N
N

N

HAL

open science

Computational Geometry and Discrete Computations

Olivier Devillers

» To cite this version:

Olivier Devillers. Computational Geometry and Discrete Computations. RR-3533, INRIA. 1998.

inria-00073152

HAL 1d: inria-00073152
https://inria.hal.science/inria-00073152
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073152
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Computational Geometry and Discrete Computations

Olivier Devillers

N° 3533
Octobre 1998

THEME 2

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

Computational Geometry and Discrete
Computations

Olivier Devillers

Théme 2 — Génie logiciel
et calcul symbolique
Projet Prisme

Rapport de recherche n° 3533 — Octobre 1998 — 12 pages

Abstract: In this paper we describe some problems arising in practical
implementation of algorithms from computational geometry. Going to robust
algorithms needs to solve issues such as rounding errors and degeneracies. Most
of the problems are closely related to the incompatibility between on one side
algorithms designed for continuous data and on the other side the discrete
nature of the data and the computations in an actual computer.

Key-words: Computational geometry, exact arithmetic, degenerate cases.

This paper was prepared for an invited talk at Discrete Geometry and Computer Im-
agery 1996.

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Géométrie algorithmique et calcul discret

Résumé : Nous décrivons dans cet article les problémes liées a I'implantation
effective des algorithmes issus de la géométrie algorithmique. Obtenir des algo-
rithmes robustes nécessite de résoudre des problémes tels que erreurs d’arrondis
et cas dégénérés. La plupart de ces problémes sont intimement liés a I'incom-
patibilité entre des algorithmes raisonnant en géométrie euclidienne (continue)
et la nature discréte des calculs effectués par un véritable ordinateur.

Mots-clés : géométrie algorithmique, arithmétique exacte, cas dégénérés.

Computational Geometry and Discrete Computations 3

1 Introduction.

Computational geometry began in the last seventies, and since has been de-
veloped as a whole domain inside theoretical computer science. Research in
that area has been very active. Several books [2, 8, 16, 18| and journals are
devoted to the field (IJCGA. CGTA, DCG). As suggested by the name itself,
“computational geometry” deals with the computation of geometric objects,
and more precisely is devoted to the design of geometric algorithms and the
study of their complexities.

Below are detailed the main hypotheses which are usually made in compu-
tational geometry papers. These hypotheses are very important, they induce
simplifications and an abstract framework for the design of algorithms which
contribute to the success of the field and its productivity. But these hypothe-
ses are also a major drawback, because they turn the algorithms too abstract
and make them far from the reality of programming.

As a main example, I will use the problem of sorting n real numbers.
Even if sorting is not really a geometric problem (people can argue that one
dimensional geometry is not geometry), it is a good example to illustrate the
major points on a very simple and easy to understand problem. In some cases,
I will also add some more geometric example.

An important point about geometric algorithms is that they combine ge-
ometric and combinatorial aspects. The result of the algorithm is often com-
binatorial, in the sorting example the result is a permutation of size n. But
the algorithm involves geometric tests, in our example comparisons of real
numbers. In the abstract framework, such a geometric test takes continuous
data (e.g.: two real numbers z and y) and returns some discrete data (e.g.:
x is smaller/equal /greater than y); such a test or predicate often consists in
evaluating the sign of some expression (e.g.: sign of z — y).

Complexity.

Complexity usually means asymptotic complexity, that is the order of magni-
tude of the number of basic operations needed to solve the problem in terms of
the size of the input. For example sorting n numbers costs O(nlogn) compar-
isons. In such a notation, the big O hides a constant which can be important

RR n° 3533

4 O. Dewillers

in practice, but is often forgotten in theoretical papers and never precisely
studied.

Lower bounds are usually proved either by evaluating the size of the output,
or in the Information Theory Bound model. In the I'TB model, we assume that
the algorithm is only allowed to make binary decisions and then the smallest
number of decisions needed to solve the problem is evaluated using Ben’Or
theorems, basically the logarithm of the number of combinatorially different
possible results is a lower bound. Such a lower bound only involves binary
decision and does not count the amount of work needed between two decisions.
For example sorting needs Q(nlogn) = Q(logn!) binary decisions.

Model of computation.

To count the basic operations, we have to define precisely what a basic opera-
tion is. The usual hypothesis is that a geometric predicate can be evaluated in
constant time and thus the complexity analysis usually only counts the num-
ber of such predicates needed by the algorithm to establish an upper bound
on the complexity.

Algorithms are usually designed using a real-number arithmetic, and thus
a constant time operation is often an arithmetic operation such as comparison,
addition, or multiplication of two real-numbers. This assumption cannot corre-
spond to the reality of a computer because either the bit length of the number
is fixed, and then the arithmetic available is not a real-number arithmetic but
a rounded floating point arithmetic, or the bit length is not fixed, but in that
case the time needed to perform an operation is no longer constant.

Sometimes, people even use stronger “basic operations” such as the solving
of an system of equations of bounded size and bounded degree (still assumed
to need a “constant time”).

Lower bounds are also concerned by the model of computation, the Infor-
mation Theory Bound is valid on Turing machine but not on RAM machine.
For example, bucket sort works in linear time.

Degenerate cases.

Together with the real-number arithmetic, an usual unrealistic hypothesis is
the absence of degenerate cases. A situation is said to be degenerated if a small

INRIA

Computational Geometry and Discrete Computations 5

perturbation of the input may not preserve that situation. In the sorting
example, the situation is said degenerated if two values are equal. A more
geometric example: the fact that three points in the plane are cocircular is not
degenerated since three points always define a circle but four cocircular points
is a degenerated situation because a small perturbation of one point can move
it inside or outside the circle defined by the three others.

When a geometric predicate reduce to the sign of an expression, the pos-
itive and negative cases are the two regular answers, and the null case is the
degenerated one.

Computational geometry papers usually assume that there is no degenerate
cases. This assumption is justified by the fact that in a continuous world such
cases have a null probability to occur. But in the computer world where data
are discretized, this probability is no longer null, and such cases actually occur.

Organization.

I will first describe in Section 2 some problems due to the above hypotheses
and the intrinsic discrete nature of geometric data. Then we investigate the
two main approaches used to cope with this. In Section 3, we look for means
to use discrete data as if we were in a continuous world and, in Section 4, we
expose solutions having a more discrete spirit.

2 Real-numbers arithmetic yields non
implementable algorithms.

Most of the geometric algorithms rely on geometric theorems which are true in
the usual mathematical setting, where the geometric objects have real coordi-
nates. Unfortunately, these theorems are no longer true when real coordinates
are replaced by usual machine representable numbers such as float or double;
and the geometric properties are replaced by numerical predicates evaluated
using the rounded floating point arithmetic.

For example a simple fact such as “If points a, b, c are collinear and a,b,d
are collinear and a # b then a,c,d are collinear” is no longer reliable, when
collinear means that some arithmetic expression is evaluated to 0 in a rounded

RR n° 3533

6 O. Dewillers

computation. For the sorting example, we will assume that the machine com-
parisons is not transitive (which is hopefully false in actual computers); for the
sake of illustration, we assume that entries are decimal numbers, and that our
computer is able to compare only integers and thus rounds the number before
comparing them.

Thus, most of the geometric theorems are not valid in the computer context,
but still, most of the geometric algorithms rely on these geometric theorems.
Therefore some situations may appear as incoherent if the input data make
some theorem fail. Since such a situation is supposed to be impossible, it is
not planned in the program and it fails or falls in an infinite loop or maybe
just computes a wrong result.

Many examples of this kind exist in geometric softwares [17]. The above
simple example is very representative of the problems, since a common case
is that some transitivity property, which is true in theory, is not verified, and
the cycle created will correspond to an infinite loop in the program behavior.
Imagine that the rounded computation answers that r >y, y > =, * < z and
y < z and bubble sort runs on an array starting by z, y and z. At each new
traversal of the array x and y will be swapped, thus if the program runs until
the order is fine, it will loop infinitely.

In the following sections we will sketch two solutions to the fact that geo-
metric theorems are not true in the computer model of computation. In Section
3 the model of computation is modified so that relevant theorems still hold. In
Section 4 weaker theorems are proved in the computer model of computation
and other algorithms based on these new theorems are used.

3 Implementing real-numbers arithmetic.
The most common way to ensure that geometric theorems hold is to compute

with enough precision so that the rounding done by the floating point compu-
tation cannot introduce a wrong decision (a wrong answer to a predicate).

INRIA

Computational Geometry and Discrete Computations 7

3.1 Different ways of having precise computations.
3.1.1 Integer and rational arithmetic.

Precise computations generally means exact computations. If the input data
are integer (resp. rational) and the predicate corresponds to the evaluation of
a polynomial (resp. rational) formula, then computations can be done using
exact computations with integer (resp. rational) of arbitrary length.

These exact tests can be achieved using standard libraries of large numbers,
or some more specifically geometric methods devoted to some predicates [5, 1].

3.1.2 Arbitrary length floating point numbers.

Exact computation can also be achieved with floating point numbers, but of
arbitrary length. Such a number of “indefinite precision” is often represented
as the sum of a set, of usual machine floating point numbers of “fixed precision”,
and the precise definition of the rounding operation in the IEEE standard is
used to make arithmetic operations exactly, using a few machine operations
[19, 20].

3.1.3 Algebraic system.

Sometimes, the predicate does not reduce to the evaluation of an expression,
it can consist in the sign of the solution of some algebraic system, and even an
exact arithmetic does not allow to compute that solution exactly. In that case,
numerical methods can be used in a robust way. The result can be computed
up to some small error, so that the sign is guaranteed [4].

3.2 Filters.

The above methods to reach exact computations solve many of our problems,
but they are expensive. A way to reduce the cost of exact computation is to use
rounded computation whenever it is possible and to use exact computations
only were there is some doubt on the accuracy of the rounded result.

RR n° 3533

8 O. Dewillers

3.2.1 What is a filter?

A filter is an approximate evaluator for the result associated to a certifier which
may guarantee some property about the precision of that result. Such a filter
is often a rounded computation of an expression and an upper bound on the
error done during this computation; If the error is smaller than the computed
value, then the sign of the expression is certified. If the certifier fails then the
exact computation has to be done (or a less cheap but more accurate filter
must be tried) [12, 15].

For our weak comparisons described in the introduction, an example of
filter is

compute x-y

if x-y > 2 then return x>y

else if x-y < —2 then return x<y
else return filter failed

3.2.2 How is a filter efficient?

In practice, rounded computations is most often able to give the right answer,
so that the aim of the filter is to find the very few cases where the rounded
computation is not accurate enough.

If we still are interested in the comparison test, if we assume that the
operands are randomly chosen in interval [0, N] and the filter failed on x<y if
x-y< 2, then the probability of failure is

1 N min(N,z+2) 4
m/0 e [nax(O,mQ) dy = N
Thus if N is large the probability of failure of the filter is small.

Under some hypotheses on the data, the probability of failure of the filter
can be evaluated and if it is small enough, it justifies the choice of the filter
(see [6] for result for collinearity and cosphericity tests). Hypotheses of random
distribution on the data may be unvalid in practice, because some data are by
nature degenerated. In that case, the expression whose signe we are looking
for can be null, but the probability that it is smaller than £ and non null is
still small and an adequate filter can be designed.

INRIA

Computational Geometry and Discrete Computations 9

4 Designing algorithms
for discrete-numbers arithmetic.

An alternative to exact computation consists in ensuring some combinatorial
property by some combinatorial way of computing (instead of relying on geo-
metric theorems).

To ensure that the geometric theorems needed by the algorithm are not
violated when evaluating predicates, a solution consists in not computing any
predicates which can be deduced from former evaluations. For example, if
the points a<b and b<c have been evaluated to be true, and at some point
the algorithm asks for a<c?, the numerical predicate should not be evaluated
because previous evaluations and transitivity imply that the answer is “yes”.
Such an algorithm is called parsimonious by Knuth [13].

This kind of approach can also be used in a weaker way, that is ensur-
ing weaker properties than the real geometric properties. A good example is
Sugihara and Iri’s algorithm [21] for Delaunay triangulation. This algorithm
verifies during the insertion of each new point that the constructed triangu-
lation is a good topological triangulation (a planar graph, so that each face
is a triangle and each edge exists only once). If the geometric predicates are
exact then the algorithm construct the Delaunay triangulation, otherwise the
algorithm guarantees that it does not fail and actually constructs a topological
triangulation. So that another algorithm needing a triangulation as input can
use the result without trouble. Unfortunately, this algorithm does not ensure
that the constructed triangulation is topologically equivalent to the Delaunay
triangulation of some input, since there exist topological triangulations that
cannot be realized as a Delaunay one [7].

Similar phenomena arise in other problems, for example an algorithm com-
puting an arrangement of lines may guarantee some properties on line intersec-
tions, but not more complicated ones such as Pappus theorem [13|. Thus the
computed arrangement may be not realizable by actual lines, such an arrange-
ment is called an arrangement of pseudo-lines. This difference is important
since the combinatorial properties are different [11].

RR n° 3533

10 O. Dewillers

5 Conclusion.

Solving robustness problems in computational geometry which rely on the
discrete nature of computer computations is currently a big issue in the field
and mobilizes many researchers. Many discussions at the last ACM symposium
on computational geometry and the first workshop on applied computational
geometry were about this topic. The main issues are the design of fast and
exact code to answer geometric predicates (a simple geometric question such
as “on which side of this plane does this point lie?”) and the creation of new
algorithms which do not rely on geometric theorems that are impossible to
guarantee using computer arithmetic.

Related works concern also new kinds of analysis. The intrinsic complexity
of the geometric predicates can be studied [14, 3|, or restricted models of
computation were only a small number of well defined geometric predicates
are allowed can be developed [10, 9].

Acknowledgments.

The author would like to thank the committee of the sixth Discrete Geometry
for Computer Imagery for inviting him to present this work.

References

[1] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec.
Evaluation of a new method to compute signs of determinants. In Proc.
11th Annu. ACM Sympos. Comput. Geom., pages C16—-C17, 1995.

[2] J.-D. Boissonnat and M. Yvinec. Géométrie algorithmique. Ediscience
international, Paris, 1995.

[3] C. Burnikel. Ezact Computation of Voronoi Diagrams and Line Segment
Intersections. Ph.D thesis, Universitdt des Saarlandes, March 1996.

[4] Christoph Burnikel, Jochen Kénnemann, Kurt Mehlhorn, Stefan Néher,
Stefan Schirra, and Christian Uhrig. Exact geometric computation in

INRIA

Computational Geometry and Discrete Computations 11

LEDA. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C18-
C19, 1995.

[5] K. L. Clarkson. Safe and effective determinant evaluation. In Proc. 33rd
Annu. IEEE Sympos. Found. Comput. Sci., pages 387-395, 1992.

[6] O. Devillers and F. Preparata. A probabilistic analysis of the power of
arithmetic filters. Discrete and Computational Geometry, 1998. a paraitre.

[7] M. B. Dillencourt. Realizability of Delaunay triangulations. Inform. Pro-
cess. Lett., 33:283-287, 1990.

[8] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Heidelberg, West Germany, 1987.

[9] Jeff Erickson. New lower bounds for convex hull problems in odd dimen-
sions. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 1-9,
1996.

[10] Jeff Erickson and Raimund Seidel. Better lower bounds on detecting affine
and spherical degeneracies. In Proc. 34th Annu. IEEE Sympos. Found.
Comput. Sci., pages 528-536, 1993.

[11] Stefan Felsner. On the number of arrangements of pseudolines. In Proc.
12th Annu. ACM Sympos. Comput. Geom., pages 30-37, 1996.

[12] S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for computa-
tional geometry. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages
163-172, 1993.

[13] Donald E. Knuth. Azioms and Hulls, volume 606 of Lecture Notes Com-
put. Sci. Springer-Verlag, Heidelberg, Germany, 1992.

[14] Giuseppe Liotta, Franco P. Preparata, and Roberto Tamassia. Robust
proximity queries in implicit Voronoi diagrams. Technical Report CS-96-
16, Center for Geometric Computing, Comput. Sci. Dept., Brown Univ.,
Providence, RI, 1996.

RR n° 3533

12

O. Dewillers

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. Mehlhorn and S. Ndher. The implementation of geometric algorithms.
In Proc. 13th World Computer Congress IFIP94, volume 1, pages 223-231,
1994.

Kurt Mehlhorn. Data Structures and Algorithms 8: Multi-dimensional
Searching and Computational Geometry, volume 3 of EATCS Monographs

on Theoretical Computer Science. Springer-Verlag, Heidelberg, Germany,
1984.

D. Michelucci. Arithmetic isuues in geometric computations. In Proc. 2nd
Real Numbers and Computer Conf., pages 43-69, 1996.

F. P. Preparata and M. 1. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, New York, NY, 1985.

D. Priest. Algorithms for arbitrary precision floating point arithmetic. In
Proc. 10th Symp. on coputer arithmetic, pages 132-143, 1991.

Jonathan R. Shewchuk. Robust adaptive floating-point geometric predi-
cates. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 141-150,
1996.

K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm
for Voronoi diagrams. Internat. J. Comput. Geom. Appl., 4(2):179-228,
1994.

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

