Image Classification Using a Variational Approach

Christophe Samson 1 Laure Blanc-Féraud Gilles Aubert Josiane Zerubia
1 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , SIS - Signal, Images et Systèmes
Abstract : Herein, we present a variational model devoted to image classification coupled with an edge-preserving regularization process. The discrete nature of classification (i.e. to attribute a label to each pixel) has ledto the development of many probabilistic image classification models, but rarely to variational ones. In the last decade, the variational approach has proven its efficiency in the field of edge-preserving restoration. In this paper we add a classification capability which contributes to provide images compound of homogeneous regions with regularized boundaries, a region being defined as a set of pixels belonging to the same class. The soundness of our model is based on the works developed on the phase transitions theory in mechanics. The proposed algorithm is fast, easy to implement, and efficient. We compare our results on both synthetic and satellite images with the ones obtained by a stochastic model using a Potts regularization.
Type de document :
Rapport
RR-3523, INRIA. 1998
Liste complète des métadonnées

https://hal.inria.fr/inria-00073161
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:01:46
Dernière modification le : mercredi 31 janvier 2018 - 10:24:04
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:36:28

Fichiers

Identifiants

  • HAL Id : inria-00073161, version 1

Citation

Christophe Samson, Laure Blanc-Féraud, Gilles Aubert, Josiane Zerubia. Image Classification Using a Variational Approach. RR-3523, INRIA. 1998. 〈inria-00073161〉

Partager

Métriques

Consultations de la notice

290

Téléchargements de fichiers

241