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Abstract:

A major issue in cardiac imaging is the assessment of cardiac function and particularly the
identification of ischemic or infarcted tissues. We present in this article a method to reconstruct
the displacement field of the left ventricular (LV) motion using 4D planispheric transformations of
time and space combined in a first step with B-spline tensor products.

Because of the 4D modeling, a) it is possible to include any tag plane direction as input data.
b) The use of planispheric coordinates makes the numerical evaluation more stable as compared
to prolate spheroidal coordinates, the equivalent focal point being much further from the apical
area, of the heart. This therefore avoids mathematical instability when the material points of the
myocardium are too close to the apical focus. c) In the temporal modeling, a simple adaptation is
possible to changing temporal dynamics, such as introduced by ectopic pacing or rapid filling after
systole. d) Finally, the strain analysis and displacement parameters that are used for the spatial
modeling are computed at any point of the LV volume.

Experiments are conducted on a normal and a pathological LV (posterior infarct) in order to
assess the tuning of the parameters of the method. The mean RMS-distance error is less than 0.5mm
for both LVs. Finally, the motion is analysed as zeroth (displacement) and first order parameters
(strain), which estimate are smooth.
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Suivi et analyse du mouvement & partir d’images IRM
marquées avec des transformations planisphériques 4D

Résumé : Un des enjeux majeurs de 'imagerie cardiologique est 1’évaluation de la fonction
ventriculaire, particuliérement la détection des tissus ischémiques ou infarcis. Nous présen-
tons dans ce rapport une méthode pour reconstruire le mouvement du ventricule gauche a
partir d’images IRM marquée (tagged MRI) grace a des transformations planisphériques 4D
de ’espace et du temps, combinées avec des produits tensoriels de B-splines.

Gréace a la modélisation en 4D, a) il est possible d’inclure des directions de marquage
quelconques. b) L’utilisation de coordonnées planisphériques rend le calcul numérique plus
stable qu’en utilisant des coordonnées “prolate spheroid”, le point focal correspondant étant
suffisamment éloigné de ’apex pour rester loin du myocarde. Cela évite des problémes
d’instabilité numérique quand ce foyer est proche de 'apex. ¢) La paramétrisation temporelle
est modifiable de maniére a respecter la dynamique temporelle telle qu’elle peut apparaitre
lors de I'étape rapide de remplissage en début de systole, ou bien lors d’une stimulation de
contraction. d) Enfin, Panalyse des déplacements est calculée en tout point du volume du
ventricule gauche et est continue en temps et en espace.

Des expériences ont été réalisées sur un cceur normal et un cceur pathologique (infarctus
postérieur), de maniére & assurer le réglage des paramétres de la méthode. L’erreur constaté
dans la reconstruction est inférieure a 0.5mm en moyenne dans les deux cas.

Mots-clés : mise en correspondance non-rigide, 4D, image médicale, cardiologie, IRM.



4D planispheric transformation for tracking LV motion with tagged MRI 3

Introduction

A major issue in cardiac imaging is the assessment of cardiac function and particularly the
identification of ischemic or infarcted tissues [12]. Modern techniques provide 3D images
which describe either the anatomy of the heart (MRI, for instance) or its functionality
(Nuclear Medicine PET or SPECT imaging, for instance). It is possible to get sequences of
such images over the whole cardiac cycle; such sequences are real 3D movies of the motion
of the heart. The cardiac motion, like the motion of any real object in the body must be
therefore described as a 4D continuous and regular transformation of time and space.

We consider here the problem of tracking and analysing the motion of the LV from tagged
MR images [3, 23]. The whole space is tagged with a set of planes that deform with the
tissue, providing non-invasive markers that feature the local displacement of the myocardium.
The intersection of those tagging planes with the imaging plane appear as dark lines in the
images.

Many methods have been proposed to use this information. First, it is necessary to
identify the tag lines. Different techniques are reported in the litterature using pattern
matching [9], snakes [13, 21| or spline modeling [1, 17, 16], with a different level of automation,
none being fully automatic at this time. As the tag lines are only intersections of the
image plane and the deformed tag plane, the reconstruction of the motion is an ill-posed
problem using only one series of images. Using the strategy of [19, 10|, which consists
in acquiring three different series of images of the same heart using orthogonal tagging
directions, the motion can be reconstructed, using either constrained models [20, 19, 22| or
free-form deformations [7, 21, 18, 10| as in this article.

Unfortunately, because the correspondence is defined between two successive images,
regularity and periodicity in time are not guaranteed. We define a 4D planispheric trans-
formation (4DPT, [6]) as a function of time and space deforming a point X into a point x
which is supposed to be the location of point X at time ¢:

f:R*xR — R?
(R,1) — X = f(R,0)

This definition of the 4D transformation yields the definition of 2 categories of functions
which are easier to understand and which are intrinsically regular:

Traj = f(X,-) is the trajectory of M over time,
D, = f(-,t) is the deformation function of the object at time t.

The 4DPT combines several properies which suit well to problem of tracking the LV motion
from tagged MR:

1. it defines a class of transformation of time and space in which the temporal conti-
nuity and potential periodicity are included,

2. it defines a class of highly constrained transformations in order to have a relevant
description of the LV motion with a reduced number of parameters,
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3. it is able to retrieve canonical motions with minimal computation, providing an easy-
to-interpret quantitative analysis of the motion,

4. the equations are written in such a way that there is no mathematical singularity
at the apex due to the use of a polar system,

5. last, but not least, it is a transformation which combines the unknown parameters in
a linear way to make their estimation easier and robust.

The paper is organised as follows: in section 1, we explain the method we use to retrieve
the motion information from tag data. In section 2, we recall the definition on the 4DPT and
explain how to estimate it from the data. Experiments on human heart data are presented
in section 3, these experiments are discussed in section 4, before drawing a conclusion on
this work.

1 Tag displacement field reconstruction

1.1 The problem

We introduce here a few notations that are illustrated on figure 1. Let us consider the tag
surfaces S, at time ¢,,. At tagging time ¢, those surfaces St are planes with known normal
nr. The surface S,, intersects the slice at a line L,,.

Pr
0y’

dlice dlice

forward approach backward approach

Figure 1: The tag plane at tagging time Sp deforms into surface S, at time ¢,. Left, the forward
approach estimates the mapping which deforms St onto S, and right, the backward approach
estimates the mapping which deforms S,, back onto St.

1.1.1 Forward approach

The forward approach consists in estimating the deformations D;, given points Pr on differ-
ent tag lines Ly and target points P, at time ¢, (figure 1, left). In order to write explicitely

e e = 4
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the constraint (D, (Pr) € S,), we need to know the equation of the surface of S,, and
therefore it is necessary to model its shape.

In [15], this surface is interpolated with thin plate splines [4]. The authors compute the
intersection of any 3 orthogonal planar surfaces it is possible to define in the surface, these
intersection points featuring the same material point in the sequence. The displacement field
is therefore estimated only at discrete locations. In [18], the tag surfaces (deformed tag planes
at each time frame, traced as lines in each slices) are interpolated with B-spline surfaces.
Intersecting the tag surfaces in a similar way as it is done in [15], the deformation is computed
from those landmark points with a finite element method using polynomial element basis
(p-version of the finite element). In [21], the deformation model for the deformation D, is
a B-spline tensor product (called by the authors “B-solid”). The tag detection is combined
with the estimation of the deformation, which is processed as a minimization of the energy
of a 3D-snake. This energy integrates the work of internal forces for regularity constraints
and external forces that push the B-solid into the tag lines. This latter method has been
only applied for a stack of short-axis slices with SPAMM tag pattern without integrating
any long axis displacement information.

1.1.2 Backward approach

Here, the methods estimate the deformation ®,,_,; which defines the location at tagging time
tr of a point P, taken at time t,.

(I)n—>T(Pn) = Pil“ (1)
®,,_,7 is thus the inverse of the 4D transformation at time ¢, (figure 1, right):
Oy = [Dy,]7Y

The vectorial equation (1) can be decomposed into 3 scalar equations which allow to
estimate ®, ,r at P,. From the planar tag deformation, it is only possible to write one of
those three, the one that corresponds to the direction of the normal to the tag plane. As a
matter of fact, the only thing we know about P, is that at time ¢, it was in the plane S;:
its location within this plane is not determined (see figure 2):

(I)n—>T(Pn) € Sr (2)

As the equation of St is a plane, the constraint (2) is easier to write than in the case of
the forward approach, where S,, can be a surface of complex shape which would have to be
modeled. For a given point P, if the tag plane equation is noted:

ar+by+cz—d = 0
<~ P.’I’LT = d

equation (2) can be rewritten :
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dice

dice

Figure 2: Top, a tag plane St is deformed at time ¢, so that it becomes a surface S, which
intersects the slice at a line L,,. A point P, of this line was a point Pp in Sr at tagging time 7.
Bottom, it is only possible to estimate the displacement Py, Py, in the direction of the normal to the
tag plane np, but not in plane St.
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Using at least three independent directions for nr, the problem is no longer underdetermined
and the transformation ®,_,7 can be estimated.

Some techniques have been implemented to reconstruct a dense displacement field from
constraints (3) written for every tag point. In [22], the left ventricle is modelled with a finite
element mesh whose basis functions are defined by heuristics. In [19], the model is a prolate
spheroid deformed with spherical harmonics functions. Both of them are dedicated to the
LV motion, due to the a priori in the geometry they use. In [10], the displacement field is
reconstructed by formulating a stochastic estimation criterion from finite differences model.

For all those methods, the forward transformation is computed by point-to-point inversion
with an arbitrary precision. In this article, we propose a method for which we compute
the backward transformation with B-splines tensor products, the forward transformation is
then a 4D planispheric transformation whose estimation is based on the B-splines backward
transformations.

1.2 B-splines tensor product for the backward deformation

The aim is here to estimate at each time frame n the transformation ®,,_,r. In order to get
rid of heavy notations, we will rename as ® the transformation we want to estimate. We
use B-splines transformations using constraints (3), the definition and estimation of such
functions is detailed in the next paragraphs.

1.2.1 Definition of the B-spline transformations

B-splines are piecewise polynomials of degree K that are defined by a set of knots and re-
cursive formulae [11]. Those defined knots are the junction points between two consecutive
polynomials, therefore they set the degree of continuity of the function at that point. Those
functions define a basis of the vector space of the piecewise polynomials with specific conti-
nuity constraints at the knots. A B-spline curve is a linear combination of the B-spline basis
functions.

For a transformation ® which deforms a point P onto a point ) = ®(P), the coordinates
of the deformed point is defined as a tensor product of B-spline curves |7, 8|, as for the
B-solid defined in [21]:

n®—1n¥—1n*-1

% (z,y,2) = Zo Zo kz Al-B x).B(y).Bi(2)

n*—1n¥—-1n*-1

n®—1n¥—1n*-1

% (x,y,2) = Z Z Z AZy-Bi ().B] (y)-Bi(2)

i=0 j=0 k=0

where we define, for the x coordinate for instance, A” as the set of control points, BY the i-th
B-spline basis function of degree K and n, the number of control points. Here, we choose
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cubic B-splines (K = 3) defined by a regular set of knots, ensuring a C? continuity of the
transformation.

1.2.2 Estimation

Given the set of knots (or the number of control points) and the degree of the polynomials
that define the basis functions, a transformation is fully determined by a set of control points
A. In order to estimate such a set from tagged data, we minimize a least squares criterion
which is defined as a sum of two terms:

1. deformed tag points belong their original plane

Let us note (%, ®¥, ®%) the cartesian coordinates of function ®. For each tag plane
of index p, its equation is ap.x + by.y + cp.z — d, = 0, with aﬁ + bf) + cf, = 1. p labels
the planes for all the directions the data provides. Thus, each tag point FP,; at time
n belonging to tag plane S, , has coordinates P,; = (P%,, P? P7.). The term Epignes

R 22
is the normalized sum of the residual distances of the deformed P, ; to their tag plane
ST,pI
1 P Np 9
8planes(q)) = W Z Z (ap.(I)w(Pp,i) =+ bp.(by(Pp’i) —+ cp_(I)z(Pp’i) — dp)
- p=11i=1

N, being the number of tag points in plane S,, N the total number of points (N =
P

Y " N,) and D a normalisation distance featuring a characteristic size of the data. For
p=1
this, we compute the centroid of the tag points and the distance is defined as the

standard deviation of the distances of the tag points to this centroid.
2. the deformation is smooth
The smoothing term is the normalised integral of the norm of the second derivative of

®, as for |7, 8|.

1

gsmooth ((b) = ﬁ

/133 (82, + @2, + B2, + 282 + 287, +207 ]

Minimizing this part tends to reinforce the stiffness of the transformation.
The final criterion is the weighted sum of those two terms:
g(é) = 5planes((1>) + p-gsmooth(@) (4)

The criterion is quadratic in the control points A%, AY and A*. We are therefore ensured
of finding a unique global minimum provided the criterion is positive definite. In our im-
plementation, the criterion is miminized with a conjugate gradient method on the normal
equation derived from (4).

e e = 4
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The constraints like (2) are partial constraints on each point, we need three orthogonal
equations like (2) so that the position of the point is well determined. Close to the boundaries
of the myocardium, there is only one or two constraints instead of three (underdetermined
problem), creating a singularity in the matrix: the term of the criterion Epjnes is not positive
definite, we need to add the smoothing term &0, S0 that the global criterion is positive
definite and the normal matrix is invertible. Practically, without that smoothing term, a tag
point deformed back to its plane might be stretched far away if it is close to a boundary [5].

The transformations @, ,7 (n = 0.7 — 1) are estimated sequentially, using Q1)1
as the initial transformation for the conjugate gradient (identity for n = 0). With all the
backward transformations, we compute a 4D planispheric transformation.

2 The 4D planispheric transformation

2.1 Definition

We recall here the basic definitions presented in [6]. The 4D planispheric transformation
(4DPT) is adapted to describe with a minimum of parameters a complex motion such as the
LV motion. This model of the deformation of the LV is a crude approximation compared
to complex biomechanical models [14] or highly descriptive kinematic models [2|, but it has
enough freedom to describe both normal and pathological motions.

Given a point X (z, 9, z) in cartesian coordinates and a time value ¢, the transformation
gives a point x' (', ', 2') which is assumed to be the location of point M at time ¢. The
cardiac motion is supposed to be regular in space and periodic in time. The 4DPT is therefore
defined as a differentiable function in spatial variables x, ¥ and z and as a differentiable
and periodic function in time variable ¢.

The 4DPT f is defined in order to describe locally some specific motions of points on
the myocardium. We approximate the shape of the left ventricle as a stretched sphere in
the long-axis direction. This is, of course, a very crude approximation as the shape of the
heart is much more complex, however our goal is not a precise definition of the shape of the
muscle, but a plausible discrimination of characteristic motions.

For that particular purpose, we separate the motion of a point of the heart into three
canonical orthogonal motions (Fig. 3):

e motion 1: a radial motion which decribes the contraction or dilatation of the whole
structure towards a “center”,

e motion 2: an apico-basal rotation (polar twist) around the apico-basal axis which
describes the twisting motion of the LV points,

e motion 3: a motion (tangential to surfaces of constant ) which describes the elevation
of the LV points in the apico-basal direction (the shortening of apex-base distance
during systole).
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-t
=0
-t

= @J P3

P.-/PZ

2
Y
P

Figure 3: The top three frames illustrate the orthogonal motions described in the text. Bottom,
point P is transformed in P; by the first motion (centripetal contraction), P; is transformed in P
by the second (apico-basal rotation) and P, is transformed in P by the third one (elevation).

e e = 4
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We describe these motions in a “3D-planispheric” coordinates system (PCS), which is a
combination of spherical and cylindrical coordinates. Our tranformation function is thus
defined as a composition of three functions:

f = P2Co fpo(C2P

The function C2P switches from cartesian to 3D-planispheric coordinates, P2C' switches
back from 3D-planispheric to cartesian coordinates (of course, C2P = PQC_l). fp is the
function which is described with the three basic motions in 3D-planispheric coordinates. The
next two paragraphs recall the definitions of these functions.

2.2 The planispheric coordinate system

In 3D cartesian space, we define a 3D-planispheric reference system given a center C, a
base B and a set of two orthogonal vectors u (long axis direction from apex to base) and v
(septum to lateral wall). For each point P, a center point Hp is defined on line (CB). From
this center point, a distance r = ||HpP|| and two angles (latitude § and longitude ) which
are defined just as in the classical spherical coordinate system (figure 4). The position of
Hp on the line CB is given by the following formula, for which a solution is described in [6]:

CHp = (1—cosh)CB (5)

Planispheric Prolate spheroidal

Figure 4: A representation of ten surfaces (R = C'). The black lines show different points P and
their associated center Hp for both planispheric and prolate spheroidal coordinate systems.
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Finally, from the polar coordinates r, 8, ¢, we compute the coordinates X, Y and R in
this system as follows:

0
X = -
7rcos(<p)
Yy = = 6
- sin(¢p) (6)
R = —
0-7'

The two equations defining X and Y recalls the equations that define a projection of a map
of the earth from one of its poles. This is why the word planispheric is used. The constant
o, is a normalisation coefficient so that X, Y and R are dimensionless numbers of the same
range.

The PCS is similar to the prolate spheroidal system, considering C and C' (its symmetric
with respect to B) as the focal points and B as the center. There are some significant
differences that make us prefer the PCS: the surfaces of constant # are cones instead of
single sheet hyperboloid surfaces. Moreover, the distance of surfaces of constant R (A in
prolate spheroidal) is closer in the apical area than around the basal circumference. Finally,
and this is the most important difference, while fitting a set of real data to a surface of
constant R, the optimal apical point in the prolate spheroidal system is closer to the apex
than the one for PCS.

In our experiments, to fit an “optimal” coordinate system, we fit a surface of constant R
to the epicardial contours that were defined by the user while segmenting the tag data. Using
the prolate spheroidal system, the apical focus is so close to the apex that it may be included
in the myocardium, creating some mathematical singularities spoiling the overall process of
displacement field reconstruction as it may happen using [19], for instance (Fig. 5).

2.3 The 4D transformation in PCS

In the 3D-planispheric system, given a point P (X, Y, R), the transformed point P’ (X',
Y’', R') through fp is expressed as follows:

XI = (L()X — U,1Y + a9
YI = CL1X + a()Y + as (7)
R = aR+as

The parameters a, (p = 0...5) are continuous and differentiable functions of r, 8, ¢ and
t. In our formulation, we choose the parameters as polynomial functions in r and # and
quadratic B-splines in ¢ and ¢. Of course, the B-spline in ¢ is 27-periodic, the B-spline in ¢
may be periodic if desired, depending on the data. The transformation is explained in more
detail in [6].

e e = 2
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planispheric fit prolate spheroidal fit

Figure 5: The LV epicardium (thick line) is fitted by a surface of constant R (dashed lines) in
both planispheric (left) and prolate spheroidal (right) coordinate systems. Left, the apical focus
(C) is in the middle of the cavity whereas on the right, it is close to the apex and may be included
in the myocardial wall.

2.4 Motion parameters

These equations (7) can be described as a local 2D similarity in X and Y (a translation,
a rotation and a uniform scaling) and a locally affine transformation in R. Using this
description, we can write equations for the motion parameters we defined in section 2.1:

e radial motion: the a4 factor,
e apico-basal rotation (polar twist): the angle of the 2D similarity,
e elevation: the scaling factor of the 2D similarity.

As those motions are computed directly from the displacement field, we call them “Oth
order parameter” as opposed to first order parameter like strain which is computed from the
derivative (gradient) of the displacement field.

2.5 Estimation of the 4D transformation from tag data

In order to compute a 4DPT, we need to have a series of pairs of matched points between
time 7 and each time frame ¢,. For each n, each tag point P, ,, is matched to its deformed
tag point at 7, which is estimated as being ®,,_,7(P, ). This point should be transformed
by the TP4D f into P, , itself. We thus can write a least squares criterion to estimate f as
follows:

C(f) =2 g - d(f (®asr(Pam)sta) 5 Pam )’ (8)
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where d(+;-) is the distance and «,,, a weighting coefficient whose value is related to the
reliability of the pair [(®n—7(Pnm), tn); Pom]. Minimising C for f is done identically as in

[6].

3 Experiments

The experiments of tag displacement field reconstruction with 4D planispheric transforma-
tions have been conducted on a normal patient and a pathological study. The pathological
study is a LV of a patient who suffered from a 70 % LAD artery occlusion which induced an
infarction in the posterior wall 8 days prior to imaging.

The images were acquired on a 1.5 T magnet (Signa 1.5T, GE Medical Systems, Mil-
waukee, WI) with a spoiled GRASS sequence (FOV = 32c¢cm, TR = 3.6ms, TE = 1.5ms, flip
angle = 12 deg) with partial k-space acquisition (11 lines of k-space per cardiac phase, tag
plane normal parallel to the readout direction). The whole protocol necessitates around 20
heart beats (which is doable in one breathhold) for acquiring two slices. The sequence is
composed of 11 time frames covering systole and early diastole (last two time slots). The
time frames are equally spaced every 40 ms. We use 3 series of images, one of each is tagged
in a direction: 2 sets of planar tags (SA0, SA90) perpendicular to the short axis plane and
one (LA) orthogonal to the long axis planes. This samplig is the same as described in [19].

Figure 6 shows the region of interest selected in the image planes for the tag and contour
extraction. It also shows some images of the normal heart at end diastole and at end systole.
Figure 7 shows the tag and LV contour points segmented with the semi-automated package
“FindTags” [13].

4 Results and Discussion

4.1 3D display of the LV motion

In order to control how the deformation fits with the tag data, the tag planes are computed
and deformed at each time frame with the 4D transformation. Figure 8 shows the intersection
of these deformed tag planes with the image slices, figure 9 shows these tags at three times
of systole in wireframe display for all short axis slices. Long axis tags have been removed
for clarity in this figure. The intersection points are computed so that they have the same
abscissa along the tag line as do the original data points. We end up with a “simulated” set
of tag points which has the same distribution as the original data set, which therefore allows
us to compute the difference in position of the tag points as an offset in the direction of the
normal to the tag plane. The tag lines are smoother than the original data and follow the
tags in the images, as shown in figure 8.

With the 4D planispheric transformation, it is possible to apply the displacement field
on the whole volume of the image. On figures 10 and 11, a mesh generated from the contour
data is deformed over systole and displayed at three times (beginning, mid and end systole).
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Thanks to the equations of the 4DPT, there is no mathematical singularity in the apical
area, so the displacement of the apex can be visualised and controlled. In the infarcted case,
it moves significantly more than for the normal case. As a matter of fact, the posterior wall,
due to the infarction, does not contract in the same proportion than the anterior wall, and
the apex is pulled towards the anterior wall. This is visually rendered in figure 12, in which
the trajectories of some points of the mesh are displayed. Whereas there are 11 time slots,
20 points were used to interpolate the trajectory lines, which are, in our model, smooth
quadratic B-spline curves.

4.2 Error analysis: choosing the number of control points

Figure 13 displays the rms-distance error graphs for the computed B-spline backward trans-
formation at each time slot, for each series (SAO, SA90 and LA) and for all tag points. The
distance which is computed is the distance of the tag point deformed by each ®, ., to its
original tag plane. The mean error are drawn for each time slot, a vertical segment of size
the standard deviation of the distances shows the amplitude of the distribution around its
mean. Time slot 8 corresponds to end systole, for which the deformation is greatest, induc-
ing a peak in the error (around 0.3mm, with a standard deviation of 0.3mm). Figure 13 is
generated with the transformation defined by 8x8x8 control points.

Figure 14 displays the rms-distance error graphs for the computed B-spline backward
transformation at end systole for different number of control points, from 4x4x4 to 15x15x15.
This display shows how to reasonably choose the number of control points so that the tensor
product reliably models the deformation. The tag detection procedure has a theoretical
accuracy of 0.1mm [13], assuming a perfect tag profile in the image and a tag CNR of at
least 10. Practically, due to tag fading at late time slots, to the thickness of the slice (7mm)
or to operator variability, it is more reasonable to assume that the tag detection precision is
around 0.5mm at later time frames (pixel size being 1.25mm). Based on these considerations
and other similar experiments |7], we fix the number of control points as 8x8x8; a good
compromise between accurate deformation representation and noise insensitivity.

Figure 15 shows the error intrinsic to the process of inverting the backward transforma-
tions ®,_,r with the 4D transformation f. For all time frames, each tag point is deformed
successively by ®,,_,7 and f. Theoretically, this is just an inversion step and the point should
be back in its original position. The reported error is the residual distance between the de-
formed tag point and the original tag point. Vertical bars have a length of one standard
deviation above and below the mean. Figure 16 show a similar display for points at end
systole for different number of control points for the backward transformation, from 4 to 15,
but keeping the number of control points of the 4D transformation to n, = 3, n; = 4, n, = 6,
ny = 6. The mean error curve increases with the number of control points before reaching a
plateau around a number of control point of 8. As a matter of fact, as the number of control
points increase, the ®,,_,; gets less and less smooth as it gains more degrees of freedom, the
4D transformation is less and less able to match the higher spatial frequencies the backward
transformation is able to track. Therefore the 4D transformation cannot differentiate high
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frequency deformation information from pure noise, which explains the plateau in the er-
ror map. These figures show how to choose the number of control points for the &, _,r in
correlation with the number of control points for f.

Figures 17 to 19 show statistics computed from the residual distance between simu-
lated and real tag points, for different sets of control points for the 4D transformation
(2x2x4x6, 3x4x6x6 and 4x4x8x6). The error decreases as the number of control points in-
creases, 3x4x6x6 is a good trade-of between precision in the retrieval of the motion and
computational cost. Figure 20 shows the evolution of the residual error with the number of
control points for ®,,_,. A similar behavior is noticed as in 16.

For our final choice of number of control points, the mean error and standard deviation
is 0.45mm.

Figure 21 shows the residual distance between a tag point deformed by the backward
transformation and its original plane for the pathological LV. Figure 22 shows the residual
distance between simulated and original tag points for this pathological heart. Despite the
motion is more complex than for the normal heart, the error remains at a mean value inferior
to 0.5mm.

4.3 Motion parameter computation
4.3.1 Displacement parameters

The 4DPT definition provides a set of Oth order motion parameters (as opposed to first
order parameters (like strain) which are derived from the gradient of the deformation): the
centripetal contraction (radial displacement), the elevation and the polar twist (apico-basal
rotation). Figures 23 to 28 show maps of the three parameters computed in the midwall.
Each curve show the temporal evolution of the parameter at a particular location. The
spatial evolution of the parameter goes from septal, anterior, lateral and posterior walls
from left to right and from base to apex from top to bottom. Thanks to temporal modeling,
each displayed curves is smooth.

1. radial displacement: the evolution of the radial motion is coherent in the normal case.
the curve increases before bending down at end systole. The anterior wall show less
displacement than the posterior wall, and the septal wall stays translated even in early
diastole whereas the posterior wall moves back earlier to its end-diastolic location, as
the curves bends down faster. In the pathological case, the infarcted posterior wall
motion is low compared to the opposite normal wall (anterior). Only the anterior wall
goes significantly closer to the center of the cavity, contributing to the reduction of its
volume and therefore to the pumping efficiency.

2. elevation: this parameter shows the proportional shrinking in the direction of the long
axis. Its value is globally lower for the pathological case, the lack of contractility of
the posterior wall has a global influence on the motion of the LV wall. In the apical
area, the wall is pulled and slides towards the anterior wall, inducing a high value of
the parameter.
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3. polar twist: this twist angle is the angle of the rotation in polar coordinates. The angle
values do not correspond with cartesian space, they are similar to spherical angles in
topography. The normal values of this parameters do not usually exceed 10 degrees,
vary from positive values to negative from base to apex. In the pathological case, the
motion is so complex and unbalanced than it induces a high local rotation of the wall.

A more precise analysis of the parameters needs a validation on a large database, which
is not in the scope of this article. We want to demonstrate the quality of the displacement
field reconstruction with planispheric transformations, and the ability to derive motion pa-
rameters. They describe local behavior of the displacement in three particular directions,
but, as opposed to first order parameters, the distribution of their values can be different
from a normal distribution in the entire LV even if the dysfunction remains localized in a
particular wall. The strain analysis is more precise to detect the local dysfunctional area,
but the Oth order parameters already show how this area can affect the global function of
the heart.

4.3.2 Strain

From the displacement field, the strain is computed as in [19]. The Lagragian finite strain
tensor F is computed from the gradient tensor F' of the transformation f. F is related to F’
via the equation:

1
E = 5[FTF — I

where I is the identity matrix. The diagonal elements of this tensor measure the stretching (if
positive) or the compression (if negative) of the displacement in the corresponding direction.
We compute here particularly the diagonal elements of the E tensor in the circumferential
(¢) and longitudinal (1) directions.

Figures 29 and 31 show the circumferential and longitudinal strains E.. and Ej in the
midwall for the normal LV, the tensor is computed with the 4D transformation (thick lines)
and with the “TEA” program [19] (thin lines). The “TEA” program computes the displace-
ment field as spherical harmonics defined in a prolate spheroidal geometry for each time
frame independently. There is no time smoothing or time continuity constraints. There-
fore, the strain values have some local jumps between successive time frames that are highly
unlikely.

On the normal LV, the strains E.. and Ej; computed with both methods are highly
similar, despite some local variations (in the apex, mainly, this is due to the close vicinity
of the apical focus of the prolate coordinate system which is very close to the myocardium
and spoils the displacement field fitting process).

On the infarcted LV, figures 30 and 32, the TEA method shows more local variations in
space and local jumps in time. The Ej; strain is slightly underestimated in the lateral wall
with TEA compared to the values computed with the 4D transformation.

A more extensive comparison between the TEA program and the 4DPT is currently
under study and will be the subject of a forthcoming article. The aim is here to show how
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close the relults are from the state of the art methods, highlighting points where there may
be some significant improvement.

5 Conclusion

In this article, we present a new method for tracking the motion of the left ventricle from
planar tagged MR images. The 4D planispheric transformation, used in gated SPECT
motion tracking [6] is applied to the tagged MR modality. First, 3D B-spline tensor products
are computed to reconstruct the backward displacement field and a 4DPT is estimated
from the backward transformations and the tag points data. With these transformation,
it is possible to compute the motion with a reduced number of parameters thanks to their
compact definition. The motion is modeled as a 4D continuous displacement function in
time and space, some zeroth (motion) and first order (strain) parameters are derived from
the computed motion. Experiments have been conducted on a normal and a pathological
heart (LV posterior infarct). The mean error of the tracking procedure is less than 0.5mm,
and the strain computation is comparable to the related litterature with the advantage of
describing its evolution as a continuous function of time and space.
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End diastole

End systole

SA90

Figure 6: The planar tagged MR images. Top, the region of interest in the short axis and long
axis planes. The LV mesh used for the display is showed on the right with the ROI in transparency.
Bottom, some images of the LV at end diastole (top) and end systole (bottom) with three different
tag directions, from left to right (two short axis and one long axis).
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Figure 7: The contours of the LV and the myocardial tags are segmented with the semi-automated
package “FindTags” [13]| and are represented on top of the images displayed in figure 6.
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be compared with the tags shown on figure 7.
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Figure 9: On the left, the short axis tags at three times during systole (the long axis data have
been removed for clarity). On the right, the simulated tag data at the same time frames. Each line
is the intersection of an image slice and a tag plane deformed by the 4D transformation.
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Figure 10: The endocardial and epicardial surfaces of the normal LV is represented with the
displayed mesh (septum is on the left). This mesh is deformed with the 4D transformation. From
left to right, the shape of the mesh is displayed at 3 times during systole (beginning, mid and end
systole). From top to bottom, different views of the surface (apical, anterior and basal views) are
displayed for clarity.
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Figure 11:  The endocardial and epicardial surfaces of the pathological LV (posterior infarct,
pointed by arrow) is represented with the displayed mesh at different times and from different
views, as in figure 10.
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Left, the normal case, right, the pathological case (posterior infarct, pointed by arrow).
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Figure 13: Top, the mean residual distance of the tag points deformed by the backward transfor-
mation at each time frame of the sequence, for each of the series (series 1 is SAQ, series2 is SA90,
series 3 is LA). The vertical lines show the the standard deviation of the error distribution. Bottom,
the same graph is displayed for all tag points together.
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Figure 14: The mean residual distance of the tag points deformed by the backward transformation
at end systole for a variable number of control points defining the ®,_,7, from 4x4x4 to 15x15x15.
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Figure 15: Each tag point is deformed by ®,,_,7 and then deformed by the 4D transformation:
the plots represent the mean residual error after this step, for 8x8x8 control points for the backward
transformation and 3x3x4x6 for the 4D.
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Figure 16: The error graphs as for figure 15, for end systole only and for a variable number of
control points, from 4x4x4 to 15x15x15 for the backward transformation.
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Figure 17: The residual distance between simulated and original tag points, for all time frames.
The backward transformation is 8x8x8, the 4D is 2x3x4x6.
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Figure 18: Same as figure 17, for a 4D transformation defined by 3x4x6x6 control points.
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Figure 19: Same as figure 17, for a 4D transformation defined by 4x4x8x6 control points.
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Figure 20: The residual distance between simulated and original tag points at end systole for a
variable number of control points for the backward transformation, from 4x4x4 to 15x15x15.
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Figure 21: The mean residual distance of the tag points deformed by the backward transformation
at each time frame of the sequence of a pathological heart (posterior infarct).
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Figure 23: The centripetal contraction (radial motion parameter) derived from the displacement
field of a normal LV over systole, from the planispheric 4D transformation.
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Figure 24: The centripetal contraction (radial motion parameter) derived from the displacement
field of a pathological heart (posterior infarct) over systole, as in figure 23.



32 J. Declerck, N. Ayache, E.R. McVeigh

septum anterior lateral posterior

NN

base

¢ C ¢

—

— e/

L

{ L L
{
C

N
N~

(]

N\
o

I
o~ A~

/(L

—0.05

—0.1
Normal human Elevation over t = [36,476] ms

Figure 25: The elevation parameter derived from the displacement field of a normal LV over
systole, from the planispheric 4D transformation.
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Figure 26: The elevation parameter derived from the displacement field of a pathological heart
(posterior infarct) over systole, as in figure 25.
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Figure 27: The polar twist (apico-basal rotation parameter) derived from the displacement field
of a normal LV over systole, from the planispheric 4D transformation.
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Figure 28: The polar twist (apico-basal rotation parameter) derived from the displacement field
of a pathological heart (posterior infarct) over systole, as in figure 27.
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Figure 29: The circumferential strain value E.. derived from the displacement field of a normal
LV over systole, from the planispheric 4D transformation (thick lines) and from the “TEA” analysis
package [19] (thin lines).
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Figure 30: The circumferential strain E.. for a pathological heart (posterior infarct), with two
methods as showed in figure 29.
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Figure 31: The longitudinal strain value Ej derived from the displacement field of a normal
LV over systole, from the planispheric 4D transformation (thick line) and from the “TEA” analysis
package [19] (thin lines).
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Figure 32: The longitudinal strain Ej for a pathological heart (posterior infarct), with two
methods as showed in figure 31.
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