 4.19 without
any restriction on V(L).

Proof:

f=CIRC(P,Q,Z) and <=<(p, q, z)- We know that Iy = I, = Pos(<) from proposi-
tion 5.29-2.

1. We suppose Z = () here.

Let us suppose there exists ¢ € fr,(T) — f(T). As ¢ ¢ f(T), there exists p € T (T)
such that p = —¢. Let us define the sets of formulas Ag = (pNQ)U{-Q / @ € Q—p} and
A1 =TU{=-P/PeP —pu}UA.

Let u' € TN(Ay), then, as ¢/ € TM(Ap), we get ¢/ NQ = pNQ and also ' NP C uNP.
Moreover, i/ € T1(T), thus, either g/ = p or ' < p (remind that Z is empty). As
€ M (T), we get 1’ = p. As clearly p € T1L(A;), we have proved TM( A1) = {u}.

As u E -, we have A; | - thus there exists a finite subset A" of A; such that
A" = —¢p, thus there exists a formula vy = =Py A --- A =P, A9 (with P; € P) where ¢
is a conjunction of literals in Q such that 7 U {7} E -, i.e. T U {p} E —y. We have
=P, V-V P,V .

Thus, -y € (PUQU—-Q)"V and, from propositions 5.29 and 6.32-1b, (PUQU—-Q)"V C
Pos(<) = Iy,. Thus -y € Pos(<) = Iy_.

As we have also -y € T U ¢, we get =y € T because ¢ € fr,(7) from the definition of
fx (definition 6.34).

We get a contradiction: g € 71U(T) and p = 7. Thus, there exists no such formula ¢,
i.e. we have, for any 7 € ¢/, I, (T) C £(T).

From lemma 6.37 we get the equality, thus fr, = f.

2. We suppose now P finite (no conditions for Q and Z). Again, let us suppose there
exists ¢ € fr,(T) — f(T). Again, as ¢ ¢ f(T), there exists u € TN (T) such that p | .
Let us define the formula ) as the conjunction of all the literals in P satisfied by p: ¢ =
(Apeunp PANpep_, ~P). We define the sets of formulas Ay = (uNQ)U{-Q / Q € Q—p},
A1 =TU{=P/PeP—pu}UA (as above), and also Ay = (uNZ)U{~Z | Z € Z — u}.

If 1 € TM(Ay), then ' NP CpunP, ' NQ=pNQand g’ € NUT). Hp/' NP C uNP,
we get u' < p, a contradiction with g € 7o (T). Thus ¢ NP = pNP and p' = ). We
have proved: A; = 9. Thus there exists a finite subset A" of A; such that A’ = 1, thus
there exists a conjunction 7, of literals in P U Q such that g =y and T U {1} E .

Let us consider the set of formulas A3 = T U .4 U A2 U {4, p}. u is the only model of
TUAg U Ay U{9} and u |= —¢p, thus As is inconsistent and there exists a finite subset of
A3 which is inconsistent, which means that there exists a conjunction s of literals in QU Z
such that 7 U {p, 4,72} is inconsistent and g = 7a.

We suppose now p NP # (.
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Let 9’ be a formula in the vocabulary P such that, for any interpretation u', we have
pEY iff ' NP C pNP (as P is finite, we know that such a formula ¢’ exists). We define
also ¢ = (=)' V=m1) A(=p V-1 V), ie. —p" = (' Am) V(P Ay Av).

pE (W Ay Aye), thus p |E =, thus ¢ ¢ T.

Let v be such that v € TMUT U ) and v = ~¢'. If v = =, then v |= T U {-2), 1},
which contradicts TU{m} E . v E¢Y,asvnNP = unP, we get v = ', thus
vETU{p,¥, 7}, a contradiction with the inconsistency of this set.

Thus we have ¢’ € T U ¢.

Let us suppose that there exist interpretations v,v’ such that v = ¢',v < v and V' |
—¢'. Then v' v and, as v N Q = v’ N Q and also as the literals of v, in P are negative,
we get v = y1. As we have also v |E ¢ and = ¢’ = —y1, we get a contradiction.

We have proved that if v = ¢’ and v < V' then V' = ¢/, i.e. ¢’ € Pos(<) = I;.

Thus, as ¢’ € T Uy, and ¢ € fr,(T), we get ¢’ € T (as in point 1), a contradiction with
¢’ ¢ T proved above.

We conclude as in point 1.

3. If P is infinite and Z # () then example 4.20 shows that f falsifies (CRoo), thus it
cannot be an X-mapping.

4. Thus, example 4.20 shows that the translation of circumscriptions with varying pro-
positions in terms of X-mappings, described already in [MR98§] for the finite case, cannot
be extended to the infinite case, except in the “easy case” when P is finite. We have just
described precisely the situation in these “easy cases”

a) When no varying proposition is present, the circumscriptions CITRC(P,Q, () are
indeed X-mappings, and we may choose the set of the formulas positive in P as our set X,
which is the set Pos(<) = Pos(=<) = (PUQU-Q)"V (see proposition 6.32-1c). This is not
too surprising because it is well known that this is the set of the formulas inaccessible by
such a circumscription.

b) When P is finite, the circumscriptions CIRC(P,Q,Z) are also X-mappings, and we
may choose the set of the formulas positive in P U Q U ~Q in the extended acception:
Pos(<) = Pos.(PUQU—Q), see proposition 6.32-2 for a syntactical description of this set.

c¢) In these two cases a) and b), which are the only ones in which CIRC(P,Q,Z) may
be expressed as an X-mapping, we may choose as our set X any set such that X" = Pos(<
) = I, and these sets are the only possible sets (see propositions 6.38 and 6.39).

When V(L) is finite (then P is finite and CIRC(P,Q,Z) is an X-mapping) we know a
syntactical description of the smallest possible set X such that fx = CIRC(P,Q,Z): see
the A-basis of Pos(<) in this case in the proof of proposition 6.32-2.

Results b) and c) were not known before [MR98]. O

We have not settled the case of predicate circumscription yet, but this result, and example

4.20, give very strong indications that the same phenomena should appear: varying predi-
cates should very likely be forbidden (except in easy cases), if we want to express a predicate
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circumscription in terms of X-mappings. This would explain why Suchenek, the first one
[Suc93] who expressed the mixed predicate circumscriptions in terms of what is called here
X-mapping, never considered varying predicates. Suchenek’s results are restricted to fini-
tely axiomatizable universal theories T, and only universal sentences (sentences of the kind
Vi - - -V, ¥ where 1 is without quantifier) of f(7) are considered. The restriction to uni-
versal theories was to be expected, because we need cumulativity (see proposition 6.36-5),
and it is known that if we do not make any restrictions on the theories considered, the
mixed predicate circumscriptions falsify cumulativity, while they satisfy cumulativity when
restricted to universal theories, finitely axiomatizable or not (see note 6 page 18). As to the
restriction of the kind of formulas considered, it seems that this restriction also is indeed
necessary. However, it does not seem that the restriction to finitely axiomatizable theories
is mandatory.

6.4 The respective roles of the various kinds of “positive formulas”

Let us recapitulate the results of this text which concern our various kinds of “positive formu-
las” (the reader interested in the role of “positive formulas” in preferential entailments and
circumscriptions should consult also the recent and interesting [Eng98|'®, in which positive
formulas are called “upward persistent”).

Recapitulation of the roles of the various sets of positive formulas:

In the following, we consider a formula circumscription f = fx = CIRCF(®), where
<=<g-

We consider also the “large” relation <==g4 (see definitions 5.3).

When we talk of a “propositional circumscription”, we consider f = f. =
CIRC(P,Q,Z).

Remind that any propositional circumscription is a particular formula circumscription:

f =CIRCF(®) where ® = PUQU-Q, <=<(p, q, z) and X==(p, q, z) (see notations
5.6).

1. For any formula circumscription f = f, the set Iy = I, = Pos(<) is the set of the
formulas inaccessible for f: for any ¢ € Pos(<), we get ¢ € f(T) only if ¢ is already
a consequence of 7 (proposition 5.29-2).

2. For propositional circumscriptions CIRC (P, Q,Z), this set Iy = Pos(<) can be used
in order to describe f in terms of X-mappings (i.e. to describe in a natural way f
thanks to its inaccessible formulas) only when P is finite, or Z is empty. If P is infinite
and Z not empty, the set Iy cannot be used in this way (theorem 6.40).

18Notice however that [Eng98] considers only circumscriptions without any varying predicate. Moreover
most of its results about circumscriptions concern what is called “the finite case”, which in fact corresponds
to finite propositional circumscriptions, still without varying propositions. The interest of this text comes
from its very general approach of positive formulas and related notions.
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When the circumscription is an X-mapping, i.e. when P is finite, or Z is empty, then
for any set of formulas X we have f = fx iff X" = Pos(<) (propositions 6.38 and
6.39, already reminded in theorem 6.40).

3. Again in the case of propositional circumscription, we have given a syntactical des-
cription of this set Iy = Pos(<) in any case (see proposition 6.32-1c and -2).

When V(L) is finite, there exists a smallest (for C) set X satisfying fx =
CIRC(P,Q,Z), for which we have given a syntactical description (see proof of pro-
position 6.32-2, finite case). For any set of formulas Y, we have fy = CIRC(P,Q,Z)
iff X CY C Pos(<).

4. For any formula circumscription f = f-, the set Pos(X) = Posy,(®), for which we
know an easy syntactical definition Pos,,(®) = ®"V, is the greatest set (for C) which
is strongly elementarily equivalent to ®. This means that ¥ = Pos,,(®) is the greatest
set ¥ such that, for any set of formulas ¥’, we have CIRCF(®U¥’) = CIRCF(TUT')
(propositions 5.29 and 5.33-2a).

Moreover, we have CIRCF(® U V') = CIRCF(¥ U ¥') for any set ¥ iff 8V = ¢/V
(proposition 5.33-2a again).

5. For any formula circumscription f = f<, the set ¥ = Pos.(<) = Pos,(®) is the
greatest (for C) set ¥ such that CIRCF(®) = CIRCF(9).
Moreover, we have CIRCF(®) = CIRCF(¥) iff Pos.(®) = Pos,(¥) (proposition
6.16).

6. For any propositional circumscription CIRC (P, Q,Z), the sets Pos(<) and Pos,(<)
are equal, thus we know a syntactical description of Pos, (<) in this case (proposition
6.32, point 4a for the result, points 1c and 2 for the syntactical description).

7. For propositional circumscriptions CIRC(P,Q,Z), in the cases when P is finite, the

set

Pos(<) = Pos.(®) plays two roles:

It satisfies 1) f = CIRCF(®) = fpos, (@) and 2) f = CIRCF(®) =
CIRCF(Pose(®)).

However, we may make much greater modifications to this set if we consider role 2
than if we consider role 1.

Indeed, we have, for any set X, fx = f = CIRCF(®) iff X" = Pos.(®).

However, for any set ¥ satisfying ¥V = Pos.(®), we have f = CIRCF(®) =
CIRCF(¥) (see proposition 5.33-2a, reminding that, if & =,. ¥, then & =, ¥).
And, if Z is not empty, this still does not exhaust all the modifications we can do.
Indeed, in this case we have f = CIRCF(®) = CIRCF(9) iff Pos.(®) = Pos.(¥)
and we may well have this equality, even if ¥V # ®"V: only, in this case, we do not
necessarily have CIRCF(® U¥') = CIRCF(¥ U 7).
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8. For propositional circumscriptions CIRC(P,Q,Z), in the cases when P is infinite or
Z is empty, we have only one set of “positive formulas” Pos,(<) = Pos(<) = Pos(=X),
i.e. Pos;(®) = Pos.(®) = P0os,,(®) = "V (proposition 6.32-4b).

Thus, when Z = (), we have only one set (let us design it by its syntactical description
®"V) to consider, and this set may be used for the two roles reminded in point 7. We
get then fx = f iff X" = ®"V and CIRCF(®) = CIRCF(¥) iff ¥V = ®"V.

®"V is the easier set of “formulas positive with respect to ®” to think about. Next comes
the set Pos(<) = Pos.(®), but the set Pos,(®) is not so easy to grasp. However, we hope
to have convinced the reader that it plays an important role also, and that there are good
reasons to call it a set of “positive formulas” for some aspects of this rather intuitive and
vague notion. The notion of “sets strongly equivalent” seems very important to us (we hope
that anybody recognizes that the notion of “sets basically equivalent” has an importance).
Indeed, if we want to define some combinations of formulas from two sets (see section below
7) corresponding to the combination of the rules associated to these respective sets, we think
that it is important to know what exactly is the exact nature of the “sets” considered, i.e.
when two sets are considered as “equivalent”. If we require only basic equivalence, it may
happen that adding a few new formulas to these two sets breaks the equivalence, which may
be unexpected. Adding formulas comes easily if we want to add new rules, or even, as we
are in the propositional case, new individuals (see next section).

7 The meaning of some of the logical properties of cir-
cumscriptions

In the following, when we write “we know that Tweety is ...”, we mean “all we know a priori
about Tweety is that Tweety is ...”.

7.1 Formula versions versus full versions

We give now a few words in order to compare the various versions, for any property. In
the full versions, such as (RM), any amount (finite or not) of knowledge may be considered.
In a formula version such as (RM1), we may start from some basic unrestricted knowledge
T, to which we are allowed to add only a finite amount of knowledge. In the formula-only
version such as (RM0), we must use only finite amounts of knowledge.

7.2 A short reminder about cumulativity

Remind that (CT) is a property of any circumscription, even in the predicate calculus case,
while, in the predicate calculus case, (CM) is true only in some cases: universal theories,
mixed circumscriptions only, and no varying function. However, it makes sense to consider
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such circumscriptions, due to the importance of (CUMU) and of the circumscriptions concer-
ned. Moreover we have seen that when, as in the present text, we restrict our attention to
the propositional case, any circumscription satisfies (CUMU).

Cumulativity allows to make “full use of lemmas™ Adding to 7 a set of formulas 7
which can already been deduced from 71 (meaning T2 C f(71)) does not modify the result
of a circumscription f. This is important from a knowledge representation perspective: if,
from what we know as certain, we can conclude that the bird Tweety flies, then, if we add
to our certain informations that Tweety flies, the set of conclusions is unmodified. This is
also important when effective computation is considered, as in these cases we do not need
to compute f again, because we know that f(71UT2) = f(T1).

In this situation (CT) alone says only that we do not need to consider formulas outside
of what could already been concluded before the addition of 75 to our certain knowledge,
because f(71UT32) C f(T1)- This is better than nothing, but clearly not as powerful as
cumulativity.

7.3 Reverse monotony, case reasoning and conjunctive coherence

(RM): the more things are known with certainty (the bigger 7 is), the less new results the
circumscription f produces: If 71 C T3, we cannot deduce more from f(73) that what can
be deduced from f(771) together with T itself. This justifies the name “reverse monotony”.
(RM), which is not implied by monotony, goes “against monotony” to some extend, while
preserving the basic property 7 C f(7) of pre-circumscriptions.

Also, for any pre-circumscription, (RM1) is equivalent to the deduction principle, intro-
duced in the context of circumscription and preferential entailment in [Sho88]: if ¢ is in
F(TU{p}), then ¢ = ¢ isin f(T).

The other way (the “easy way” for classical logic) of the full “deduction theorem”, namely
if o= isin f(T), then ¢ is in f(T U {¢}), is equivalent to (MON1), thus it is falsified by
all the interesting circumscriptions [Sho88§].

Finally, remind (proposition 3.5) that, for pre-circumscriptions, (RM1) is equivalent to
(CR1) and that (RM1) entails (CC1) while (RM) entails (CR) and (CC). For preferential
entailments we have more (proposition 3.8-1): (RM1), (CR) and (CC1) are always satisfied,
and (RM) is equivalent to (CCo0), and even to (CC) if V(L) is enumerable.

(CR1): If, when we know that Tweety is a bird, we can conclude that Tweety flies, and
similarly when we know that Tweety is a bat, then, if we know that Tweety is a bird or a
bat, we can still conclude that Tweety flies.

(CC1): If we know that Tweety is a red bird, then we cannot conclude anything about

Tweety that could not be concluded from the situations in which we know that Tweety is
red together with the situations in which we know that Tweety is a bird.
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7.4 Disjunctive coherence versus disjunctive rationality

We use the formula versions (“unary versions” in which one theory appears) below because
this facilitates the readability of the examples, but in fact our examples use the formula-only
versions (DCO) and (DRO). Remind that only (DCO) is satisfied by all the circumscriptions
studied in this text ((DC1) being generally falsified), while even the simplest version (DRO)
of the badly named “disjunctive rationality” is falsified by circumscriptions, except in very
elementary cases.

(DC1): If we know that Tweety is a bird or a bat, then we cannot conclude anything
about Tweety that could not be concluded from the situations in which we know that Tweety
is a bird together with the situations in which we know that Tweety is a bat.

From (CR1) we know that anything that can be concluded from the situations in which
we know that Tweety is a bird and also from the situations in which we know that Tweety
is a bat could also be concluded in the situations in which we know that Tweety is a bird
or a bat. This shows how (DC1) completes (CR1): circumscriptions stay in the “interval”
delimited by these two properties.

(DR1): Notice that if 7,77 and T are in J, we know that T C TH U T, if T C T,
or T C To. Thus, (DR) (definition 3.2) can also be expressed as: f(71 N 7T2) C f(7T1) or
F(TiNTa2) C f(To).

Similarly, for (DR1) and (DRO) (definition 3.3). Thus, (DR1) means that any set of
formulas which can be concluded from a situation 7 L1 V 9, that is any set X C f(7 U
11 V 1)), must be included in totality in f(7 U1) orin f(T U1bs).

For instance, if we consider everything that can be concluded from Tweety is a bird or a
bat, then either all this can be concluded from Tweety is a bird alone, or this can be conclu-
ded from Tweety is a bat alone. Contrarily to what happens with disjunctive coherence, we
are not allowed to “combine the two elementary situations” in order to get conclusions from
a disjunction. All we can do is to take each of the two “elementary situations” individually
(and this amounts to take only one of these two situations). We do not think that this
behavior is really “rational”. We give now an example involving circumscription.

Instead of using directly the propositional circumscription of definition 4.1, it is much
better to use formula circumscription of definition 5.1: one reason, already noticed in the be-
ginning of section 5, is that this avoids the artificial use of “exception propositional symbols”
E;. Another reason will be given at the end of subsection 7.5.

We consider only one rule with exceptions birds fly (BF) here. Suppose that our language
L contains only B;, F; and R; (i € I) as propositional symbols (read “i is a bird”, “i is able
to fly” and “i is red” respectively). Then we have the choice, with circumscription, to fix
the R;’s or to let them vary. With f = CIRCF({B; A ~F;}icr;{Ri, Bi}ic1,{Fi}ticr,), the
R;’s are fixed, while with f' = CIRCF({B; A =F;}ic1;{Bi}icr, {Fi, Ri}icr), the R;’s are
allowed to vary (B;’s fixed in these two cases). f translates the rule (BF) with an emphasis
put on the fact that we do not want that the color has any impact on the ability of a bird
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to fly, and f’ translates this same rule, without this emphasis. With f’, if we have some
informations about the color and the ability of a bird to fly, we are ready to force Tweety
to change its color in order to allow it to fly, as any normal bird should do. The adequation
of this translation may depend on the context. It is generally a good policy to allow any
proposition to vary, except a few particular ones (one reason why B;’s are fixed here is
that we do not want the contraposition of (BF), as it is generally not desirable to get the
systematic contrapositions of the rules with exceptions).

Here are a few examples: Our basic set contains only By: 7 = {B:1} (Tweety, denoted
by the index 1, is a bird). We consider two particular situations 77 and T3, in which we
have got some certain informations about Tweety, its color and its ability to fly. In 77,
Tweety is red iff it flies while in To, Tweety is red or (exclusive or, denoted by ®) it flies.
Ti=TURy & F1, T2 =T UR: ® F1. We get clearly f(7T;) =T, for j € {1,2}: as R, is
fixed, F also. Thus, Fy ¢ f(71) and Fi ¢ f(T2). Indeed, in each case, from what we know
about Tweety, concluding that Tweety flies would force its color to be red (in T1) or to be
not red (in T3). This behavior is an expected consequence of our desire that the color of a
bird does not change just to make it fly. f is a good way of translating rule (BF).

We get also F1 € f(T): a generic bird flies. Again, this is as it should be.

As R, @ F; is equivalent to —(R; < Fy), we have T1 N T2 = Th(T). Thus, we get
F(T1iNTa) L f(T1)U f(T2): f falsifies (DR) (this corresponds to example 4.30).

This illustrates the big difference between (DR) and (DC). As any circumscription, f
satisfies (DCO): notice that f(71)U f(T2) =T1U T2 =Th(1).

Thus, we see why (DCO0) does not prevent the (expected) behavior that we have des-
cribed, while no formalism satisfying disjunctive rationality can have this behavior. We
consider this as an example showing that disjunctive rationality is not a desirable property,
while disjunctive coherence does not have such a bug. [KLM90] gives a very similar example,
attributed to Lehmann and Ginsberg, in defense of a property (that they call “negation ra-
tionality”) close to (DRO). They do not develop enough their example to be convincing, and
we think on the contrary that such an example is a strong argument against disjunctive
rationality or related properties. Indeed, we have shown that we cannot translate the rule
(BF), with an emphasis put on the fact that we do not want the color change just to make
a bird fly, by using a pre-circumscription f satisfying (DRO). It is because circumscriptions
(except very elementary ones) falsify (DRO) that circumscription allows to translate such a
rule.

The following passage is written only for the sake of comparison with f and to provide
another way in which traditional circumscriptions falsify disjunctive rationality, correspon-
ding to example 4.31. Let us examine f’ now. We get, for the cases considered above:
Fy € f/(T1) and F; € f/(T2) and indeed we can no longer exhibit a falsification of disjunc-
tive rationality in these cases. Notice that we get also Ry € f'(T1): Tweety must be red in
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this case. similarly =Ry € f/(T2). This is an illustration of the fact that, with f’, we may
sometimes get new informations about the color of a bird, if this allows it to fiy.

However, f' also falsifies (DR) as can be shown by the following example, involving three
birds. We must consider at least three birds because the inclusion relation among the subsets
of a set with at most two elements is ranked!? (cf example 4.31).

T is {B1,B2,B3,~Fy V ~Fy V —F3,F; V F5 V F3} (there are ezactly three birds, and, in
order to make the example not too trivial, we know that there exists at least one flying bird
and one unflying bird). T1 =T UF, & F;, To=TUF, & F,.

We get f'(T;) = T; (j € {1,2}): For T there are two models, one in which only 1
flies, and one in which only 2 and 3 fly, and these two models are incomparable for the set
inclusion of the extensions of { By A—Fy, By A—F», B3 A—F3} in these two models. The same
happens for 75, with a model in which only 3 flies and a model in which only 1 and 2 fly.
Thus, F> ¢ f'(T1) and F> ¢ f'(T2).

Now, we have T1 N T2 = TU (Fa © F;)V (F1 & F)) = T U (F1 @ F3). Thus,
Fy, € f/(T1 N T32): from what we know in 77 N T2, nothing prevents 2 from flying. This
shows that f' also falsifies disjunctive rationality. Again, 71 U To = Th(L), which explains
why disjunctive coherence is not falsified in this case. This second example gives an even
stronger argumentation against disjunctive rationality: the three conclusions obtained here
are what should be expected from the rule (BF)?°, and we could not have this behavior if
f' should satisfy disjunctive rationality.

7.5 Coherent non monotony versus rational monotony

In (CNM1), if ¢ does not contradict f(7), we are certain that no conclusion ¢ in f(7) can
contradict f(7 Ue). This explains the name: it is not a kind of restricted monotony because
we do not get f(T) C f(T Up) as in (RatM1), but at least we know that the eventual non
monotony produced when adding ¢ remains coherent with our previous conclusions.

Any circumscription falsifies rational monotony (except a few very elementary circum-
scriptions). Let us add a few words here about (RatM) versus (CNM). We develop this point
because it is a hot topic at the time of the printing of this text. Indeed, some researchers
consider that the falsification of rational monotony is a drawback for a formalism, which
means that they reject circumscriptions as an appropriate way of formalizing common sense
reasoning. This is not our point of view, and we explain why. Remind that, in the presence
of (PC), (RatM) implies (DR), thus, our argumentation against (DR) in the preceding sub-
section was already an (indirect) argumentation against (RatM) also. However, we think

19As B;’s are fixed in f' also, we could again consider one individual only, but this individual may no
longer be supposed to be necessarily a bird.

20 At least if the rule is not understood with numerical considerations. If we want that there are the
least possible number of flying birds, the answers are not the expected ones in the cases of 71 and Ta.
Circumscription is not adapted to translate directly rules with numerical considerations, but only rules with
“sets considerations” we prefer the models in which we cannot eliminate any exception to a rule without
adding another exception elsewhere. For the use of circumscription for translating rules when we want to
count the exceptions, see [M0i98].
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that a common sense example illustrating directly why (RatM) is not desirable either is
important here, for our discussion about the common sense aspects of the logical properties
of circumscriptions given in sections 4 and 5.

We have the two rules with exceptions (BF) and penguins do not fly (PNF), also all
penguins are birds (PB). Taking propositions P;, B;, F; (i € I) to represent respectively
penguins, birds and flying animals, we want our circumscription f to have the following
behavior. T is {P; = B;}ics- F1 € f(T U By) and -F; € f(T U Py) (a “generic bird”
flies while a “generic penguin” does not fly). (T U P1) = (T U (P A By)), thus, as any
circumscription f satisfies (CNM1) we get: =P € f(T U By) (if we know that Tweety is a
bird, then we are forced to conclude that it is not a penguin).

We get also Fy ¢ f(T U Py), thus (RatM1) gives =P, € f(7 U By): in the presence of
rational monotony also, we are forced to conclude that birds are not penguins (with excep-
tions).

Now, we want to translate the rule without exceptions all steamer-ducks are birds, with
(BF) and also we do not want to conclude anything about the ability of steamer-ducks
to fly (these Patagonian birds are roughly equally divided into flying subspecies and non
flying ones). Then, taking propositions S; to represent steamer-ducks, we want our f to
have the following behavior, where 7 = {S; = B;}icr: F1 € f(T U B;) (as in the penguin
example) and Fy ¢ f(T U S1) (if we know that Tweety is a steamer-duck, then we do not
want to conclude that it flies). This “cancellation of inheritance” may be easily simulated
by some adequate circumscription. Again (7 U S;) = (7 U (S1 A By)), thus, if f is a pre-
circumscription satisfying (RatM1) we get: =Sy € f(T U B;). We get the new rule: “birds
are not steamer-ducks’ (with possible exceptions).

On the contrary, the fact that f satisfies (CNM1) does not necessarily enforce this rule.
This explains why, in fact, (RatM) is really stronger than (CNM).

This example illustrates clearly the difference between the two properties:

Coherent non monotony gives us as an unescapable result that
birds are not penguins (with possible exceptions).
Rational monotony forces the same rule, plus another one:
birds are not steamer-ducks (with possible exceptions).

The behavior of (CNM) looks better than the behavior of (RatM), and thus “rational
monotony” has got a misleading name. Indeed, as any species of bird is likely to retract
at least one of the properties shared by the “generic birds”, if f satisfies rational monotony,
each time we have enough informations to conclude that Tweety is a bird, but not enough
to conclude that it belongs to some already known species, we are forced to conclude that
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Tweety does not belong to any already known species of birds. We call this the “rara avis pa-
radox”, and consider this as a serious drawback. This is loosely related to, but significantly
different from, the “lottery paradox” (see e. g. [Poo89]).

Even if rational monotony is worse, coherent non monotony falls prey to a milder version
of the paradox: we are forced to conclude that Tweety does not belong to any species which
contradicts (even with exceptions) some property of generic birds. However, this milder
version looks much more reasonable: in the absence of any other information, it may be ac-
cepted as normal to consider that a given “generic bird” does not belong to a species which
contradicts (even with exceptions) some property of the generic birds.

Here is an example of circumscription having the “good behavior” advocated above.
T = {Sz = Bj}ie[, f= CIRCF({Bz A-F;, S; \NF;, ﬁSiVﬁFi}iel; (Bi)ie[, (FZ, Sj)ie[). The
intuition is that non flying birds B; A —F}’s should be minimized, while flying steamer-ducks
should be “fixed”, which amounts to minimize S; A F; and its negation together, in the line
of proposition 5.9.

Here are a few significative results:

Fy € f(TUBy),~F; ¢ f(TUBy) (a generic bird flies), ~Fy ¢ f(TUSy), Fy ¢ f(TUS)
(we do not know whether a generic steamer-ducks belongs to a flying or to an unflying
subspecies). We get also S; ¢ f(7T U B;p) and =S; ¢ f(7T U B;y): we do not know whether
a generic bird is a steamer-duck or not. We have used the possibility of falsifying rational
monotony.

Notice that we get also: S; ¢ f(7T UB1 A—Fy), and -S; ¢ f(T UBy A—F1): a“generic
unflying bird’ is constrained neither to be steamer duck nor not to be a steamer-duck, which
again, is an expected answer.

The traditional method does not take advantage of the fact that circumscription is not
constrained to conform to the unwanted rule (RatMO0). Let us remind the traditional method
here: it makes use of exceptional propositions E] and E? and of the prioritized circumscrip-
tion f' = CIRC((E?),(B;),(EL, F;,8;)) U CIRC((EY), (E2?, B;),(F;,S;)) [McC86]. Two
(kinds of) formulas are added to any given 7: T =T U{(B; A-E}) = F;, (S; A—E2?) =
E}}ier (in our example I = {1}) and we use f'(T g) instead of f(7). The “exceptional” E}
gives one formula (—E}) true in f/(7 gUB;) and false in f'(7T gUS1), thus (CNM1) (satisfied
by f’ which is a preferential entailment) suffices to enforce the unwanted =Sy € f'(TgUBy).

7.6 A new proposal to deal with the penguins example

Let us end this section with another example of the use of circumscriptions, in order to deal
with the penguins. This discussion is important in this text, for two reasons. Firstly, it
shows that considering properties such as the ones studied in this text does not suffice to
guarantee that an appropriate use of circumscription is made: we must also study carefully
the situation considered if we want to be sure that our formalization in terms of circumscrip-
tion is really adequate. Here, the problem cannot be expressed in terms of general properties
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of the kind of the properties studied above: the problem is more fundamental, and comes
directly from what we want to express. Secondly, it shows that in many cases one single
“ordinary” circumscription suffices in order to translate a set of rules. This goes against the
tradition which would use a prioritized circumscription in this case also, that is a union of
ordinary circumscriptions. We think that this is often the case, and that this reenforces the
importance of our study of the properties of circumscriptions: from all the properties and
counter-properties that we have seen, nothing says that circumscription is not, a priori, a
good method for translating sets of rules with exceptions. And indeed, we show now that
ordinary formula circumscriptions suffice (and even are better than some more complicated
traditional proposals) to translate most of the sets of rules.

The rules considered here are the rules already given above: birds fly (with exceptions)
(BF), penguins do not fly (with exceptions) (PNF) and all penguins are birds (PB), with the
propositions B;, P; and F; given above.

The traditional way to translate these rules is to use again the prioritized circumscription
' = CIRC((E})ic1,(Bi)icr, (E}, F;, P;)icr) UCIRC((E})icr, (B2, Bi)icr, (Fi, Pi)icr), pre-
cisely to use f'(T g) instead of f(T), where T g is defined now as Tgp = T U ({(B; A—E}) =
F;, (P; A=E?) = =F;}icr)) (T still contains {P; = B;}icr). Notice that from its de-
finition, f’ is the preferential entailment associated to the preference relation <’ defined
as follows: p <" v iff (uN {E?}icr C v {E?}ier and p N {B;}ier = v N {B;}ier) or
(kN {E}}Yier CvN{E}}ier and pN{E?, Bi}ier = v N {E}, Bi}ier)-

We consider, contrarily to what is generally written, that this translation is not appro-
priate in such a case, and we explain why:

Our set 7 concerns two individuals, and is restricted to the minimum possible in this
case: T = {P, = By,P, = By}. Let us consider the following two models of 7T g with
i={1,2}.

w=1{B1,Bs,P\,E{ ,E}}, v={By, By, P, F1, F5, E?}. Then, the preference relation <’
associated to f’ gives p <’ v. Indeed, as p N {E? E3} C vN{E? E3}, E!’s are not even
considered. We prefer that individual 1 (the penguin), does not fly, against the fact that
individual 2 (the bird) flies.

We do not think that this is appropriate. Indeed, the higher priority given to the mi-
nimization of E? with respect to the minimization of E] is uncontroversially justified only
when the same individual i is considered. With these two models, this is not so: we prefer
that the penguin “individual 1”7 does not fly, even if this prevents one other “generic” bird
(individual 2) from flying. And the same would happen if instead of just one individual 2,
we would have a flock of birds {Bs, - - - B1go1 } having the same properties: in order to make
one single penguin to conform to its rule (PNF), we should prevent one thousand generic
birds to conform to their own rule (BF). We consider this as a bug. The priority should
work only individual by individual: individual 1 should not fly because it is a penguin, and
the fact that it is also a bird, as any penguin, should not prevent it from not flying. Indeed,
otherwise the rule (PNF) could never been applied, and it is reasonable to assume that if
this rule about penguins has been given, then it should be applied and take precedence over
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any contradictory rule concerning the less specific category of generic birds. This notion
of “preference by specificity” is a natural way of reasoning (see e.g. [Moi90]). But we see
no real reason to prefer that individual 1 does not fly, against the fact that the individuals
2,---,1001 fly, we would like better to have no preference?! in this case. This is why we
make here another proposal, which still gives priority to the most specific rule in the cases
when it is uncontroversially justified, without presenting the unwanted behavior described
above.

We use the following formula circumscription:
f=CIRCF({P; A Fi, B; N (P;V —~F;) }icr; (Bi)ier, (Fi, Pi)ier)-

The general rule that we propose for combining a formula circumscription associated to
the tuple of formulas (¢})icr and the tuple of formulas (¢?);cr, with higher priority given
to ?, is to use the formula circumscription associated to the tuple of triples of formulas
(Pr A2, 02,01V o?)icr. This is possible even when ¢} and ¢? are not contradictory, and in
this case the behavior is much better than the behavior of the classical prioritized circum-
scription. And this is interesting, because it is not always easy to detect the cases when two
rules are contradictory: it is much better to have a solution which works in any case.

In our example, let us replace rule (BF) by

birds have a beak (with exceptions) (BBeak).

Then, ¢} would be B; A —Beak;, which it is not contradictory with ¢? = P; A
F; (we leave rule (PNF) as it is). We consider that CIRCF({¢} A ©?,¢2, 0} V
02 }ier; (Bi)ier, (P, Beak;, Fy);cr) is a good way of translating rules (BBeak) and (PNF)
together, for sets containing (P; = B;)icr, and that this gives acceptable answers for sets
T in which Beak; does not contradict —F; and also for sets in which Beak; and —F; are
contradictory. As this is not the main purpose of the present report, we do not elaborate
more on the subject in order to explain why we consider this proposal as appropriate, and
we leave the interested reader to make his own opinion on the subject, concentrating our
attention to the case where there is a contradiction.

When there is a contradiction, as for rules (BF) and (PNF), our triple vanishes into a pair:
(02,01 V©?)icr, and this pair is what we have proposed above, because (P; A F;)V (B; A—F;)
is equivalent to B; A (P; V —Fj;), provided we suppose also P; = B;. We give here one
justification of our claim that this method is really preferable to the classical prioritized
circumscription: The main difference, with respect to the associated preference relations, is
as follows: as seen above, for classical prioritized circumscription f’, with the two models
w={B1,Bs,P1,E} ,E}} and v = {Bi, B, P1, F1, F», E?} given above we prefer p to v. This
is no longer the case with our proposal f: if we consider the interpretations in the “useful
language” (without the E7’s), we get uo = {B1, B2, P} and vy = {By, Bs, P1, F1,F>} and

21Remind (cf note 20 page 88) that we do not count the exceptions, thus no preference should be expected
here.
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the preference relation < associated to f does not choose between these two models of 7",
thus f(7") = T". The preference is given to rule (PNF) about penguins against rule (BF)
about birds only when the same individual is concerned. The drawback detected above is
suppressed.

To illustrate why we think that the behavior of our proposal conforms to what could be
expected from the two rules (BF) and (PNF) in the presence of rule (PB), we give a few
significative basic examples, where 7 = {P; = B }:

Fy € f(TUB1),~F1 ¢ f(TUB:1) (a generic bird flies), -Fy € f(TUP,), F1 ¢ f(TUP)
(a generic penguin does not fly). We get also =P, € f(T U B;) (a generic bird is not a
penguin) which, as explained above, is unavoidable because any circumscription satisfies
(CNM1).

Notice that we get also: =F; € f(T U By A (P V —F}1)), which is as it should be: if we
know that Tweety is a bird which is either a penguin or unable to fly, then Tweety is unable
to fly.

All these results about “individual 1” are also true with the classical prioritized circum-
scription f'(7 g), the two solutions being really different only when several individuals are
considered. Notice that what we have said for the properties of circumscriptions applies to
prioritized circumscriptions (with some variations in the conditions of applicability). And
here, the most significative difference between the two proposals f(7) and f'(T g) does not
seem to come from a difference in behavior with respect to the properties studied in this
text. This is an example showing that we must regard also beyond such properties in order
to decide which translation is better. Indeed, the property asking to have no preference
between the models po and vy given above does not seem to be expressible in general terms
such as those of (RM) or (CNM), even if it describes some precise behavior that we want
that our formalization respects.

8 Conclusion

We have given three kinds of results.

1) We have given the list of the main properties of the reasoning through circumsecrip-
tion known to us at this time. This subject is surprisingly little known, and in the predicate
calculus case the results are not still fully precised (however see [MR99] for various results).
Thus, we have studied thoroughly the (infinite) propositional case as a first step towards the
full solution for the predicate calculus case. This case also was very badly known, as shown
by some recently published literature dealing with propositional circumscription, even in the
finite case. We have made a systematic comparison with what is known for the predicate
calculus case. Roughly, the properties are the same. The big difference comes from the
applicability conditions of some precise property or version of a property. Our study of the
propositional case is very detailed, it includes the formula (propositional) circumscription,
and we have taken care to give exactly the version of each property which holds, and in which
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cases. The conclusion of this first study is that nothing seems to prevent circumscription
from translating sets of rules with exceptions.

2) In our study of formula propositional circumscription, we have provided the first known
characterization theorem. We have also studied carefully when two sets of formulas give rise
to the same circumscription. We have shown that two equivalences are to be examined. In
the basic equivalence, the sets give rise to the same circumscription, but adding some given
formulas to these two sets may break the equivalence. This is why a stronger equivalence,
preserved when adding a set of formulas to our two sets, must also been considered. And
we have shown that this strong equivalence corresponds exactly to have the same closure
for A and V. We have also defined precisely the kind of “closure” which corresponds to the
basic equivalence. This gives rise to two other sets of “positive formulas”, which were never
studied seriously before to our knowledge (except partially in our [MR98]). We have shown
that for ordinary circumscription and also in other cases, these two sets coincide, and this
set is easy to describe. This is the set of the formulas which can never be obtained as a result
of the application of the formula circumscription (the formulas inaccessible for this circum-
scription). For ordinary circumscription we have given a syntactical description of this set.
This set may sometimes be used also in order to give a rather paradoxical description of the
circumscription from their inaccessible formulas. For general formula circumscription, these
last two sets are distinct, thus we get a third, more complex, set. We have shown that in
any case, two sets ® and ¥ of formulas give rise to the same circumscription if and only if
this “third set of formulas positive with respect to a given set of formulas” is the same one
if we start from ® or from U.

3) In order to illustrate the utility of our study of circumscription, we have given an
intuitive interpretation for some of the main logical properties studied here. These results
help understanding the behavior of the inference by circumscription, which is an important
matter. This may help to decide whether circumscription is adapted to a given situation,
and also which precise circumscription must be used. We have provided an example with a
circumscription which shows that the traditional methods do not make full use of the proper-
ties and counter-properties of the circumscriptive inference. We have also given an example
showing that we must still regard sometimes beyond such properties in order to be sure
that the formalization chosen for a given set of rules corresponds to what is expected. The
examples we have given also show that a unique formula circumscription may do a better
job than some more complicated unions of classical circumscriptions which are traditionally
advocated in the literature. Thus, our study of the logical properties of classical formula
circumscription takes a greater importance. We have shown, in small examples, how we
can combine naturally the sets associated to the translation of two rules in order to get the
set associated to a combination of these two rules. Thus, our study of the “equivalences”
between sets of formulas to be circumscribed takes a greater importance.
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As a conclusion of our study, we hope that we have given enough indications and enough
examples involving circumscriptions in order to show that circumscription is indeed a good
way to formalize rules with exceptions.

Still a lot of work must be done. Even in the propositional case, it is possible that some
property or counter-property, important from a knowledge representation point of view, is
missing. And the predicate calculus case needs much more investigations, which could take
some inspiration in the present work.

Finally, the problem of which circumscription (or possibly union or any other combination
of circumscriptions) is the most appropriate to translate a given set of rules with exceptions
should be re-examined in the light of these properties. Indeed, these properties were almost
completely ignored when the first proposals, which are still considered as the classical ones,
have been made. We have exhibited two simple cases in which the traditional methods are
inadequate. We have given a few “real examples”’, but clearly this is far from sufficient in
order to solve this complex subject, and our goal was mainly to convince the reader that
this is an important open problem. We do not pretend to have solved this problem. But we
pretend to have given some tracks in order to solve it.

We think that the small examples should be re-examined carefully before trying to solve
(by chance?) greater examples. We would advocate research in this direction: You have
several (let us say two to begin with) informal “rules” with exceptions. You know how to
translate each of these rules in terms of a formula circumscription, that is you know how to
associate a set of formulas to be circumscribed to each of these rules (notice that even this
step is not simple). You consider now these rules together. The problem is to design precise
combinations of these sets of formulas which give automatically the new set of formulas
which corresponds to the translation of all the rules together. We have given very partial
examples, in the case when one rule should take precedence. But more examples should be
considered, and more complex combinations should be designed. We think that this is a
largely unexplored way, which should be at last studied carefully, if circumscription is to be
considered as a serious candidate for translating such sets of rules.

So, even if our study brings many precise results about circumscription, we think that
we have asked more questions than solved problems. However, we think that our work is
important in order to begin to attack the main problem circumscription is faced with: how
to translate a set of informal rules in terms of circumscription without being forced to do
“manually” much part of the work in order to find the good circumscription. And, to this
respect, all the three kinds of results we have given are important. The logical properties
may help in finding the adequate set to be used in order to translate one rule, or also to
describe the adequate combination of sets to translate a combination of rules. The study
about the equivalences between sets allows to know precisely which sort of sets are considered
here. Indeed, two sets strongly equivalent may be assimilated, but not necessarily two sets
which are only “basically equivalent”. The small examples studied show that we should not
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necessarily stick to the traditional methods, as they have some serious bugs. Also, these
examples show that simple solutions do exist.

As a last word, we would like to emphasize the fact that all this study may be pursued
in the propositional case. Indeed, we have shown that these problems exist even in this
“simple” case, and that finding solutions even in this case is more complex that it could
seem. In our opinion, the predicate calculus case should be examined later, and should not
bring really new tools, with respect to the problem evoked here: how to translate a set of
rules, in order to obtain expected (or if not “expected” when the situation is too complex
for ordinary human reasoning, at least seriously justifiable) answers.

If this problem has a solution, then circumscription will be considered as a valuable tool.
And then, the problem of its automatization will become important. We think also that
our work about the “equivalences” between sets of formulas and our syntactical study of the
“positive” formulas may be used in order to help this automatization.
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