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Abstract: Herein, we present a variational model devoted to image classification
coupled with an edge-preserving regularization process. The discrete nature of clas-
sification (i.e. to attribute a label to each pixel) has led to the development of
many probabilistic image classification models, but rarely to variational ones. In
the last decade, the variational approach has proven its efficiency in the field of
edge-preserving restoration. In this paper we add a classification capability which
contributes to provide images compound of homogeneous regions with regularized
boundaries, a region being defined as a set of pixels belonging to the same class. The
soundness of our model is based on the works developed on the phase transitions
theory in mechanics. The proposed algorithm is fast, easy to implement, and effi-
cient. We compare our results on both synthetic and satellite images with the ones
obtained by a stochastic model using a Potts regularization.
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Classification d’Images par Approche Variationnelle

Résumé : Dans ce rapport nous présentons un modéle variationnel destiné & la
classification d’images avec processus de régularisation préservant les contours. La
notion de classification étant par nature discréte (i.e. attribuer un label a chaque pixel
de I'image), il existe de nombreux modéles de classification par approche probabiliste,
mais les modeéles variationnels abordant ce sujet sont rares. Ces derniéres années,
I’approche variationnelle a montré sont efficacité dans le cadre de la restauration
d’images avec prise en compte des discontinuités. Dans ce travail, nous ajoutons
un processus de classification permettant d’obtenir une solution formée de régions
homogenes dont les frontiéres sont réguliéres (une région étant définie par 1’ensemble
des pixels appartenant a la méme classe). La justification théorique de notre modéle
repose sur les travaux effectués dans le cadre des problémes de transitions de phases
en mécanique. L’algorithme que nous proposons est relativement rapide et facile &
mettre en oeuvre. Nous comparons les résultats obtenus sur des images synthétiques
et satellitaires avec ceux produits par un modéle stochastique avec régularisation de
Potts.

Mots-clés : Modéle variationnel, classification, théorie de transitions de phases,
régularisation avec préservation des contours, minimisation, images satellitaires.
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1 Introduction

Variational approach and Partial Differential Equation (PDE) models have shown
to be efficient for a wide variety of image processing problems such as restoration
and edge detection [2, 6, 11, 17, 34, 35, 37, 38, 46|, or shape segmentation with ac-
tive contours [16, 28, 32]. Nevertheless, the notion of classification, which consists of
assigning a label to each site of an image, has rarely been introduced in a variational
formulation (continuous models) mainly because the notion of class has a discrete
nature. Many classification models can be found in the field of stochastic approaches
(discrete models), with the use of Markov Random Field (MRF) theory as for in-
stance in [10, 12, 18, 19, 29, 31, 33|. Structural approaches as splitting, merging
and region growing models [40], and few models as a combination of statistical and
deterministic technics [47, 49] have also been developed for image classification. But,
to our knowledge, very few works have been conducted in the field of classification
by the use of variational models.

Most of the images we are dealing with need to be restored because of the presence
of noise. A lot of variational models have been developed for restoration with edge
detection. In many applications, as satellite imaging, the goal is to obtain a region
segmentation in addition to restoration. The principle is based on partitioning the
image in different areas (i.e. in different classes), each area being characterized by
a feature. The feature criterion we are interested in is the spatial distribution of
intensity. Of course, other discriminant features than intensity can be used by con-
sidering suitable parameters. Within this framework, a region will be defined as the
set of pixels belonging to the same class, and a class is characterized by parameters
linked to the spatial distribution of intensity for instance (mean and standard de-
viation if we make a Gaussian assumption). Hence, we introduce a new functional
for classification including restoration with edge regularization. The final results are
the image of classes , the restored image and the map of regularized dicontinuities.
The solution will be made of homogeneous regions, or classes, separated by sharp
regularized boundaries.

In mechanics, many authors have studied the stability of systems containing sev-
eral instable components through the Van der Waals-Cahn-Hilliard theory of phase
transitions [1, 7, 8, 9, 13, 14, 15, 20, 36, 39, 41, 42, 44, 45]. These components may
be liquids having different levels of density distribution. The stable configuration is
proven to be compound of homogeneous regions separeted by sharp interfaces having
minimal length. We propose to apply these results to a variational model for image
classification.

First, the problem statement is considered. We then recall the Van der Waals-Cahn-

INRIA
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Hilliard theory of phase transitions introduced in mechanics. We also examine the
relationship between this model and image classification, stressing the similarities of
this theory with a region segmentation including a restoration process.

In the next section, we propose a new functional devoted to image classification in
addition to an anisotropic smoothing capability. By introducing a new term related
to the region segmentation, we impose a level constraint, each level being related to
a specific class. We also discuss about the behaviour of this term. The algorithm we
use to minimize this functional is based on the half-quadratic method presented in
[17, 22, 46].

In the last section, we test the proposed model on synthetic and satellite images.
These results are examined and compared with the ones obtained with a stochastic
approach based on a Potts model.

2 Problem statement

2.1 Notation

The notation used hereafter are the following:
General notation:

e () is an open bounded subset of R",
e u and f are elements of L'(Q,R),
e V= (6%1, - %)t is the gradient operator,

o div(f)=>Y 1", % is the divergence operator applied to f.
e The Total Variation (TV) of f is defined as:

TV(f) = [ DS = sup{ [ faivl) g € CHR") and |g(a)] < 1)
If f € CHQ) then TV(f) = [, |Vf|.
e BV(Q) is the space of functions with Bounded total Variation (BV) [24]:

BV (Q) = {f such that TV(f) < +o0}.

This space contains the functions which can be discontinuous through curves,
and therefore this space is suitable for the study of free discontinuity variational
problems as the segmentation one.

RR n° 3523



6 Christophe Samson, Laure Blanc-Féraud, Gilles Aubert, Josiane Zerubia

e The perimeter of the set A C Q is defined as Perq(A) =TV (x4) where x4 is
the characteristic function of A.

e H(A) is the n — 1 dimensional Hausdorff measure of A, and if the boundary
0A of A is smooth we have:

H(OANQ) = Perq(A) =TV (xa)-

Classification notation:

o S ={s}s=1..n the set of sites,
e [, represents the label attributed to the site s,
e A the set of admissible labels, cardA = M and Ls € A,
e C; is the i*® class characterized by a label in A.
Remarks:
e We will sometimes use f instead of f(x) when no confusion is possible.

e We use the terminology “site” or “pixel”, denoting a point of the image, even
in the continuous case in order to make a connection between the variational
classification (partitioning in regions R;) and discrete stochastic labelling (par-
titioning in classes C;). All the elements of a region R; belong to the same
class.

o We will either say “classify a site” or “attribute a label to this site”.

2.2 Problem statement

Most of the images we are dealing with are corrupted by different sources of noise.
The collected data contain false informations that must be removed or softened. Let
assume that the noise  : R — R, (n = 2 or 3), has a white gaussian distribution
of intensity. If » is an additive noise, the linear degradation model is of the form:

o(z) = f(z) +n(x), VreQ, (1)

where o denotes the collected data. The goal of the restoration process is to retrieve
f from o through the minimization of the functional J(f) = [,(f(z) — 0(x))2d$
for instance. This problem is generally ill-posed (in the sense of Hadamard [26]),

INRIA
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and the regularization theory leads to a well-posed formulation. The basic idea of a
regularization method consists of imposing some constraints on the solution f, and
so the space of admissible solutions is restricted. For instance, to obtain smooth
solutions, a Thikonov regularization term [, |V f(z)|*dz can be introduced in the
functional J [48].

Edges are probably the most important low level features in image processing, and
are usually defined as a sharp transition of intensity level. Therefore, the restoration
methods must be able to remove noise while preserving thin structures. Tikhonov
regularization induces an isotropic smoothing, and edges are not preserved. In the
field of variational approaches, many authors have worked on anisotropic smoothing
asin [6, 11, 17, 34, 35, 37, 38, 46] for example. The main idea is to define a functional
whose minimization provides a restored solution with preserved edges. Anisotropic
smoothing must be able to remove noise without smoothing the edges. A common
anisotropic smoothing model is based on the minimization of the following functional
[6, 11, 17, 37]:

J(f) = /Q ((2) - ox))2da + A2 /Q oV £()))d. 2)

The ¢ function, ¢ : R — R, has at least the two following properties (see Fig.
1): if t € R is close to zero, ¢(t) is quadratic or nearly quadratic (smoothing effect),
and for large values of ¢, ¢(t) is linear or sub-linear (edge-preserving effect). We
also have the basic asumptions on ¢: Vt € R, ¢(t) > 0; p(0) = 0; o(t) = p(—t);
¢ continuously differentiable and V¢ > 0, ¢'(t) > 0. The ¢ functions are usually
classified in two categories, the convex ones and the nonconvex ones. When ¢ is
convex, the theorical study about the minimization of J leads to results such as
the existence of minimizers. On the other hand, for a nonconvex function, the
theorical study is much more difficult (non uniqueness of the minimum, if it exists).
Nevertheless, nonconvex functions are often used because they usually provide better
results. Table 2 presents different ¢ functions commonly used.

The Mumford-Shah functional [38] is known as the most synthetic criterion for the
segmentation process. We can find many publications about the mathematical sound-
ness of this model, which belongs to the wide variety of free discontinuity problems,
as well as many applications [3, 4, 6, 34, 35, 37, 46]. In addition to restoration, the
notion of segmentation, i.e. getting an image partition, is introduced. The expression
of the Mumford-Shah functional is:

Jus(f,B) = /Q (f(z) - o(z))*dz + \? /Q . |V f(z)’dx + H(B), fe€BV(Q)(3)

RR n° 3523
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— | —

|grad(f)|

edge-preserving smoothing edge-preserving
Figure 1: A typical behaviour of a ¢ function.

with B denoting the set of boundaries (unknown free discontinuities). The first term
in (3) aims at keeping the solution close to the data. The second term, weighted by
the regularization parameter ), provides a smoothing process on homogeneous areas.
The last term leads to boundaries having minimal length. So, the expected solution
is compound of homogeneous areas separated by sharp regularized edges: a piecewise
constant solution. The minimization of Jysg is a difficult task because the set B is
unknown. In the field of free discontinuity problems, theorems of I'-convergence can
be used to approximate Jy;¢ with a sequence of elliptic functionals, as for instance
in [3, 4, 34, 35, 46].

In addition to the restoration and segmentation problems, we want to define a vari-
ational model also devoted to classification. Herein, a classification process means
a segmentation with a labelling, i.e. every elements of a partition belong to the
same class. This model must lead to three simultaneous processes: denoising, edge
preservation and classification (region segmentation). In other words, for each site s
we must be able to determine if s is a noisy pixel, if s is an edge element and which
class s belongs to? (i.e. which is the label L, € A of s7).

For the sake of simplicity, we make the following assumptions:

Hypothesis (H)

e Each site is characterized by its intensity level (grey level).
e Each class Cj;;—1..m has a Gaussian distribution of intensity N(u;,0;)
where p; and o; are respectively the mean and the standard deviation of
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the class C;. We will use vector notation:

p=A{piti=1.m and o ={oi}ti=1. M-

e The number M and the parameter vectors u and ¢ of the classes are
known (i.e. supervised classification).

This model relies on the minimization of a nonconvex functional (or energy) whose
general formulation is:

J(f) :/Q(f(x)—o(x)fdﬁv/

[V r@hde +7 [ W@ o)z, @)
The first two terms provide a restoration with edge-preservation. The last term W
in (4) is a potential inducing a classification constraint. It takes into account the
intensity and the parameters of the classes for the classification of each “pixel” x. W
has got as many minima than the number of classes and imposes a level constraint
on the solution. The real parameters A and 7 permit to adjust the weight of each
term.

In the next section, we will see that this model is close to the phase transitions

problem studied in mechanics.

3 Van der Waals-Cahn-Hilliard theory of phase transi-
tions

The Van der Waals-Cahn-Hilliard theory of phase transitions has shown to be
efficient for the study of mechanical systems made up of a material compound of
instable phases. This material may be either solid or liquid. For the sake of clarity,
we expose the theory concerning two phases, and an extension to the M phases case
can be found for instance in [7]. Thus, the two instable phases may represent either
a chemical alloy as Iron — Aluminum [1], or the distribution levels of a fluid [36].
The common problem in these different applications is to characterize the stability
of such a system. This theory leads to the description of the stable configurations
and to the analysis of the interface between the two phases while the system reaches
its stability.

First, the Van der Waals-Cahn-Hilliard theory is briefly described. Then, we will
stress that if we consider the image intensity as a material, this mechanical theory
remains useful for image segmentation.

RR n° 3523
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Figure 2: Example of double-well potential W.

3.1 Related works

Consider a dynamical system made of a single fluid whose Gibbs free energy, per
unit volume, is a function W of the density distribution u. W has two minima, and
is known as a double-well potential (see Fig. 2). This fluid is supposed to be under
isothermal conditions and contained in a bounded domain 2. The stable configura-
tions of this system are obtained by solving the following variational problem P, (as
for example in [7, 9, 20, 36, 44, 45|):

inf, E.(u),
P E(u) = [, [6|Vu($)|2 + %W(u(x))] dz, (5)
with u subject to the constraint: [, u(z)dz = m,

where (2 is an open bounded subset of R™ with Lipschitz continuous boundaries, and
m is the total mass of the fluid. |Vu(x)| represents the gradient modulus of u(z).
W : R — RT is a continuous non negative function with exactly two minima a
and b (a < b) such that W(a) = W(b) = 0. Furthermore, W is quadratic around
a and b, and is growing at least linearly at infinity, see for instance [20] for explicit
conditions on W (This study also holds for W : R? — R*, as it is exposed for in-
stance in [7, 20, 44]). The Van der Waals-Cahn-Hilliard theory has led to introduce
the perturbation term €|Vu|?, with e small, which contributes to solve the failure
concerning the uniqueness of the solution u of the problem: inf, [, W(u(x))dz with
u such that [, u(x)dz =m.

INRIA
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Concerning the study of the problem P, and its solutions as ¢ — 0T, authors of
[9, 20, 36, 44] used the I'-convergence theory developed by De Giorgi [23]. If Q and
W verify the previously prescribed conditions, the main results are:

e F,. I'-converges to Ey with:

Fo(u) KPerq(Ry) if u(x) € {a;b} a.e.
u) =
0 +00 otherwise,

with R; = {z € Q/u(z) = a} and K defined as:
1
K =2int{ [ VW) (s)ldss g piecewise €1, g(-1) = a, g(1) = b}.
9 -1

o If u. is a sequence of minimizers of E, such that u. converges to ug in LI(Q),
then wug is a solution of the problem:

u € BV(Q),
il;tlfPeTQ(Rl) with ¢ W(u(z)) =0 a.e.,
Jou(z)dz =m

e Any sequence (v¢) such that E(v.) < constant < co Ve, admits a subsequence
converging in L'(Q2) (compactness in L'(£2)).

Note that the reaction-diffusion problem related to P, is based on the following PDE
(Ginzburg-Landau equation):

adp 1 . . . .

5= eAp— =W (p), where tis the evolving time parameter. (6)

€

Many authors have studied this PDE, as in [8, 14, 42], and have shown that the solu-
tion pe(x,t) of (6) as € — 0 is piecewise constant with two admissible values a and b.
Moreover, the evolution of the interface between the two regions {z € Q/p.(z,t) = a}
and {z € Q/pc(z,t) = b} is a motion by mean curvature-type [1, 8, 30, 41, 42|, in-
ducing a certain regularity of the interface.

The double-well potential W can be interpreted as a level constraint term, forc-

ing u to take one of the two values a or b. This constraint has an increasing weight
as € — 0. The perturbation term €|Vu|? has a regularization effect on the solution u

RR n° 3523
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by avoiding the formation of singularities and by restricting the space of solutions.
This perturbation term vanishes as € — 0. This study is presented herein in the
double-well case, even if several authors have worked on the multiple-well case and
multiple fluids [5, 7, 13, 41, 45].

3.2 Analogy with image classification

We can transpose these previous works to image processing for a region segmen-
tation and restoration process. Let  C R2°™3 be an open bounded domain, and
f Q2 — R a function that represents for instance the intensity of each site. Con-
sider a feature criterion of classification, only based upon the distribution of inten-
sity, and let the image be compound of two regions Ry = {z € Q/f(x) = a} and
Ry = {z € Q/f(x) = b}. Let 0: Q@ — R denote the observed data, corrupted by
an additive white Gaussian noise 7, such that the linear degradation model is of the
form o(x) = f(x) 4+ n(z), Yz € Q. Let P. be the following system:

. I?inf Eé(f)a
P Bf) = [o[elVF@)P + LW (f(2))| de, (7)
with f subject to the constraint: [, (f(z) — o(z))*dz < o

where ¢ is the standard deviation of the white Gaussian noise 1, and W is as previ-
ously described (see subsection 3.1). The constraint in (7) imposes the solution f to
remain close to the observed data.

According to the previous results, as € — 0 the solution f of P. converges to a smooth
segmented image whose sites only belong to Ry or Ry (a.e.), these two regions being
separeted by sharp regularized edges (the smallest €, the sharpest the transitions),
and the set of boundaries having a minimal perimeter (see Fig. 3).

When € is fixed, let examine the functional EE( f) to give an interpretation of the

influence of each term on the solution of miny E(f) .

B= [ dve 4w i ®

regularization term .
level constraint

The first term in (8) prevents the solution from the apparition of high level discon-
tinuities. In the field of image restoration, this term induces a standard Tikhonov
regularization (cf. section 2.2 and [48]). This regularization produces an isotropic

INRIA
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anti phase boundaries
Figure 3: Segmented image with two regions R1 and R2.

smoothing. Nevertheless, the second term forces the solution to take only the two
values characterizing the regions R; and Ry, these two values, a and b, are the labels
of R; and Ry. Hence, even if the regularization is strong, the level constraint W
should permit all the sites to stay sufficiently close to the levels a and b.

The convergence on e induces an evolution of the weight of each term. The value of €
is initially high (“high” in the sense "non negligeable"). Therefore, the regularization
process is firstly preponderant. As e — 07, the influence of the level constraint is
increasing while the smoothing term is vanishing. Roughly speaking, the conver-
gence on € permits in the first steps to remove the noise and then, when the image
is sufficiently restored, we can start the classification with enough confidence.
Moreover, from the reaction-diffusion problem corresponding to (6), we know that
the interface between R; and Ry has a motion by mean curvature-type. This reflects
the geometrical regularization operated on the edges.

The constraint in (7) measures the discrepancy between the solution and the data.
So, the final image will be piecewise constant with regularized boundary (having a
minimal perimeter), and will take into account the accordance with the data set.

RR n° 3523
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4 Classification functional

4.1 Proposed functional

Based on the previous sections, we introduce the perturbation parameter € in (4)
by defining:

5(5) = [ (#@) = o))t +ex® [ (VS @hdo+" [ W(r@sm o)z )

~~ ~~ ~~
data term restoration term level constraint term

The corresponding problem we are interested in is to find a solution f such that

e—0t

f= lim [argmfian(f)]. (10)

The first two terms of (9), if € is fixed, are the ones of the restoration with edge-
preservation functional (2). The last term is a level constraint inspired by the Van
der Waals-Cahn-Hilliard theory of phase transitions, such that W attracts the val-
ues of f(x) towards the labels of the classes. In our approach, since a class Cj is
characterized by its mean u; and standard deviation o;, we have chosen to design C;
by the label u;. Hence, the set of admissible labels A is the vector p.

In accordance with the hypothesis (H) stated in section 2.2, the potential W : R —
R must take into account the Gaussian distribution property of the classes. W has
its M minima on the values u; such that W (u;) = 0, V i. We have constructed a po-
tential W such that W € C*(R) and W is piecewise parabolic. From Fig. 4, around
wi, W is of the form W(z) = P;(x) = ;"2 (x — p;)%, where w; is a positive weighting
constant. Then, we construct the quadratic piecewise Q;(x) = k; — ¢;(x — p;)? that
joins P; and P;1; respectively at the points a; and f3; (Q; is a parabolic junction).
The parameters «;, G;, ki, ¢; (¢; > 0) and p; are computed from the expression of
P; and P;y1. Q; joins P; and P11 (C*(R)-junction) such that [a;, ;] is as small as
possible to get a potential W whose parabolics P; are “predominant” in comparison
with the parabolic junctions. For each set of parameters (i, o), we get a different
potential W. W is quadratic around its minima and is growing faster than linearly
at infinity (expected properties for W defined in section 3.1).

We assume that ¢ is a regularization function (as the ones of Tab. 2) having the
characteristics exposed in section 2.2 and shown on Fig. 1.

Let € be fixed. A minimizer of J,, if it exists, is a solution f. satisfying the expected
properties: restored, edge-preserved (if ¢ is different from a “Tikhonov” regulariza-
tion function, see Tab. 2) and level-constrained. As ¢ — 0, during the first steps

INRIA
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Figure 4: Construction of the piecewise parabolic potential W.

of the convergence the weight of the level constraint term is quite insignificant; only
the restoration process occurs. As stressed in the previous section, as € decreases,
we progressively get a softened anisotropic diffusion while raising the classification
process.

Note that the solution we are looking for is a continuous variable (as the intensity
level for example) and not a discrete one as in a stochastic labelling [10, 18, 19, 29|.
The classification is implicitly defined through the level constraint term in (9) which
attracts the admissible values of the solution towards the M labels of the classes.

Remark: in the following, we will omit the convergence parameter € indexing f,
thus fe will be replaced by f, denoting the solution of the minimization of J.

4.2 About the classification term W

Let summarize the properties of the level constraint potential W we expect, ac-
cording to the assumptions (H) we made on the classes, and with respect to the Van
der Waals-Cahn-Hilliard theory:

1. Number of minima: W takes into account the number and the parameters
of the classes.

2. Localization of the minima: for M classes, W must have M minima on
every site s such that f(s) is close to p;. In other words, the label of a class
C; is the corresponding mean p;. According to section 3.1, a region R; will be

RR n° 3523
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defined such as R; = {z € Q/f(x) = u;} and each element of R; belongs to C;.
3. Values of the minima: W is constructed such that W (u;) =0, Vi=1..M.

4. Discrimination of the classes: W should be able to discriminate two classes
having respective distributions N(u;,0;) and N(pj,05) if p; # p; even if p;
is close to p; and even in the case where o; and o; are such that the two
distributions have a wide overlapping area (i.e. mixed distributions).

Points 1 to 3 are taken into account through the construction of W. There exists
several ways of constructing a potential W satisfying points 1 to 3, but a piecewise
quadratic C'(R) potential seems to be the easiest one, especially since the derivative
W' is piecewise linear. When we have M classes, the expression of W is (see Fig. 4):

%lg(x—ul)Q ifr <a
Wn (2 — pin)? if &> Bh_
Wy B 2> -

oz — 1) if i1 <z <y
ki —ciz —pi)? if oy <z <
Point 4 is the most delicate. We want to define a potential W having M wells
(point 1) sufficiently marked to obtain M responses. This means that we want to
avoid a configuration in which a well is hidden by the one of a neighbouring class. To
illustrate such a phenomena and to explain how to overcome this difficulty, let assume
that we deal with exactly 3 classes with respective parameters (mean; standard
deviation): (12.0; 8.0), (13.0; 6.0) and (16.0; 4.0). Let examine the influence of the
local parameters w; weigthing each quadratic P; of W (see (11)). The widening of
the local parabolic P; is determined by the ratio (:2 The value of ¢; is fixed, and
the value of w; is selected by the operator. So, a variation of w; induces a variation
of the width of the well formed by the parabolic P; such that the most the value
of w;, the narrowest the well. Fig. 5 presents the 3-well potential W for which
wy = we = ws = 1.0. The classes whose labels (mean values) are 12.0 and 13.0 are
nearly not distinguishable. By setting w1 = w2 = 10.0 and ws = 1.0 we make the
two wells emerge, and we can see on Fig. 6 that the two neighbouring classes are
now distinguishable.
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Figure 5: Potential W for 3 classes (see section 4.2). The weighting parameters w; of P,

(see (11)) are w; = wy = w3 = 1.0.

1.8 \
1.6 |
1.4 \

1.2 |

0.8 \
0.6

0.4

W with wl=w2=10 and w3=1

/
/

/
/

O 10 12 1
X

/
\ /
AR \
" \ J\/ \ /
\ \ /
4 16 18

20

Figure 6: Potential W for 3 classes (see section 4.2). The weighting parameters w; of P;

(see (11)) are wi = w2 = 10.0 and w3 = 1.0.
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MECHANICS — IMAGE PROCESSING

(a) | constraint in the problem (5) — penalty introduced in the functional (9)
(b) potential with 2 wells — potential with M wells (classes)

(c) perturbation term €|Vul|? — regularization term ep(|V f])

Table 1: From the phase transitions theory to the proposed classification functional

4.3 Soundness of the proposed model

Table 1 summarizes the transpositions we made from mechanics (5), for which
we have theorical results at our disposal, to image classification through the mini-
minization of (9). We propose to examine extrapolations (a) to (c) in Table 1 by
distinguishing the ones which are mathematically justified from the heuristic ones.

(a) - from constraint to penalty -

In [7, 9, 36, 44], the mathematical results about the theory of phase transitions
rely on the I'-convergence theory. One of the main advantages of using this kind
of variational convergence rather than only convergence of minimizers, is that the
results remain unchanged with a continuous perturbation on the functional [23]. In
particular:

if  F.(u)_T , Fy(u) ase— 0"
then F.(u) + [, (u(z) — o(a:))2da; _ D Fy(u)+ [o(u(z) - o(m))Qdm as e — 0t

with 0 : R™ — R a function in L?(R), denoting the data. In addition to the char-
acteristics of minimizers presented in section 3.1, minimizers f, of (9) will take into
account the observed data o. Hence there will be a trade-off between the regularity
of the solution and its level of accordance with the data.

(b) - from 2 wells to M wells -

Most of authors have studied the double-well case [1, 8, 14, 36, 42, 44]. Some of
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them have treated the 3-well case as in [41, 45], and the general case corresponding
to M wells is presented by Baldo in [7]. Baldo has extended the previous results to
the case of u : R™ — RP and for a potential W : RP — R, having M zero-valued
minima.

(c¢) - from quadratic perturbation to regularization using a ¢ function -

Let note © : QXRXR™ — R™T such that (see (5)):
O(z,u,eVu) = Ec(u).

Owen and Sternberg [39] have proven that for any convex © function of eVu (other
weaker conditions on © are required in their article), ., the solution of P. as € — 0,
still has the same characteristics than the ones previously exposed for an isotropic
perturbation €?|Vu|? (the rescaled perturbation of (5)). However, © must have
(at least) a parabolic behaviour with respect to eVu at infinity. Thus, if ¢ is the
Tikhonov regularization function (see Table 2) then e2p(|Vf|) = €|V f|? and the
theory holds. If ¢ is another regularization function, the theorical soundness of (9)
is an open problem.

4.4 Minimization and algorithm

Let describe the strategy we have adopted to minimize (9) with respect to f.
If f is a minimizer of (9), then a necessary condition is that the derivative of the
functional J, applied to f is equal to zero. Using the Euler-Lagrange equation to
compute the derivative of J,, we obtain the following system:

{(f(:v) — o(x)) + LW (f(x)) - eXdiv( LAV f(x) =0 vz € @, 12)

; 2V )
2@ — o on 99,

where n is the outward normal to the boundary domain 902, and div denotes the
divergence operator. Let remark the nonlinearity of the PDE in (12) although
W'(f(x)) is piecewise linear with respect to f(z) (see (11)). This nonlinearity is due
to the fact that we do not have the Laplacian operator Af = div(V f), which induces
an isotropic smoothing (Tikhonov regularization), but an anisotropic smoothing op-
erator such that the gradient in the divergence is weighted by the coeflicien

To obtain an edge-preserving process, according to [17], we impose the following
constraints on ¢:
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(a) limt_,()% =~>0and v < oo,

(b)  limyio & =

Y

(c) # symetrical and strictly decreasing on [0; +0o0l.

Condition (a) is related to an isotropic smoothing on homogeneous areas, while (b)
leads to preserve edges from excessive smoothing. Condition (¢) permits to avoid
instabilities.

Let € be fixed. The approach we adopt to minimize J, with respect to f is based on
the half quadratic regularization method [17, 22]. This method permits to simplify
the minimization of J., by avoiding the difficulties related to the non linearity of
the PDE in (12). The basic idea is to introduce an auxiliary variable which leads
to find minimizer of (9) through the resolution of linear PDE’s. Let assume that ¢
is a function verifying conditions (a) to (c). In the precited references, it has been
proven that ¢ can be written as:

p(t) = inf[bt” + 4 (b)] (13)
where the function 1 is derived from ¢: ®(b) = g((¢))~" (b)) — b(g')~'(b) with
g(t) = (/1) (see [17, 22] for more details), and 1 is strictly convex. b is an
auxiliary variable defined in (13) and whose value is given by the formula: b = “02—@.
According to the half quadratic regularization, we get:

J(f) = min J2(£.0) (14)

with

1AL = [ (@) = o@)*de+ X [ MV @ + 0(0(a)]do
+§W(f(x))d:v (15)

J*(f,b), called the augmented energy, is convex with respect to the auxiliary variable
b (with f fixed) and piecewise quadratic with respect to f (with b fixed). According
to the conditions on ¢, the values of b are scaled from 0 to <, and in our case
the ¢ function we use is such that v = 1 (see Table 2). The variable b marks the
location of dicontinuities such that b(z) ~ 0 if = belongs to an edge and b(z) ~ 1
on homogeneous areas. From (14), the minimization of J will be transposed into
the minimization of J with respect to (f,b). J.* is piecewise quadratic in f and
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T

o(t) ‘pQSf) convexity /conditions (a) to (c) satisfied
Tikhonov [48] t2 1 yes/no
Total Variation [43] [t] ﬁ Gf & #0) yes/no
Geman & McClure [21] %z (1—+1t27; no/yes
Hebert & Leahy [27] log(1 + ?) HLﬁ no/yes
Green [25] log(cosh(t)) tan;;(t) (if ¢ #0) yes/yes
Hyper Surfaces [17] V1iFtZ -1 5 11+t2 yes/yes

Table 2: Some edge-preserving ¢ functions.

convex in b. The auxiliary variable b is related to the presence of discontinuities, and
W'(f(x)) is piecewise linear (locally linear) with respect to f(z). Let note

Wl,ocal(f(w)) = 2[*’4localf($) + Blacal],

with Ajpear and Bioear € R. From (11) we notice that the expression of Wlloml (i.e.
the values of Ajoeqr and Byyeqr) depends on the value of f(x).

By the use of Euler-Lagrange equation, the minimization of J} with respect to f
leads to a (locally) linear PDE. The minimization of J. while ¢ — 0% is operated
through the algorithm:

— initialize f
— initialize €
— repeat
o min, J*(f,b) with f fixed:

b(z) = L@
2|V f(x)]
o ming J*(f,b) with b fixed, i.e. solve the PDE:

F(&) — eX2div [b(z)V £ (2)]+L Atoearf () = 0(2) =  Blocar
— until convergence on f
— decrease €

The PDE resulting from ming J*(f,b) with b fixed is solved using a conjugate gra-
dient algorithm.

Label attribution:
The highest the number of loops on the decreasing of ¢, the closest the values of the

RR n° 3523



22 Christophe Samson, Laure Blanc-Féraud, Gilles Aubert, Josiane Zerubia

solution to the minima p; of W. For practical reasons (computational time) and
from experimental qualitative results, we stop the convergence before e reaches zero.
Therefore, the values of the solution are not always strictly equal to (but very close
to) the labels p;. In order to always get a perfect labellized image we make the
following operation on the solution of the previous algorithm: for each site s of the
solution, if p; < f(s) < piy1 (see Fig. 4) the label of s is set to u;.

5 Experimental results and comparison

We present experimental results on both synthetic and satellite images. We also
compare the results provided from the variational model with the ones obtained by
using a stochastic model for classification. We first describe this stochastic model.
Then, we compare the results we obtain by the minimization of (9) using the de-
terministic algorithm presented in section 4.4 to those obtained with the stochastic
model.

5.1 Description of the stochastic model

The stochastic model used hereafter is based on the Markov Random Field (MRF)

theory, and mentioned for instance in [10, 18, 19]. This model provides an image
classification by assigning a label to each site. The main differences between the
stochastic model and the variational one are: first a discrete framework instead of a
continuous one, second the unknown is an image of labels and not the intensity, and
finally the algorithm used to minimize the energy is stochastic.
Let S and A be defined as before. Let C' be the set of cliques such that we define
a first order MRF model (i.e. we will take into account a site and its four nearest
neighbours). A global discrete labelling L consists of assigning a label Ly € A to
each site s € S. By the use of Bayes theorem, the estimated labelling L is obtained
through the following rule:

L=arg max P(L/O) Bayes arg max P(O/L)P(L)

= arg mLin(—ln P(O/L)P(L)), (16)

with O denoting the observed data, and by omiting P(O) which does not depend on
L. P(O/L) is supposed to be such that P(O/L) = [[, P(Os/L,) (white invariant
noise), where Ly is the label assigned to the site s, and with:
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P(O,/L.) = (O ), (17)

N |
21loy, P 20'2Ls

The prior model is a Potts regularization such that:

P =exp[-2 Y 8L, 1,)]

fsiec
lifa=

with 8(a,b)={ L+ 1e=0 (18)
+1lifa#b

where T is the temperature parameter. In accordance with (16), the estimated
labelling L is obtained by solving:

L =arg mLin E(L), and E is a global energy such that:
N

2
B() = 1> (mvaor, + QMDY g S sw,n]. o)
s=1 s {s,r}eC
Using a MAP (Maximum a Posteriori) criterion, the optimization is made by sim-
ulated annealing with a Metropolis algorithm. In addition to the number and the
parameters of the classes, the required input are: the initial temperature, the decreas-
ing factor governing the temperature descent, and the value of 8. The temperature
may decrease slightly. The value of 3 depends on the level of homogeneity we expect.
The minimization of (19) straightly leads to a labellized image, whereas in the vari-
ational framework we progressively (as e — 0) get a labelling. In order to get
classification results directly comparable to the ones provided from the variational
model, we impose that the labels Ly take their values in {u;}i—1.a, i being the

mean of the classe Cj.

5.2 Experimental results

We have tested the proposed variational model on both synthetic and real satellite
grey level images. The results on synthetic images are meaningfull to validate the
model and to analyze the differences with the stochastic model described in section
5.1. All results were obtained on a 166 MHZ computer.

Remark: In the following "VC" will denote the variational classification and "SC"
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the stochastic one.

In order to run the previous variational algorithm, we need input parameters that
we experimentally adjust. We first assume that parameters y, o and the number M
of classes are known (preliminary estimation or parameters given by an expert). In
addition to the values of A, 1 in (9) we introduce a practical parameter § which aims
at rescaling the gradient modulus: |V6—f|. This parameter can be seen as a threshold
fixing the value from which a discontinuity is assimilated to an edge. We then start
from € = 1 and select its speed of decreasing. We initialize f to the data set 0. From
experiments, we have noticed that we need to increase the global regularization term
(restoration and level constraint) i.e. the last two terms of (9) while ¢ — 0 in or-
der to get better numerical stabilities and to avoid the reappearence of noise as the
restoration term vanishes. When it is not mentioned, the selected ¢ function is the
one proposed by Geman and Mc Clure (see Table 2 and [22]).

5.2.1 Synthetic images

The first noisy synthetic image considered is of size 128 x 128 pixels ("check" image)
and contains four classes whose parameters are given in Table 3. The white Gaussian
noise introduced is such that the SNR is 10 dB (variance ratio). The 4-well potential
W in (9) is illustrated on Fig. 7. Fig. 8 presents the different output images we
obtain from the minimization of (15): the restored image (SNR=27.9 dB), the map
of discontinuities (image of auxiliary variable b: external boundaries) and the VC
which is compared to the SC. If we compute the percentage of misclassified pixels,
the VC leads to 0.23 % and the SC to 0.18%. This slight difference mainly comes
from the small piece of white square overlapped by the triangle and the circle (see
the classification results on Fig. 8). The computational time is 18 seconds for the
VC and 78 seconds for the SC. Fig. 9 shows the SNR and number of misclassified
pixels evolution while € decreases. We can detect the step on € from which the SNR
and the number of errors are stable (this can determine the stopping value of €). On
Fig. 10 we show the influence of the kind of ¢ function on VC results (see Table
2). For a Tikhonov regularization, edges are oversmoothed. With a convex ¢, there
still are many misclassified pixels on the bounbaries. Best results are provided with
the use of nonconvex ¢ functions, even if the theorical soundness of the model is an
open problem.
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class mean yu; standard deviation o;
1 (black squares) 85.0 12.85
2 (triangle) 115.0 12.85
3 (disk) 145.0 12.85
4 (white squares) | 175.0 12.85

Table 3: Parameters of the 4 classes for “check”
the same for each class, and is the one of the white Gaussian noise.

image. The standard deviation is

30
28
26
244
22+
204
18

80 100 120 « 140 160 180

16
14
12
10

o N M O ©

W potential - "check" image

Figure 7: Potential W for "check" image. Since the standard deviation is the same
for all the classes, the wells have the same width. The peaks seem to be nonsmooth,
but this is due to the plot discretization.
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0 - DATA
original noisy (SNR=10 dB)
e RESTORATION
restored (SNR=27.9dB) map of dicontinuities
:: CLASSIFICATION
VC SC

Figure 8: Results on “check” image. Variational parameters: A = 16, § = 15,
n = 0.1, 7 iterations on e. Stochastic parameters: g = 2.1, 1000 iterations sor
simulated annealing. Computational time: variational=18s., stochastic="78s.
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Error evolution: check image
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SNR evolution: check image
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Figure 9: Number of misclassified pixels (top) and SNR value (bottom) with respect
to the number of iterations on e for "check" image.
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©(t) = t%: convex (Tikhonov)

©(t) = log(cosh(t)): convex (Green)

o(t) = lj_%: nonconvex (Geman & McClure)

Figure 10: Classification of “check” image with different ¢ function (see Tab. 2).
Nonconvex functions provide better results even if there are no theorical proof con-
cerning the solution in the nonconvex case. Convex functions lead to oversmooth
results: we get damaged edges.
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The second image is of size 256 x 256 pixels ("gdr" image), and the noisy version is
such that the SNR is equal to 10 dB. This synthetic image comes from the database
of the GdR ISIS, and was created to test segmentation and classification models.
This image includes two main difficulties. The first one is the irregularity of the
shape on bottom right handside. The second one is due to the grey level gradation
on top right handside. We present results for two different sets of number and pa-
rameters of classes.

First, we have selected three classes whose parameters are summarized in Table
4. The corresponding 3-well potential is shown on Fig. 11; the wells are wide and
clearly separated. On Fig. 12, we can see that the VC manages slightly better than
the SC does the grey level gradation (cf. top right handside), and leads to less ir-
regular boundary than the one of SC. Globally, VC results are close to the SC ones,
but the computational time is 49 seconds for the VC and 285 seconds for the SC.

Then, we have chosen eight classes (see Table 5). From the 8-well potential shown
on Fig. 13, we remark that classes number 6,7 and 8 are nearly undistinguishable.
The classification results are presented on Fig. 14. We can notice that for this deli-
cate configuration, the variational model is much more efficient (and faster) than the
stochastic model. The SC is made of a lot of false regions, which is a consequence of
the proximity of the classes. If we reduce 3, which is the weight of Potts regulariza-
tion, we get less false regions, but we get a lot of isolated misclassified pixels (due to
the noise). The VC errors are mainly situated on boundaries of the irregular shape
on bottom left, but this is the best trade-off: if we want to remove this misclassified
pixels, we shall damage the edges. The computational time is 101 seconds for the
VC and 671 seconds for the SC. On Fig. 15 we show the evolution of errors and SNR
while € decreases. Note the variation of the SNR evolution between iterations 30
and 40 before stability. This corresponds to the range for which the restored image
becomes a piecewise constant image (the set of admissible values of f(x) converges
to the set of labels). Since the SNR is computed from the comparison with original
image (grey levels), the SNR value at stability is not always the maximum. Espe-
cially herein, since we do not retrieve all the levels of the gradation of grey levels: in
the stability domain beginning after iteration 30, f is piecewise constant with eight
admissible values, whereas the original unnoisy image has 32 grey levels (see Fig. 16
and Fig. 17).
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class | mean p; standard deviation o;
1 100.0 5.56
2 128.0 5.56
3 160.0 5.56

Table 4: Parameters of the 3 classes for “gdr” image. The standard deviation is the
same for each class, and is the one of the white Gaussian noise.

W potential - gdr image - 3 classes
70+
60
50
40
304
20+

10+

0 100 120 140 160 180

Figure 11: Potential W for "gdr" image with 3 classes. Since the standard deviation
is the same for all the classes, the wells have the same width.
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noisy data (SNR = 10 dB) perfect classification

VC SC

Figure 12: Results for a noisy synthetic “gdr” image containing 3 classes. Variational
parameters: A =5, § = 10, n = 0.05, 16 iterations on e. Stochastic parameters: g =
4.0, 1000 iterations for simulated annealing. Computational time: variational=49s.,
stochastic=285s.
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class | mean u; standard deviation o;
1 100.0 5.56
2 128.0 5.56
3 135.0 5.56
4 142.0 5.56
5 149.0 5.56
6 156.0 5.56
7 160.0 5.56
8 163.0 5.56

Table 5: Parameters of the 8 classes for “gdr” image. The standard deviation is the

same for each class, and is the one of the white Gaussian noise.

501

40+

304

20+

10+

W potential - gdr image - 8 classes

80

100 120 140

160

180

Figure 13: Potential W for "gdr" image with 8 classes. Let note that the classes

whose mean values are 156.0, 160.0 and 163.0, are nearly undistinghuishable.
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noisy data (SNR=10 dB) perfect classification
# : -
#ur T
VC SC

Figure 14: Results for a noisy synthetic “gdr” image containing 8 classes. Variational
parameters: A = 60, 6 = 6, n = 0.05, 35 iterations on € . Stochastic parameters: § =
1.3, 2000 iterations for simulated annealing. Computational time: variational=101s.,
stochastic=671s.

RR n° 3523



34 Christophe Samson, Laure Blanc-Féraud, Gilles Aubert, Josiane Zerubia

Error evolution: gdr image (8 classes)
T T
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SNR evolution: gdr image (8 classes)
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Figure 15: Number of misclassified pixels (top) and SNR value (bottom) with respect
to the number of iterations on e for "gdr" image with 8 classes.
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15t iteration on e

10th iteration on

20" iteration on €

30" iteration on e

Figure 16: Solution f. (on the left handside) and associated map of discontinuities
(on the right handside) for the "gdr" image with 8 classes as e decreases. The higher
the number of iteration on €, the lowest the value of €. From iteration 1 to 30: the
restoration term is dominant, then after iteration 30 it vanishes whereas the level

constraint term increases (see (9)).
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33th jteration on e

24
|

36 iteration on e

39th jteration on e

~
<
=
%ibz
=
<7
=
7

50" iteration on e (final result)

Figure 17: Continuation of Fig. 16. From iteration 30, the value of the level con-
straint term is sufficiently high to let appear the classification process, i.e. the
restriction of admissible values for f(z) to the set of labels (it is easy to see this
phenomena on the top right hanside: gradation area). The final fe_s50 result is the

one presented (in color) on bottom left of Fig. 14.
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5.2.2 Satellite images

We have tested the proposed classification model on SPOT images provided by cour-
tesy of the French Space Agency (CNES).

The first 512 x 512 pixels image represents a Dutch agricultural area (see Fig. 18).
An expert has defined ten classes, each one having an agricultural interpretation
(winter wheat, permanent grass...). The parameters of the classes are presented in
Table 6. The VC and the SC are shown on Fig. 19. No noise is introduced, and the
regularization permits to homogenize perturbated areas.

The second image is of size 256 x 256 pixels (see Fig. 20) and we have defined
four classes whose parameters (see Table 7) have been estimated in [10]. The VC
and SC are given on Fig. 21. Fig. 22 shows the evolution of the restored image
f and the map of discontinuities b while ¢ decreases. We can notice that we make
enough iterations on € to get a piecewise constant image f (classification). From
the evolution of b we remark the progressive regularization on the boundaries: the
highest the decrease w.r.t. ¢, the sharpest the edges.
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class | mean p; standard deviation o;
1 54.6 9.65
2 73.5 2.02
3 82.5 5.96
4 93.8 9.68
5 100.5 17.57
6 122.8 2.98
7 129.9 6.11
8 146.6 3.91
9 159.9 5.59
10 182.3 8.55

Table 6: Parameters of the 10 classes for the SPOT image of a Dutch agricultural
area. The means and standard deviations have been provided by the French Space
Agency (CNES).

Figure 18: Original SPOT image of a Dutch agricultural area (xs3 channel, 512*512
pixels).
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Figure 19: Results for the SPOT satellite image of a Dutch agricultural area con-
taining 10 classes. Variational parameters: A = 6, § = 8, a = 0.1, 3 iterations on e.
Stochastic parameters: 8 = 0.6, 400 iterations for simulated annealing. Computa-
tional time: variational=38s., stochastic=609s.
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class | mean p; standard deviation o;
1 30.3 2.86
2 374 2.14
3 61.3 11.32
3 98.2 11.27

Table 7: Parameters of the 4 classes for the second SPOT image estimated in [10].

Figure 20: Second original SPOT image (256*256 pixels).
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VC

SC

Figure 21: Results for the second SPOT satellite image containing 4 classes. Varia-
tional parameters: A = 5, 6 = 19, a = 0.05, 20 iterations on €. Stochastic parameters:
8 = 0.3, 400 iterations for simulated annealing.
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iteration 5

iteration 10

P | iteration 15
Restored image Map of discontinuities

Figure 22: second SPOT containing 4 classes. Evolution of the restored image and
the map of discontinuities while decreasing € when increases the number of iterations.
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6 Conclusion

We have presented a variational model which provides, through the minimization
of a nonconvex functional, a classification and an edge-preserving restoration. This
model is based on the regularization theory and mechanical phase transitions theory.
Its theorical soundness holds in the case of convex regularization, but experimental
results show that nonconvex regularization leads to best visual and qualitative re-
sults. The algorithm used to minimize the proposed functional is easy to implement
and faster than a stochastic one for results at least qualitatively comparable. We
have exhibited a delicate configuration (classes having nearly same parameters) for
which the variational approach is more efficient than the stochastic model using Potts
regularization. The next steps we envisage in this promising work are: first to in-
corporate an automatic estimation of class parameters (unsupervised classification),
second we could introduce a deblurring or reconstruction process. Then, we will
extend this model to the multispectral case (with direct applications to multibands
satellite data and color imaging).

Aknowledgements: the authors thank the French Space Agency (CNES home-
page at hitp://www.cnes.fr/) for providing the SPOT satellite images and the GdR
ISIS (Working Group on Vision, Image, Signal and Information processing http://www-
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