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Une alternative & la factorisation: accelération de I’algorithme de
décodage de SUDAN et de sa généralisation aux codes géométriques

Résumé : Nous proposons une amélioration & l’algorithme de SUDAN pour décoder les codes de
REED-SOLOMON au dela de la moitié de leur distance minimum, ainsi qu’a sa généralisation aux codes
géométriques. La factorisation de polynémes intervient dans la version initiale de ces deux algorithmes.
L’idée principale que nous présentons consiste & remplacer cette factorisation par une recherche itérative
de racines, dont la complexité est faible, basée sur ’algorithme d’approximation de NEWTON. Gréace
& cette modification, nous pouvons donner la complexité effective de la 7-reconstruction des codes de
REED-SOLOMON.

Mots-clé : Algorithme de SUDAN, list-decoding, T-reconstruction, complexité, codes de REED-
SOLOMON (généralisés), codes géométriques, factorisation de polyndmes, algorithme d’approximation
de NEWTON.



A Speedup for SUDAN s Algorithm ana 1ts Generatization to AG-Coaes o

1 Introduction

Let Fy be a finite field with ¢ elements. For any code C' C Fy, we call the T-reconstruction ball' of
a vector y € Fy with respect to C, the set of all words c of C that differ from y in at most 7 positions
(i.e. d(y,c) < 7 where d is the HAMMING distance). We will denote this set of codewords by B;(y). If
t = [(d —1)/2] is the correction capacity of C, for any y € Fy, a ball of radius ¢ around y contains at
most one codeword and hence in that case, t-reconstruction is decoding.

M. SUDAN has proposed in [Sud97a, Sud97b| a method to do this 7-reconstruction for 7 > ¢ for
some REED-SOLOMON codes. M. A. SHOKROLLAHI and H. WASSERMAN have generalized SUDAN’s
algorithm to algebraic-geometric codes in [SW97, SW98]. Both algorithms, in their original version,
involve factorization of polynomials. The first one needs to factorize bivariate polynomials over F, the
second requires factorization of univariate polynomials over an algebraic function field of one variable
with field of constants F,.

The algorithm for REED-SOLOMON codes will be fully detailed though they are easily shown to be
algebraic-geometric [Sti93, p. 51|, while the one introduced for algebraic-geometric codes is theoretical
since practical manipulation of functions is not considered here.

These kinds of algorithms are “interpolation algorithms”, which seem fundamentally different from
syndrome decoding, though some connections between them have been discussed by I. DUURSMA [Duu98].

This paper focuses on the algorithmics and the complexity of SUDAN’s algorithm. We propose a
speedup to these algorithms that avoids factorization, using a NEWTON approximation algorithm.

This new method allows to give a complexity of O(n*/k) arithmetic operations on F, to realize
T-reconstruction.

In section 2, we remind SUDAN’s algorithm and the generalization, made by SHOKROLLAHI and
WASSERMAN to algebraic-geometric codes. Then, in section 3 we describe our algorithm for REED-
SOLOMON codes and we deduce from it an asymptotic upper bound on the complexity of the 7-
reconstruction problem when SUDAN’s algorithm applies. Eventually, we present in section 5 the
version of our method for algebraic-geometric codes.

2 The basic algorithms

2.1 SUDAN’s algorithm for REED-SOLOMON codes

First, let us recall what are REED-SOLOMON codes:

Definition 1 Let p = (p1,... ,pn) consisting of n distinct elements of F,, and L be the vector space
of polynomials over Fy of degree lower than k. The REED-SOLOMON code of dimension k over p is
the linear code [MS88]:

C= {(f(p1)7 s Jf(pn))a f € L}

For these codes, let y € Fy, we replace the problem of finding the set B, (y) of all codewords
c=(ct,...,cq) such that ¢; # y; for at most 7 values of 7, by the problem of finding the set BX(y) of

all polynomials of L such that f(p;) = y; for at least n — 7 values of 7. Hence we have:

feBi(y) <= (f(p1);---, f(pn)) € Br(y).

Before to state SUDAN’s theorem, we need to recall the definition of the weighted degree of a biva-
riate polynomial:

!The expression “7-reconstruction” comes from [Sud97a]. The idea is close to the idea of “list-decoding”, developed
in [Eli57].
RR n- 3532
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Definition 2 Consider the bivariate polynomial:

QX,Y) =) o XYY
ij

Let a,b be nonzero integers, the (a,b)-weighted degree of Q(X,Y") is:

wdeg (5 Q(X,Y) = max{ia 4 jb | a;; # 0}.

Theorem 1 (SUDAN, 1997) Let Q(X,Y) € Fy[X,Y], if:
* QX,Y)#0,
e Q(pi,yi) =0, foralli € {1,... ,n},
e wdeg( ;, 1)Q(X,Y) <n-—r,

then (Y — (X)) divides Q(X,Y) for all f € B*(y).

Proof: Let f be a polynomial in B%(y), and consider Q(X) to be the polynomial Q(X, f(X)). Since
deg f < k and wdeg(; ,_1)Q(X,Y) <n—7, degQs(X) < n—7. Moreover f(p;) = y; for at least n — 7
values of 7, so Qs(X) has at least n — 7 roots. Hence Q(X) is identically zero, i.e. (Y — f(X)) divides
QX,Y).

Provided 7 < Tmax where Tmax is the maximum number of errors that SUDAN’s algorithm can
correct [Sud97b| (cf. footnote of Proposition 6 on page 10), @ exists and can be found by solving a
system of linear equations whose unknowns are the coefficients of Q.

So SUDAN’s algorithm consists in three steps:

1 find Q(X,Y) like in Theorem 1;
2 factorize Q(X,Y) in Fy[X,Y];

3 get all factors of the form (Y — f(X)) and keep only the f’s for which f(p;) = y; for at least
n — 7 values of <.

In section 3, we propose an acceleration to steps 2 and 3 and show that their cost is, in fact less
than the cost of finding Q(X,Y).

Note 1 One can use the same trick as in [Ret75] to apply SUDAN’s algorithm to generalized REED-
SOLOMON codes in the following way: with the notations of Definition 1, if v = (v1,... ,vs) € Fy
consists in non-zero elements, we can define the generalized REED-SOLOMON code [MS88, p. 303/:

Cy, ={(vic1,... ,vncy), c € C}.

Ify = (y1,... ,yn) € Fy, and we are looking for the set B of codewords ¢ € Cy, such that d(c,y) < 7, we
can define y' = (y1/v1,--. ,yn/vn) and look for the list B' of codewords ¢’ € C such that d(c',y") < 7.
It is clear that

d=(d,...,d)eB << (d/v1,-..,c,/vn) € B.

INRIA
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2.2 SHOKROLLAHI and WASSERMAN generalization to AG-codes

First, let us recall what are algebraic-geometric codes:

Definition 3 Let K/F, be an algebraic function field in one variable of genus g, Pi,...,P, be n
pairwise distinct places of degree 1 of K, P = P, + --- + P,, D a divisor whose support does not
contain the P;’s, and L denote the vector space L(D). Then the algebraic-geometric code with these
parameters is the linear code [TS91, p. 266]:

For these codes, let y € Fy, we replace the problem of finding the set B:(y) by the problem of
finding the set BX(y) all functions of L such that f(p;) = y; in at least n — 7 values of 7. Hence we
have, as for REED-SOLOMON codes:

fEB:(y) = (f(P),---, f(P)) € Br(y).

We now recall the main theorem of [SW97], which applies for D = a@), where « is a nonzero integer
and @ a place of degree one. In this case, C' has dimension k =a+¢g—1and d > n — a.

Theorem 2 (SHOKROLLAHI and WASSERMAN, 1997) Let f = [V2an]|+g—1 and b= [[—”Zaa"]J,

then for T =n — B — 1, there exists a polynomial:

b
G(Y) =) uY7 € K[Y],
§=0

such that:
o G#£0
o Gp(yi) =Y 0—oui(ps)y' =0, for alli € {1,... ,n}
e u; € L((B—ja)Q), forall j € {1,... ,b}

In addition, (Y — f) divides G(Y) for all f € BX(y).

Proof: cf. [SW9T7].

Like in SUDAN’s algorithm, SHAKROLLAHI and WASSERMAN algorithm consists in three steps:
1 find G(Y') like in Theorem 2;
2 factorize Q(Y) in K[Y7;

3 get all factors of the form (Y — f(X)) and keep only the f’s for which f(P;) = y; for at least
n — 7 values of i.

In section 5, we propose an acceleration to steps 2 and 3.

RR n~ 3532
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3 The speedup for REED-SOLOMON codes

3.1 The algorithm

We do not need a complete factorization of the polynomials: we only need some roots. This can be
done by a NEWTON approximation method.

We suppose that we have found Q(X,Y) like in Theorem 1, of minimal degree in Y. For each
index 7 such that Q'(p;, ;) # 0 — Q'(X,Y) means % — we can do a NEWTON approximation
of a polynomial ¢ such that ¢(y;) = 0. In algorithm 1, described in figure 1, the list B is built and at
the end of the algorithm, consists in all polynomials f of degree lower than k such that f(p;) = y; for
at least n — 7 values of 7, i.e. f € BX(y).

B«— @
N « [logy(k — 1)]
for i € I do
{
Qi — QX —p;,Y) // We want Q;(0,y;) =0
Y=Y
for j from 0 to N —1 do
{ ,
p — (9 — Qi(X, p(X))/QUX,p(X))) mod X¥'
}
¢ — o(X +pi) // We want ¢(p;) = y;
if p(p;) =y, for at least n — 7 values of j then
{
B«+— BU {(,0}
}
}
return B

Figure 1: Algorithm 1, for REED-SOLOMON codes

Proposition 1 Let Q(X,Y) like in Theorem 1, of minimal degree in'Y , let I be the subset of {1,... ,n}
such that Q'(pi,y;) # 0, then

1 for any f such that Q(X, f(X)) =0, there is at least one i € I such that f(p;) = yi;;
2 if for some i € I, fi(pi) = f2(pi) = yi then fi1 = fy;
3 for any i € I, algorithm 1 finds, if it exists the unique f € By (y) such that f(p;) = yi;

hence algorithm 1 returns B (y).

Proof:
1 As Q(X, f(X)) =0, there exists R(X,Y") such that

QX,Y) =(Y - f(X)) - R(X,Y)
INRIA
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then
Q(X,Y) = R(X,Y)+ (Y - f(X))- R(X,Y).

Let S={ie{l,...,n}/ f(P;) =y} and 8" = {i € {1,... ,n}/ f(Pi) # yi}. We have for any
index 7 € S', R(p;,y;) = 0. If for any i € S, R(p;,y;) = 0, then R(X,Y) is a polynomial such
that:

o R(X,Y) £0,

e R(pi,y;) =0, forallie{1,... ,n},

e wdeg( ,_HR(X,Y) <n -,
which is not possible since Q(X,Y) has minimal degree in Y among such polynomials. We

therefore conclude that there exists 4 € S such that R(p;,y;) # 0. As Q'(ps,yi) = R(pi,vi) # 0,
we have that ¢ € I.

2 If for some i € I, f1(p;) = f2(pi) = yi, then there exists R(X,Y’) such that
QX,Y) = (Y — fu(X))(Y — f2(X)) - R(X,Y)
and then

Q(X,Y) =(Y - fo(X)) - R(X,Y)
+ (Y = 1(X)) - R(X,Y)
+ (¥ - AX)(Y - f2o(X)) - R(X,Y)

which implies Q'(p;,y;) = 0: it is impossible since i € I.

3 Suppose there exists f € Bx(y) such that f(p;) = y;. From item 1, we can suppose i € I. We
will write ¢; the value of ¢ at the beginning of the j-th for loop. We show by recurrence that

for any j > 0, f(X) = ¢;(X) mod X%,

The initialization is for j = 0 we do have ¢y = ¥;, i.e. @9 = y; mod X2 Suppose now that the
result is true until the j-th rank, we will write Q(Y) € F,[[X]][Y] the univariate polynomial in Y’
corresponding to Q(X,Y") with coefficients in the ring F4[[X]] of univariate power series over F,.
We can take the 2nd order TAYLOR development of Q around @j, i.e. there exists R € Fy[[X]][Y]
such that

QY) = Q(p;) + (Y — ) - Q'(¢))
+ (Y —9))*- R(Y — ;).

Since the recurrence hypothesis, ¢;(p;) = f(p;) = y; and Q(p;,y;) # 0 = Q' (pj) # 0, we can
therefore divide the previous equality by Q'(¢;) to get after specialization in ¥ = f:

35 ey
0= = - = —
Oe) Oy U

+(f - gy B0

)

Q'(¢5)
which implies _
oo QW) o e BUF—w)
[ = Q'(<Pj) (f ‘PJ) Q'(<,0j)
— —

RR n° 3532 o1



S Danie: Augot — Lancelot Fecquet

From the recurrence hypothesis, we know that f — ¢; = 0 mod X ¥ hence (f — p))2 =0
mod X%, We now have proved that for any j > 0, f(X) = ¢;(X) mod X?¥.

After N loops, f = ¢ox mod X*. Asdegf <k, f = on.

To check if f € BX(y), one just have to check that S = {i € {1,...,n}/ f(P;) = v} has at least
n — 7 elements; if it is the case, as we know deg f < k, i.e. f € L, and Q(X, f(X)) = 0 from
Theorem 1.

3.2 A tip for implementation: avoid doubles

Once we have found f such that (Y — f(X)) divides Q(X,Y’), we can remove from our investigation all
indexes i € I such that f(p;) = y;- This comes from the following proposition, which results directly
from Proposition 1:

Proposition 2 If
{i eI/ filp)) =yt n{i €I/ falpi) = vi} # @
then
{i €I/ filpi) = vit = {i € I/ fo(pi) = yi}
and f1 = fo.

So if we have found ¢ such that ¢(p;) = y; for at least n — 7 values of j, we can add the line:
“remove from I all j € {1,...,n} such that ¢(p;) = y;”

because the algorithm would return the same ¢ on such p;’s.

3.3 Complexity

Proposition 3 If degy Q(X,Y) = b, then the inner for loop of algorithm 1 takes O(b-m(k)) arith-
metic operations in Fq, where m(k) is the cost of multiplication of two polynomials of degree k over F,
in the worst case.

Proof: Let us consider Q(Y) € K [Y], the univariate polynomial in ¥ with coefficients in K = F[[X]]
corresponding to Q(X,Y’). and let us denote by ¢;, the value of ¢ considered as an element of K at
the beginning of the j-th for loop. Then, there exists R(Y) € K[Y] such that:

Q(Y) = Q(p)) + (Y — ¢)) - R(Y). (1)
Similarly, there exists S(Y') € K[Y] such that
R(Y) = R(pj) + (Y — ¢j) - S(Y).

But by derivation of equation 1, and specialization in ¢;, we have that Q (¢j) = R(y;). Hence

R(Y) = Q'(¢;) + (Y — ;) - S(Y); (2)

equation 1 shows that the quotient of the Euclidean division of Q(Y) by (Y — @;) is R(Y) and its
remainder is Q(y;). As we divide by a polynomial of degree 1, this step is done in b multiplications
INRIA
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in K. Furthermore, equation 2 shows that @’ (¢4) can be computed as the remainder of the Euclidean
division of R(Y) by (Y — ¢;). As degR = b — 1, and we again divide by a polynomial of degree 1,
this step is done in b — 1 multiplications in K. Altogether, we do 2b — 1 multiplications in K but as
degpj =2/ = 2N 2L, each multiplication can be done in m (213\,;_1]) As m(l) > 2m(/2), hence to do to
complete all N loops we need:

N-1 Nl1
(20— 1) Zm(2NJ> (26—1)-m 5

Jj= JZO

~ S

O(bm(k))

Proposition 4 Let Q(X,Y) € F,[X,Y] be as in Theorem 1, then

-1
dogy QUL Y) < | "I

As a consequence, the set B (y) contains at most ["—TIIJ codewords.

Proof: The condition wdeg(; ;,_1)@Q(X,Y) < n—7 implies that (k—1) degy Q(X,Y) < n—7—1 which
is the first statement. Consequently, the number of polynomials f(X) such that Q(X, f(X)) = 0 can-
not exceed degy Q(X,Y’). As all polynomials of B} (y) realize this condition, and since B,(y) = BX(y),
we have our result.

Proposition 5 Algorithm 1 requires at most O (kn2) arithmetic operations in F.

Proof: In the worst case, we have for each ¢ € I a different solution, and |I| = n, hence we will
loop n times. In the “NEWTON step” of algorithm 1, degy @) is at most [”;—ZIIJ as we proved in

Proposition 4. Moreover, the multiplication of two polynomials of degree lower than k£ can be done in
O(k?) arithmetic operations in F,. We therefore know that the total running time for this step will
be O(n(n — 7)k) from Proposition 3. The test “f(p;) = y; for at least (n — 7) values of j” costs in the
worst case n evaluations of f, whose degree is lower than k. Each evaluation can be done in O(k) by
HORNER’s rule [Knu98, p. 496]. So this step requires at most O(n2k) operations.

Note 2 There is a faster way to multiply two polynomials of degree k using the Fast FOURIER Trans-
form (F.F.T.) which is in O(k) operations® on F,. However this complezity is rather theoretical since
one have to find a primitive root of unity one some extension of Fy, which can be practically more
expensive than basic multiplication. The reader can refer for instance to [BCS96]. Anyway, in this
case “Newtonian loops” cost for each i € I O((n—7)) and the tests “f(pj) = y; for at least n — T values
of 77 cost each 6(n) with the method of evaluation in multiple points exposed in [CLR94, p. 786]. As

in the worst case we need to loop n times, the global complexity becomes O(n?) arithmetic operations
in Fy.

2The soft O notation is to be understood in the following way: “A = O(m)” means: “for some ¢, A = O(mlog® m)”
RR n~ 3532
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Let us compare the complexity of our method to bivariate factorization. In [Zip93, p. 339], an
algorithm to factorize in F¢[X,Y] a squarefree primitive polynomial whose degree in X and degree in
Y are bounded by m in O(m”) arithmetic operations on some algebraic extension of F,. The condi-
tion wdeg(1x-1)Q(X,Y) < n — 7, allows degx Q(X,Y) = n — 7 and Proposition 4 allows at most

degy Q(X,Y) = [";—IIIJ We therefore have m = n — 7 and a complexity of O((n — 7)7) opera-
tions on some algebraic extension of Fy, provided Q(X,Y) is squarefree and primitive. Furthermore,

factorization algorithms are much more complicated than the present one.

4 Complexity of SUDAN’s algorithm

Proposition 6 Let C be a [n, k] generalized REED-SOLOMON code over Fy. Provided T < Tmax, where
Tmax 18 the mazimum number of errors that SUDAN’s algorithm can correct,® for any y € Fg, one can
find the list of all codewords closer than T from y in O(n*/k) arithmetic operations in F,.

Proof: From [Sud97b], we know that when 7 < T,y there exists a polynomial Q(X,Y") that realizes
the conditions of Theorem 1. It can be found by solving over F; a linear system of n equations with
N unknowns — the coefficients of Q — with

N= [(r—{—l) ((n—r)—k;1T>J

n—T7-—2
r=|——-—|.
k-1
This system can be solved by GAUSS elimination [Sed89, p. 535] in O(n2N) operations. As N =

O(n?/k), this first step costs O(n*/k). We have shown in Proposition 5 that steps 2 and 3 of SUDAN’s
algorithm can be done in O(n2k) operations.

and

5 The speedup for algebraic-geometric codes

5.1 The algorithm

The NEWTON’s approximation algorithm works more generally on a valuation ring [Lan95, pp. 493-
494] and the previous method can be easily extended to algebraic-geometric codes. Actually, in this
case, the formal description is even simpler than for REED-SOLOMON codes.

We suppose that we have found G(Y) like in Theorem 2, of minimal degree. For each index i
such that G’ (y:) # 0, we can apply NEWTON’s method to get a function ¢ such that ¢(y;) = 0. In
algorithm 2, described in figure 2, the list B is built and at the end of the algorithm, consists in all
functions f in L(aQ) such that f(P;) = y; for at least n — 7 values of ¢, i.e. f € BX(y). It is worthy of
note that algorithm 2 returns only functions which are in L(a@) while factorization can give a priori
some factors that belong to K but do not belong to L(aQ).

3SUDAN proves in [Sud97b] that Tmax > (1 —V2k/n — 0(1)) n.
INRIA
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B«— o
N — [logy(a + 1)]
I — {Z € {17"' ,’I’L}/ GIPi(yi) # O}

fori € I do
{
YUY
for j from 0 to N — 1 do
{
v — = G(p)/G(p)
}
if p(P;) =y, for at least n — 7 values of j then
{
B — BU{p}
}
}
return B

Figure 2: Algorithm 2, for algebraic-geometric codes
Proposition 7 Let G(Y') like in Theorem 2, of minimal degree in'Y', let I be the subset of {1,... ,n}
such that G'p,(yi) # 0, then
1 for any root f of G(Y'), there is at least one i € I such that G'Igi(yi) #0 and f(P;) = y;;
2 if for some i € I, f1(F;) = fo(P5) = yi then f1 = fo;
3 for any i € I, algorithm 2 finds, if it exists the unique f € Bx(y) such that f(p;) = yi;

hence algorithm 2 returns BX(y).

Proof:

1 If G(f) = 0 then there exists a polynomial R(Y') such that
GY)=(Y - f)-R(Y).

Then
G'(Y)=R(Y)+ (Y - f)-R(Y).

Let S={i € {1,... ,n}/ f(P) =y} and 8" = {i € {1,... ,n}/ f(F;) # yi}. We have for any
index i € S, Rp,(y;) = 0. As we have

b

b b—1
Zquj =(Y — f)Zferj = Z(ijl — 1 )Y,
j=0

§=0 §=0
with 7_; = 0. So we have for all j € {0,... ,b},
Uj - ’I‘J'_l

=T (3)

RR n " 3532
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with u; € L((8 — aj)Q) and f € L(aQ) \ {0}. Let us show by recurrence that for all j > 0,
rj € L((B — a(j +1))Q). (4)
First, 7o = uo/f; in this case,

valg(ro) = valg(ug) — valg(f) > -+«

so 7o € L((8 — a)Q). Suppose know that statement 4 is true for any j' < j. We can deduce from
equation 3 and recurrence hypothesis that

valg(r;) > min (valg(u;), valg(rj—1)) — valg(f)
>aj—f-a=oa(j+1)-p
It is what we wanted to proof. Now, as
rj € L((B — (i +1))Q) C L((8 — a))Q),
if for any i € S, Rp,(y;) = 0, then R € K[Y] is a polynomial such that:
i € L((B — jo)Q), 1<j<b-1
which is not possible since G has minimal degree among such polynomials. We therefore conclude
that there exists i € S such that Rp,(y;) # 0. As G (yi) = Rp,(yi) # 0, we have that i € 1.
If for some ¢ € I, f1(FP;) = fa(P;) = v;, then there exists R(Y') such that
GY)=({ - f1)- (Y — f2) - R(Y)
and then
G'(Y)=(Y = f2) - RY) + (Y — f1) - R(Y)
+Y —fi) (Y = f2) - R(Y)

which implies G'p, (y;) = 0: it is impossible since i € 1.

Suppose there exists f € BX(y) such that f(p;) = y;. From item 1, we can suppose i € I. We
will write ¢; the value of ¢ at the beginning of the j-th for loop. We show by recurrence that
for any j > 0, valp,(p; — f) > 27.

The initialization is for j = 0 we do have g = ¥; i.e. valp, (o — 7;) > 1 = 2°. Suppose now
that the result is true until the j-th rank, we can take the 2nd order TAYLOR development of G
around ¢j, i.e. there exists R € K[Y] such that

G(Y) = G(pj) + (Y — ¢j) - G'(¢;)
+ (Y —9;)*  R(Y — ;).

Since the recurrence hypothesis, ¢;(F;) = f(FP) = yi = G'p.(vj(F)) = G (yi) # 0 and so
G'(p;) # 0, we can therefore divide the previous equality by G'(y;) to get after specialization in
Y =F:

G(f) _ G(e)
G'(pj)  G'(p))

+(f = ¥j)

N2 R(f — »j)
+(f J) G/((p]) )
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which implies

__G(Soj)_ _ _2_R(f—<Pj)
Y1 G (py) f=U =) G'(g;)
—_———

Pj+1

S0

valp, (i1 — f) = 2valp,(f — @;) + valp, R(f — ¢;)
— valp, G'(¢;).

As R(Y)’s coefficients are polynomials in terms of u,, € L((8—ma)Q), they have no pole in P; so
valp, R(f — ¢;) > 0; in addition valp,G'(¢;) = 0 as G'p,(¢;(F;)) # 0. The recurrence hypothesis
states valp, (f — ;) > 27 and we can conclude that valp,(f — ¢j41) > 2771

We now have proved that for any j > 0, valp, (f —¢;) > 27. After N loops, valp,(f —¢n) > a+1.

Let us show by recurrence that ¢; € L(a@Q), for all j > 0. It is true for o = y;. Suppose that
@i € L(aQ) for all j' < j. We have that

G(p))
Pi+1 = @j — W‘P]j);

since for any I € {0,... ,b}, u; € L((8 — al)Q),

{G(w) = Yo u € L(BQ);
G'(¢j) = Yi_plupl ' € L((a—p)Q);

we deduce that the only pole of G,(wj ) s Q. Furthermore

G'(%5)
{G(%‘) € L(6Q) = valg(G(g;)) > —f;
G'(pj) €L((@—-P)Q) = valg(G'(p;)) < a—p;
hence
val (G((pj)> > —a;

“\ele)) =
w0 G(p;) N

Gy <V

Finally, we can deduce that ¢;41 € L(aQ).

As f and ¢y are in L(aQ), f — ¢n € L(aQ). We recall that if ¢ € L(aQ), if 9 # 0, the number
of zeroes of 1 equals the number of poles of ¢ (here «). Applied to ¥ = f — on, if f # ©n,
valp,(f —¢n) < a which is impossible from the construction of ¢. It results that f = ¢y.

To check if f € BX(y), one just have to count if S = {i € {1,...,n}/ f(P;) = y;} has at least
n—1 elements; if it is the case, as we know f € L(aQ), i.e. f € L, and G(f) = 0 from Theorem 2.
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5.2 A tip for implementation: avoid doubles

Once we have found f € K such that (Y — f) divides G(Y'), we can remove from our investigation all
indexes 7 € I such that f(P;) = y;. This comes from the following proposition, which results directly
from Proposition 7.

Proposition 8 If
{icl/ filP)=y}tn{i €I/ foi(P) =y} # O
then
{iel/ fi(P) =y} ={i €I/ fo(F) = vi}

and f1 = fa.

So if we have found ¢ such that ¢(P;) = y; for at least n — 7 values of j, we can add the line:
“remove from T all j € {1,... ,n} such that p(P;) = y;”

because the algorithm would return the same ¢ on such P;’s.

5.3 Complexity

Proposition 9 Algorithm 2 takes O(n% log a/+/a) arithmetic operations in K.

[V2an]

Proof: In algorithm 2, we know from Theorem 2 that degG = b = [ J In each for loop, we can

evaluate G(¢) and G(p) in O(b) with HORNER's rule [Knu98, p. 496]. We have N = log(a+ 1) and in
the worst case, we have for each i € I a different solution, and |I| = n, hence we will loop n times.

6 Conclusion

We have improved steps 2 and 3 of SUDAN’s algorithm and shown in proposition 5 that they can be
done in O(n?k) arithmetic operations in F,. We proved in section 4 that 7-reconstruction can be done
in O(n*/k) arithmetic operations on F, and that complexity is upper-bounded by the complexity of
step 1 of SUDAN’s algorithm. We also accelerate in section 5 steps 2 and 3 of SHOKROLLAHI and
WASSERMAN generalization of SUDAN’s algorithm to algebraic-geometric codes.

In both cases, the bottleneck seems to find polynomials that realize Theorem 1 (respectively Theo-
rem 2).

Anyway, due to the condition wdeg; ;_1)@Q(X,Y) < n — 7, SUDAN’s algorithm is intrinsically
useless for an information rate R = % > % in its original version. However a new version of it is
proposed in [GS98| that can be applied for any transmission rate. Note that in this paper, steps 2
and 3 remain unchanged in their article.
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