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Solutions périodiques du systéme de
Vlasov-Poisson avec conditions aux limites

Résumé : Nous présentons dans ce rapport 'existence d’une solution pé-
riodique pour le systéme de Vlasov-Poisson dans un domaine borné, avec des
conditions limites périodiques en temps. Dans une dimension d’espace nous
montrons aussi 'unicité de la solution périodique. Le point clé est d’imposer
des conditions reliant la norme des données entrantes, leur support et le po-
tentiel appliqué.

Mots-clés : Equation de Poisson - Equation de Vlasov - Théoréme du point
fixe de Schauder.
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4 Mihat Bostan et Frédéric Poupaud

Introduction

The master system of equations of collision-less plasma physics is the Vlasov-
Maxwell system. The main result in this field has been obtained in 1989 by
R.J.DiPerna and P.L.Lions [12]. They prove existence of global weak solu-
tions for the Cauchy problem with arbitrary data. The global existence of
strong solution is still an open problem. The situation is much better for the
Vlasov-Poisson system. This system is obtained for the first one by neglect-
ing the magnetic field. This can be justified (at least for small time) by a
non-relativistic limit [16]. It reads :

Of+v-Vof +Vep-V,f=0, (t,z,v) € IR, x IR® x IR?,
(1)
Azgpzfdf(t,x,v)dv, (t,z) € IR, x IR%.
R’U

(2)

The variables (¢, z,v) are respectively the time, the position and the velocity, d
is the dimension of the space. The non-negative function f is the distribution
of the charged particles and ¢ is the induced electrostatic potential. For the
Cauchy problem weak global solution has been obtained by Arsenev [14]. Ex-
istence of strong solution in 2D is a result due to Degond [17] and Ukai Ohabe
[18]. The same result in 3D has been proved by Pfaffelmoser [6]. A simpler and
power-full method has been proposed by P.L.Lions B.Perthame [7]. However
for applications like vacuum diodes, tube discharges, cold plasma, solar wind,
satellite ionisation, thrusters, etc... boundary conditions have to be taken into
account. For the transient regime global weak solutions of the Vlasov-Maxwell
system has been proved to exist by Y.Guo [4] and independently by M.Bezart
[13]. The same problem for the Vlasov-Poisson system has been investigated
by Y.Guo [3| and N.Ben Abdallah [8]. Permanent regimes are particularly im-
portant. They are of two types and they are modeled by stationary solutions
or time periodic solutions for boundary value problems. Results concerning
stationary problems can be found in the paper of C.Greengard P.A.Raviart
for the Vlasov-Poisson system in 1D, in [1] for any space dimension and in [2]
for the Vlasov-Maxwell system. To our knowledge no results were available

INRIA
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concerning time periodic solutions. One strong motivation to study such so-
lutions is the great difficulty to compute it numerically. The analysis of the
Vlasov-Maxwell system in dimension 2 or 3 in this context seems, up to now,
out of reach. The situation is different in 1D because solutions of Maxwell
system can be computed explicitly and the techniques introduced in this pa-
per can be used, see [10]. We now describe precisely the boundary condition
which we investigate. Let © be a C! bounded open set of IR¢ representing the
device geometry. We denote by 0f2 the boundary and by ¥~ the set of initial
positions in phase space of incoming particles :

Y = {(z,v) €002 x R* | v-v(z) <0}, (3)

where v(z) is the outward normal of Q at the point z € 0Q2. The distribution
g of incoming particles is prescribed :

f:g7 (t,ﬂ?,U) € Rt X X7, (4)
We impose Dirichlet condition on the electrostatic potential ¢ :
¥ = Yo, (t: IL') € Rt X 0f2. (5)

The data are assumed to be T periodic and we look for T" periodic solutions
(f,¢) of the problem (VP) : (1), (2), (4) and (5). One of the key point of
our proof of existence of such solutions is to control the life-time of particles
in the domain 2. It assures a dissipativeness property of the system. More
precisely it allows to bound the concentration [ fdv. Therefore we impose a
non-vanishing condition of incoming velocities which reads :

supp(g) C {(t,z,v) |t € Ry, x € 00, v - v(x) < 0,v9 < |v| < w1} (6)

for 0 < vy < vy given. We point out that other conditions can lead to the
same kind of result. Let ®; be the harmonic extension of the Dirichlet data.
A generalized condition could be : for any initial condition in the support of g
the characteristics solving % =V, % = V,® + F where F'is small enough,
have their life-time uniformly bounded. Our result can now be summarized as

follows ( see Theorem 3 for precise assumptions ). If (6) holds then for g and g

RR n° 3518



6 Mihat Bostan et Frédéric Poupaud

small enough there exist at least one 71" periodic weak solution of the problem
(VP). We can precise this result in dimension 1 and with supplementary
smoothness assumption on the data we obtain a uniqueness result ( Theorem
1 and Theorem 2 ). Let us remark that even if the electric potential ¢ is "a
priori" known, there is no uniqueness of the T' periodic solution of the Vlasov
problem (V') : (1) and (4). Indeed, the distribution function can take arbitrary
( constant ) values on the characteristics which remain in the domain ( trapped
characteristics ). In order to select physical solution we introduce as in [1] and
|2] the concept of minimal solution of (V') which are the solutions which vanish
on the trapped characteristics. These solutions can be obtained as the limit of
the (unique ) solution of the modified Vlasov problem (V,) when an absorption
term o > 0 is introduced and tends to zero :

af +0f +v-Vof +Vep-V,f =0, (t,z,v) € IRy xQ x R%
(7)

This limit absorption principle has been the starting point of the limit ab-
sorption method (LAM) which has been developed by the authors to obtain
numerical periodic solutions of Partial Differential Equation, see [11]. We also
stress that these results has been announced in [9).

The paper is organized as followed. In Section 2 we define weak solutions and
minimal mild solution of the Vlasov problem (V). We also proved that the
weak solution of the modified Vlasov problem (V) is unique and coincide with
the minimal mild solution. Section 3 is devoted to the 1 dimensional case. We
prove existence of a mild minimal solution (f, ¢) and its uniqueness in the case
where the data are smooth. In Section 4 we introduce a regularized problem.
The existence theorem is obtained by using Schauder’s theorem for the mod-
ified problem. Then we pass to the limit in the regularization parameter to
obtain our main result.

INRIA



Periodic solutions of the Viasov-Poisson system 7

1 Definitions and bounds for the Vlasov equa-
tion

In this section we assume that the electric field E is a T periodic function in
time and we look for a solution f of the Vlasov equation:

Of+v-Vof +E-V,f=0 (t,z,v) € Ry x Q x IR, (8)
flt,z,v) = g(t,z,v) (t,z,v) € Ry x ¥~

Moreover, we suppose that the given distribution function g of the in-flowing
particles is 1" periodic in time, too. Now we briefly recall the notions of mild
and weak solutions for this type of problem.

1.1 Weak solution of the Vlasov equation

We first introduce the spaces L™, L, . of incoming data with bounded or locally
bounded fluxes :

L = {9 | v-vix)gel'(R xx)},

L = {g | v-v(2)g € Ly (B x X7)},
where ¥~ is defined by (3).

Definition 1 Let E € (L®°(IR; x Q))? and g € L}, (IR, x ¥7) be T periodic
functions in time. We say that f € Li, (IR, x Q x IR?) is a T periodic weak
solution of problem (8) iff:

T
/ /Q / . J(t2,0) (00 +v- V. + E-V,0)dvddt =
0 R4

T
= / / v-v(z)-g(t,z,v)-0(t, z,v)dvdodt (9)
o Js-
for all T periodic function 0 € V, where:

V={neW" (R, x Q x R?) | n is T periodic with respect to time ,
n|m,xs+ = 0, 3B bounded set of IR, supp(n) C IR, x Q x B}.

RR n° 3518
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In other words, a weak solution of problem (8) is a distribution function sat-
isfying:

<fip> = /OT/_ v-v(z)-g(t,z,v) - 0(t, z,v)dvdodt (10)

for all T" periodic function ¢, where 6 denote the solution of the problem:

{ate+v-v$0+E-vv9_<p, (t,z,v) € Ry x Q x IRY,
(11)

=0, (t,xz,v) € Ry x T

Remark 1 In the above definition we can assume that the electric field is
only in (LP(IR, x Q))¢ by requiring more regularity on f (and g ), namely f in
Ll (IR; x Q) where q is the conjugate exponent.

loc

If the electric field satisfy E € (L™ (IRy; Wh*(Q)))?, we can express a solution
in terms of characteristics. Let (¢, z,v) belong to IR, x Q x IR%, we denote by
X(s;z,v,t),V(s;z,v,t) the solution of the system:

([ dX
E = V(S;JJ,’U,t), s € [Ti”ro]
X(t;z,v,t) = =z,
Lo (12)
- = E(s,X(s;z,v,1)), 8 € [7i, 7o
Vit ut) = v
\

where 7; = 7;(z,v,t) (17, = 7o(x,v,t)) is the incoming ( resp. outgoing ) time
of the particle in the domain 2:

(X(n),V(m)) e £ (13)

and
(X(7,),V(r,)) € 2t u X (14)

The subsets of 0 x IR%, ¥ and X° are respectively defined by:

INRIA
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¥ o= {(z,v) €902 x R* | v-v(z) > 0},
¥ = {(z,v) €09 x R* | v-v(zx) =0}
Using the Cauchy-Lipschitz theorem, we notice that the characteristics are

well defined. By integration along the characteristics curves, the solution of
the problem (11) formally writes:

Ot ,0) = — [ ol X (53,0,8), V(s.3,0,))ds (15)
t

Now, always formally (10) implies that:

< fip> = —/OTdt/_da(ac)dvv-l/(x)g(t,x,v)

To(Z,v,t)
[ el X (s, 0, V(s v )ds. (1)
t

which is equivalent to:

g(7i, X (1352, 0, 1), V(T35 2,0, 1)), if T; > —00,
f(t,z,v) = (17)

0, otherwise.

Definition 2 Let E € (L®(IR;; Wb (Q)))? and g € L}, (IR; x ¥7) be T

periodic functions. The function f € L} (IR; x Q x IR?) which is the mild
minimal periodic solution of problem (8) is given by (16).

Remark 2 There is in general no uniqueness of the weak solution because f
can take arbitrarily values on the characteristics such that 7; = —oo. But it 1s
possible to prove that the mild solution 1s the unique minimal solution of the
transport equation. We refer to [2] for the concept of the minimal solution and
to [5] for a proof of this assertion.

RR n° 3518



10 Mihat Bostan et Frédéric Poupaud

Remark 3 We have that (X (s+T;z,v,t+T),V(s+T;x,v,t+T)) = (X (s;z,v,t), V(s; x,v,t))
because of the periodicity of E. Using this equality it is easy to check that the
mild solution is pertodic.

Remark 4 If g € C*(IR, x ¥7) then the mild solution is a classical solution
of (8).

1.2 Estimation of the life-time of particles

In order to assure L> estimates for the charge and current densities, we assume
that the following conditions are satisfied:

1 | Vo ‘2

E € (L™(R; W >(Q)))4, (19)
supp(g) C {(t,z,v) |t € Ry, x € 00, v -v(z) < 0,09 < |v] <1} (20)

Here, §(2) is the diameter of 2 and the velocity vy,v; are positive constants.
With these assumptions, we get:

Lemma 1 Assume that the electric field and the boundary data satisfy (18),
(19) and (20). Then, the life-time in Q of particles starting from the support

of g is finite:

(2
To(z,v,t) — 1i(z,0,t) < 2- E) ), V(t, z,v) € supp(g). (21)
0
Moreover, if the electric field verifies :
L | |?
El| = < —. 22
” ||L (R xQ) > ] 6(9)1 ( )

then the life-time in Q of particles starting from IRy x Q x {v € R%| vy < 2|v|}
18 finite :

5(92)

Vo

To(x,v,t) —t < 4- ,V(t z,v) € Ry x Q x {v € R vy <2v]}.  (23)

INRIA



Periodic solutions of the Viasov-Poisson system 11

Proof
Suppose that there is a particle injected in €2 at ¢ = 7; and which is still in the
0($2
domain at t; > 1, +2- Q According to (20), we have:
Vo

0<w < p-V(r) <oy,
where p =V (r;)/|V(7:)|. Integrating (12) on [r;,t] C [7, 1], we obtain:
t
X(t) = X(r) + [ V(s)ds (24)
t K
V(1) =V(r)+ [ Els X(s))ds (25)
Using (25), we find for all ¢t € [r;, 7; +2- §(Q2) /vo]:

p-V@E) = p-Vin) = [Ellcomxe) - (t = 7)

I I(Y)
> _ . .9.
= 0TS0 %
— %
- 2 (26)

Hence, the particle moves in the direction p at least with the velocity vg/2
during ¢t € [1;,7; + 2 - 6(2)/vg]. Moreover, we can choose ¢ > 0 and t. =
7, +2-6(2)/up + € < t; such that:

- V(t) >0,Vt € [r,t.]. (27)
Using again (12), we have:
[X(t:) = X(n)| = |p- (X(t) — X(7))]
= /T; w-V(s)ds

Ti—|—2-5(Q)/’U0
> / w-V(s)ds

= 5(%), (28)

Y
)

RR n° 3518



12 Mihat Bostan et Frédéric Poupaud

which contradicts the fact that X (¢.) € Q. Suppose now that there is a particle
at (t,z,v) with x € Q, |v| > vp/2, which is still in Q at ¢t +46(£2) /vy. With the
same notation p = v/|v| and using (12), (22), we have :

p-Vis) = p-V(QEt) = [[Ellcomxe) - (s = 1)
Yo 1 v ?

> 5 =g 3(Q)

So, the particle moves in the direction p during s € [¢t,t + 4 - §(Q2)/vo] and
therefore, using (12), we obtain :

[X(t+46(2)/vo) = X(B)] = [p- (X(t+40(2)/v0) = X(1))|

t+46(Q)/vo
_ / - V(s)ds

t

t4+48(2)/v0 g, 1 |upl?
= /t 3 03 Sa®
= 2.6(Q) - 5(Q) = 6(Q), (29)

which contradicts the fact that X (¢), X (¢ + 40(Q2)/vo) € Q.

Corollary 1 Assuming the same hypotheses as in Lemma 1 (18), (19), (20)
and let f be the mild solution of Definition 2. Then we have:

supp(f) € {(t, @, 0)lt € Rz € 9,5 < ol S wi+ 2. (30)

Proof
The estimates (30) follow from the previous Lemma. Indeed, according to
(25), we obtain:

V() = V() + [ Bls X(5))ds (31)
and therefore: z
vVl = [VIn)| - ||E||coamxn)2- (t—m)
> v 55}?%%
= 2 (32)

INRIA
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and:
V) < [V(m)|+ [|Ellcomxa) - (= 7)
6(9 ]_ |U0|2
< 2. ..
= * Vo 4 5(9)
= ut % (33)

1.3 Vlasov equation with absorption term
Lemma 2 Let E € (L®(IR; WH*(Q)))? and g € L}, ,(IR x ¥7) be T peri-

loc

odic functions which verify (22), (20). Then the weak periodic solution of the
modified Vlasov equation :

0 f+Of+v-Vof +E-Vof =0, (t,2,0) € R, xQx R,
(34)
f:ga (t,.T,U) ERtXE*.

such that supp(f) C IRy X Q x {v € R%| vy < 2|v|} is the mild solution.

Proof The key of the proof is the existence in the space of test functions of
the periodic solution for the problem:

{04'90+5t90+v'vz§0+E'Vv90—9, (t,z,v) € IR, x Q x IRY,

0 =0, (t,z,v) € Ry x X7F
(35)
where E € (L®°(IR;W"*>*(Q)))? and § € C®(IR; x Q x IR?) are T periodic
functions, supp(f) C IR, x K x {v € IR%| vy/2 < |v] <V} and K is a compact
subset of (2. Indeed, by integration along the characteristics curves, a solution
of (35) writes:

To(t,z,v)
o(t,z,v) = —/ 0(s, X (s;z,v,t),V(s;z,0,t)) - e s, (36)
t

Because supp() C IRy x K x {v € IR% vy/2 < |v| <V} we deduce that

To(t,2,v)

pltyov) == [ 005, X (532,0,0), V(s m,0,) - e~ 0ds,  (37)

t*

RR n° 3518
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where t* = inf{s > t| vo/2 < |V (s;z,v,t)| < V}. Using (36), it is clear that
Olmr,xz+ = 0, because 7o(t,z,v) = t, V(t,z,v) € IRy x X7. Using the same
ideas as in the proof of the Lemma 1, we deduce that ¢ has bounded support
in v. Moreover, all the first derivatives are bounded in L*°. For example, the
spatial derivative writes:

To(tamav)

O, p(t,z,v) = — (V.0(s, X (s52,0,t),V(s;z,v,1t)) - 0,,X (38)

t*

+ VUQ(Sa X(Sa z,v, t)a V(S, x,v, t)) : a%V) : eia(sit)ds‘,

In order to get an estimate for the above integral, we derivate the system of
characteristics in respect to x;:

(d
d—amiX = 0., V(s;z,v,t), S € [13, 7]
s
0. X (t;z,v,t) = (0,0,...1,0,...0)",
| d O(E1, Ey, ...Eq)
_amv : ’ aa:X s Ly 7t1 S 2y 1o
dS v 8(.’1?1,$2,...$d) * (S v ) 5 [T T]
| 0V (2, 0,t) = 0.

(39)
Now, using Gronwall’s Lemma, we deduce the estimate:

102, X (83,0, 1) 2 +|0,,V (s; 1,0, 1) |* < e(UHI=El)-(s=) g [t, 7,(t,z,v)], (40)

E\, By, ..E))

(21,9, ...24q)

0
where ||0,F| = Ha( < K - || E|| pee(my;wioe (), and therefore,

using (23) we get:

10w, (8, @, )

IN

/w,w) 18| eo - €110 (s=0)/2=a:(s=)
t*

oo - eTHIRED(—0/2—ats=t) (47)

/t*—|—46(Q) /o

which implies that 9, € L®(R; WH*°(Q)). In the same way, we get that
Oy, 0 € L (IRy;; WH*°(Q)). By the other hand, using (35) we have:

[0l < [|0llc= + - [lollze + v - VapllLe + [[E Lo - [Vl L=

INRIA
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We have proved that ¢ € V. Now, consider f, fo two periodic weak solutions
for the modified Vlasov equation and let § € C*(IR; x Q x IR%) be a T periodic
function with supp(f) C IR, x K x {v € R% vy/2 < |v| < V}. We denote by
¢ €V a solution for (35). Using the weak formulation, we deduce:

T
< fi,0> = / // filt,z,v) - 0(t, z,v)dvdxdt
o Jo/me
T
= / // filt,z,v)(—a- o+ O +v-Vop+ E - Vyp)dvdzdt
o Jo/me
T
= / / v-v(x)-g(t,z,v) - o(t,z,v)dvdodt
o Js-
T
= /0 /Q/Rgﬁ(t;ﬂ?;?})(—a'90+5t90+v-Vwcp—i-E-Vv(p)dvdxdt
T
= /0 /Q/]Rgfz(t,m,v)-G(t,ac,v)dvdxdt

= < fy,0>, (42)
and therefore f; = f, in D'.

2 Mild solutions for the Vlasov-Poisson system
in 1D

In this Section we consider the 1 dimensional case and 2 is the unit interval
10,1[.

2.1 Continuity of the characteristics

We work under the hypotheses (18), (19),(20), which assure a finite life-time
Tous = 2/v9 and a minimal velocity vy, = vy/2 for all particles. We prove C°
continuity of the characteristics of Vlasov equation.

Lemma 3 Consider (E,),>1 a sequence of electric fields which verify:

| o 7
| Enllco(m, x[o,17) < 1 (43)

RR n° 3518
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| E.(t,z) — E.(t,y) |[< L |z —vy|,Vt € Ry, z,y €[0,1], (44)
lim E,=E in  C°R, x[0,1]), (45)

and g € L*°(IR; x ¥7) a function such as:

supp(g) C {(t,0,v) |t€e Ry, 0 <vy<v <}
U {Lv)|te Ry —v1 <v < —upl (46)

Then we have Vs € (1], 72) N (T3, 7o)

2\ L+2
() = X@) < (Z) 1Bn — Elloomoxpay exp (<)
N Vo
2\ 1/2 L+2
Vals) =V < (=) 1Ew= Bllosgm o exp ().
Vo Vo
and also:
2\%/2 L+2
o=t < (=) 1B = Ellowmopmesn () (47)
Yo Yo

Proof

We first remark that in view of (45), (44) holds also for E. Therefore the
corresponding characteristics are well defined. Let (¢,z,v) € IR; x (0,1) x IR,
We multiply (12) by X,.(s;z,v,t) — X (s;z,v,t) and V,,(s;z,v,t) — V(s; z,v,1t)
to get Vs € (17, 72) N (73, To):

1d 5 1d 2 _
57: () = X + S|Vals) = V() =

% | Xa(8) — X(8)]P + % [Vals) = V()

IN

+ (L |Xn(s) = X(s)| + [ En = Ellcomexon)

INRIA
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X [Va(s) = V(s)|

L+2
< T(|Xn(5) — X(s)I + [Vals) = V(5)[*)
1
+ §||En — Ell%o(m, <o) (48)

which yields:
[Xa(s) = X(s)]” + [Va(s) = V(s)]* <
< (L+2) [ 1Xa(r) = XD + [Valr) = V() Pdr
+ [t = slllEn = EllGogm, xjo,17)- (49)
By using Gronwall Lemma ( and Lemma 1), we deduce that Vs € (77, 72) N

(Tiy To):

[ Xa(s) = X(s)* + [Va(s) = V(s)* < | En = Ell o xpo.1)

L—!-Q)
Vo ’

w'

exp (2

(50)

and also:

L+2

- ) (51)
L+2

2 1/2
(v—> | En = Ellco(m,x[o,1]) - €XP <—) ,  (52)
0 Vo

2 1/2
X)X < () 1B = Bllesmocon - e

IN

[Va(s) = V(s)]

2
because |t —s| < —. In order to estimate the difference of entry times, assume
v

0
that 7; < 7* holds and write:

Vo

5 At —m <

RR n° 3518



18 Mihat Bostan et Frédéric Poupaud

= | X(7") = Xa(7))]

(2

2\ /2 L+2
< () 1B = Ellovamoay -exp (5=) (33
Vo Vo
because X (7;) = X,(7]") and so:
2\ 32 L+2
I — 7| < (—) NEn = Elloomxion) - exp ( ) L (54)
Vo Vo

If the other inequality 7, > 7* holds, we can find the same estimates, by
changing X, V,7; with X,,, V,,, 7" respectively. The same method yields a sim-
ilar estimate for the exit times :

L+2)' (55)

) 3/2
|t —1,| < (_> | En — Ellco(m.x[0,1)) * €xP (
Vo v

Lemma 4 With the same assumptions as in Lemma 3, if moreover g € WH° (IR, x
¥7) and if we denote by f,,f the solutions given by (17) which correspond to
the fields F,,,FE, we have the estimate:

||fn - f||L°°(Rt><(0,1)><R,,) < ||9||W1,°°(1Rt><2—) : ”En - E”CO(.ZRtX[O,l])
2\ /2 2 L+2
(—) (l—f—@-l-—)-exp( * ) (56)
Vo 2 Vo Vo
Proof

We assume that 7; < 7 then, using Lemma 3 and (43), the difference of the
entry velocity is given by:

Va(r?) =V(m)| < [Va(m") = V)| + V(") = V(n)]

2\1/2 L+2 i dV
< (2) 1= Bllooexp (22) + | [T Tods
Vg Vg ™ ds
2\1/2 L+2
< (2) 1Ew=Blloo - exp (=) + 17 = il - | Bllco
() Vo
2\ L+2
< (-) (1+@)-||En—E||Co-exp (L) (57)
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Assuming now that g € WH*(IR; x ¥7). Then we easily check the statement
of the lemma, using (47) and (57):

‘fn(taxﬂv) - f(tamavﬂ = ‘g(TinaO’ Vn(Tin)) - Q(Ti: 0, V(Tl))‘
< lgllwree(mexs-)
x (In =7+ Valn') = Vi(m)l)

< Nlgllwreo(mroxs— 1 En — Ellco(mex(o,1)

2\ /2 2 L+2
(—) (1+@+—>exp( * > (58)
Vo 2 Vo Vo

X

2.2 Existence

In this section section we establish existence result for the mild periodic solu-
tion of the 1D Vlasov-Poisson problem:

([ O,f +v-0,f+E-0,f=0, (t,z,v) € Ry x[0,1] x R,,
f=g9, (t,z,v) € Ry xX,
E(t,z) = 0,p.(t, x), (t,z) € R, x[0,1],
| Go=[ fltzvd,  (to) € Rx[0,1] (59)
IR,
QO(t, 0) = 07 l € Rta
| @t 1) = @i(t), t € Ry, 1 T — periodic.

We want to use the Schauder fixed point theorem. We define an application
which maps a periodic electric field E to an other one E; where E; is defined
as follows. Let f be the mild periodic solution of Definition 2 corresponding to
the electric field E. The electric field E* = 0,¢ is determined as the solution

of the Poisson problem with the density p(t,z) = / f(t,x,v)dv. In order
R

to assure the invariance of the domain, smallness assumptions of the data are
required. We have:
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Theorem 1 Let g € L*(IR; X X7) be a periodic function, p1 a T periodic
continuous function, 0 < vy < vy such as:

supp(g) C {(t,0,v) |t € Ry, 0 <wvy <w <}

U {(t,1,v) | te Ry —v; <v< —up}, (60)
|Uo\2
llo1llzoe(mey + 3 - v1 - ||gll oo (mixs—) < VR (61)

Thus, the system (59) has at least one mild periodic solution.

Proof
We denote by F : X — X the map:
E = fp— pp — E' = 0,0, (62)
where:
- 0 . |Uo|2
FE € X = {6 € C (Rt X [0, ].]), ||e||CO(IRt><[O,1] S T,
et,e) —elt,y)| < L-lx—yl, Va,yelo,] (O3
e(t,z) =e(t+T,z), ¥V (t,z) € Ry x [0,1]},
with:
L=2-vy-[[gllLeemixs-)- (64)

Here fg is the mild periodic solution given by (16) and E' = 0, is the solution
of the Poisson problem:

(Rp=pp=[ ftwv)dv, (L3) €Rx[0,1],
R

v

y ¢(t,0) =0, t € R, (65)

L p(t,1) = @1 (1), t € R,
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Step 1 The map F is well defined (F(X) C X).
Let E € X. Using Corolary 1 (30), we get:

lollcomaxo,n)y < 201« |9l Loo e - (66)
The electric field E' writes:
1 x
B'ta) = o) = [ (=9 sty + [ peltu)dy,  (67)

and therefore:

3
|E | comoxpon)y < llpillre + 3" |l pEllcocm, x[o.17)
< lorllzee 4+ 3 - v1 - (|9l o (mexz-)
< vl (69)
- 4
The electric field E! verifies also :
|E'(t,2) — E'(t,y)| < 0B cemixo) - |7 — ¥l
l|pelle (R xo,1)) * |2 = ¥
< 201 |gllzemixs-y - 12—yl
= L-|z—y (69)

Moreover, because E is time periodic, fg, pg, ¢ and E! are periodic too, so
E'=F(FE) € X.

Step 2 The map F is compact for the topology of C°(IR, x [0, 1]).

We prove that F(X) is compact. For that we derive a bound on the time
derivative of E' = F(F),E € X. From (67) we obtain:

1
0

O(E' — 1) = —/ (1 —y)oprdy +/O Owpudy.

We use now the conservation law 0;pg + 0,jg = 0, where jgp = [, vfrgdv. An
integration by part yields:

0B 1) = [ st )dy — jis(t, ).
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Therefore this relation with (63) gives that E' — ¢y is uniformly Lipschitz with
respect to time and position. Ascoli’s Theorem yields that E' — ¢; and then
E' belong to a compact set of C°([0,T] x [0, 1]). Because of the periodicity of
E' we also have that it belongs to a compact set of C°(IR; x [0, 1]).

Step 3 The map F : (X,C°(IR; x[0,1])) — (X, C°(IR; x [0, 1])) is continuous.
Let (Ep)n>1 C X, lim, o B, = E in C°(IR, x [0,1]). Denoting by f,, the mild

solution given by (16) corresponding to F,. Using (55), (51) et (52), we pass
to the limit for n — oo in (16) which now reads:

< furp> = (70)
— / / / g(t,1,v) - (s, Xn(s;1,v,t), Vi(s; 1,0, t))dsdvdt

v<0
+ / / / g(t,0,v) - (s, Xn(s;0,v,t), Vyi(s;0,v,t))dsdvdt.

v>0

Using Lemma &3 we can pass to the limit in this expression. So f,, is a conver-
gent sequence in sense of distributions whose limit f is the mild solution corre-
sponding to the field E. Moreover, from the uniform bound in L*(IR; x (0, 1))
we deduce:

fn— 1, weak x in L*(R; x (0,1) x IR,). (71)

In the same way, the densities p, converge weakly, because the support of f,
are bounded with respect of velocities:

Pn :/ fo(t,z,v)dv — p = / (t,z,v)dv, weak x in L=(IR; x (0,1)).

(72)
On the other hand the weak convergence of p, implies the weak convergence
of F(E,) towards F(FE) ( for instance in L>(IR; x [0, 1])). Since F is compact,
it implies that F(E,) — F(E) in C°(IR; x [0,1]). This prove the continuity of
the map F. At this point, using the Schauder fixed point theorem, we prove
existence of periodic solution of 1D Vlasov-Poisson problem which concludes
the proof of the Theorem 1.
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2.3 Uniqueness

In this section we are interested in uniqueness results. We state the following:

Theorem 2 Under the same assumptions as in Theorem 1, by requiring more-
over that g € WH*(IR, x £7) and :

(5) e (-527)
_ - eXp —
2
||g||W1’°°(1Rt><E*) < m 1120 ;
3-1}1-(1+—+—>
2 Vo

the system (59) has a unique mild periodic solution.

Proof

The existence result has been proved in the previous section. In order to
establish uniqueness result, we show that the map F is a contraction. Let
E F € X two electric fields and denote by fg, fr the corresponding mild
solutions. Lemma 4 (56) and the fact that fg, fr have bounded support in
velocity, allow us to write:

llpe — PF||CO(1Rt><[o,1]) < 2-vp- ||9||W1)°°(1Rt><2—) ||E— F||C°(Rt><[0,1])

(D) (1424 L) e (B2 )

Vo 2 Vo Vo

By formula (67), we deduce:

3
| F(E) = F(F)lcom o,y < 3" llpE — prllcogm, x[0,1))

IA

301 |lgllwroo(moxx-) - 1E — Fllcogm, x[0,1))

2\ 1/2 2 L+2
(—) (1+@+—)-eXp( + ) (75)
Vo 2 Vo Vo

Therefore we have:
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| F(E) = F(F)|lcomxpo) < q - [|1E = Fllcogm,.x[0,1)); (76)

where ¢ is given by:

2\ L+2 v | 2
q=3- (U—) exp ( ) -y - (1 + 24 v_> Nagllwroo(mxs-y < 1. (77)
0

0 Vo 2
3 Weak solutions for the Vlasov-Poisson system
in the multidimensional case

In this section, we establish existence result for the weak periodic solution of
the Vlasov-Poisson problem:

( Oif +v-Vof + E-V,f=0, (t,z,v) € R; x Q x R,
f=g, (t,z,v) € Ry x X7,
4 E(ta ‘T) = VE(P, (ta .’L‘) € IR, x Q; (78)
Ayp = / ) f(t,z,v)dv, (t,z) € Ry x 9,
IR5
\ SD = 900; (t, -'L') - Rt X 6Q

Here, the boundary data g and ¢y are T— periodic functions. We look for a
weak periodic solution (f(¢,z,v), ¢(t,z,v)). As previously, the Schauder fixed
point theorem is used. We define an application which maps a periodic po-
tential ¢ to an other one ¢; where ¢ is defined as follows. Let f be the mild
periodic solution of Definition 2 corresponding to the electric field £ = V.
The potential ¢; is determined as the solution of the Poisson problem with
the density p(t,z) = [ga f(t,7,v)dv. Unfortunately this procedure cannot be
used directly. Indeed the Definiton 2 requires that the electric field is Lips-
chitz with respect to r and we cannot expect such a regularity in the general
case. Therefore we have to regularize the potential. We also have to use an
absorption term in the Vlasov equation in order to have uniqueness of the weak
solution. Then the strategy of proof is as follows. We first show the existence
of weak periodic solution for a regularized problem by using the Schauder fixed
point theorem. Next we pass to the limit when the regularization parameter
vanishes.
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3.1 Fixed point for the regularized problem

Let p > d + 1 be a positive constant and let X’ be the set of the functions ¢
which verify:

¢ € L(R; WP (), |l¢llzemswee) < Ch, (79)
O € LX(R; WH(Q)) 10| oo (miwrmia)) < O, (80)
1 |ugl?

IVebllimimociy < g 5o (1)

where C; and C, are fixed constants which will be chosen later on. With the
definitions (79),(80), we have for any function ¢ € X:

||Va:S0||€V1,p((o,T)xQ) = ||8tv$90”ip((0,T)><Q)
d
+ ;”aiﬂz‘VZgD”I[)/P((O,T)XQ)
< K (C1, Cy) (83)
Using the compactness results embedding:
WY((0,T) x Q) = C*[0,T] x Q)  (p>d+1, §(Q) < o0),

we deduce that {V,¢|¢ € X'} is a compact set of C°([0,T] x 2). We conclude
that X is a compact set of C°([0, T]; C*(2)). We now introduce a regularization

mapping:
R, : C°([0, T]; C1(Q)) — C°([0, T; C*(Q))
¢ = Rap(t,z) = /Rd Colz —y) - 2(t,y)dy, (84)

where (, > 0 is a mollifier:

@)= ¢ (), cecrm)

ad’ \a

supp(¢) C By , /sz C(u)du = 1.
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Here, = is a linear extension operator from C*(Q) onto C'(IR?)
( which requires that 99 is C' ). Therefore, P is a T periodic extension on
IR; x IR? of ¢ such as:

Vel Lo(mrexmey < [Vaplloe(mixe)- (85)

Obviously, R, is well defined and continuous. Moreover, (81) is preserved
by this application. By definition R,y is T periodic. Next, we consider the
application:

FipelX o, (86)

where:
A;,;(Pi(t) = / fa(t,x,v)dv = pa(t)7 z € €
le
) (87)
ont,x) = po(t, x), x € 0f.

Above f, is the mild solution of the following modified Vlasov equation corre-
sponding to the field V, R, p:

Q- fotOifa+v -VofatVeRap-Vofa=0, (t,z,v) € Ry xQx IRY,

foc:ga (t,fE,’U) ERtXE_.
(88)
The term « - f, changes the formula (16) in the following way:
T TS
< fo, 0> = —/ dt dvda/ v-v(x)g(t,z,v)
0 == t

(s, Xo(s;2,0,1), Va(s; z,v,t))e s, (89)

We prove now that the application 7 maps & into itself and is continuous
on C°([0,T]; C*(2)) for convenient choices of the constants C; and Cy and for
small enough boundary datas.

Step 1 Invariance of the domain.
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Let ¢ € X be an electric potential and ¢, = R, its regularization. We verify
(18),(19),(20), and we deduce from Lemma 1 the existence of a finite life-time
2-0(€2)/vy. Using Corollary 1 we also have:

Y| = su o(t, ) [Pdx
l[pallz (IR¢; L7 () teﬂg Q\P (t,z)]

= Sup/ /
telR: Y Q |Jvo/2<|v|<vi4v0/2

< 9llzee -y vol(2) wg
p

d d
Vo Vo
l(vl T3 ) ( 2 ) ] ’
where wy is the volume of the unit ball of IR%. At this point, using the classical
results of regularity for the Poisson equation, we get:

p

fa(t,z,v)dv| dx

||Soéc||L°°(lRt;W2,P(Q)) < Cp(Q) (||S00||Lm(mt;wz—l/p,p(ag)) -+ ||pa||L°°(lRt;LP(Q)))
S CP(Q) (||(100||L°°(Rt;W2_1/P:P(aQ)) + UOZ(Q)I/p

U d v d
gl oo (e x 32~y Wa l(vl + 50) — (5()) ])
C1

(90)
Therefore we choose:

Ci = Co(Q) (1ol ooz 1/pw (a0 + vOU)YP - || gll Lo (. xs)
d d
Vo Vo
0) (2 91
w [(”1+2> (2)])’ (1)
in order that ¢ satisfies (79). Finally, differentiating (87) with respect to ¢
and using the equation of continuity, we obtain:

Aol = 0palt) = Vi - Ja, x €N
(92)
at(p}x (ta 33) = a15()00 (ta 37), T € aQa
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with j, = [vfa(t, z,v)dv. We observe that:

”Va: ' ja”LOO(Rt;W—l,p(Q))
[1all oo (s o))
19| oo (e x5 vol ()P (vy 4 1y/2)

[ -]

IA A

which yields:

||atg0iy||L°°(mt§W1’p(Q)) < Gp(©) (||at<P0||Lm<mt;wl—1/p,p(aa)) + UOZ(Q)W Wq

tecms (-3~ ()] (4>

Therefore we choose:

O, = Cp(Q) (||at900||Loo(1Rt;W1—1/p,p(aQ)) + UOZ(Q)I/p ||9||L°°(1Rt><2—)
(+5) - (3)] (3 )
Wy (%1 9 2 U1 9 .

We next claim that (81) holds. Indeed there is a Sobolev constant C,(€2) such
that:

Co(Q) - I Vapallwrae
Co(Q) - lleallwre)
Co( () - (9ol Lo (mwa-1/p(a2)) + VOl ()

9\ ¢ Vg \ ¢
9] oo (1R x =) l(“l‘*‘;o) - (g)] Wq)

This estimates leads to the conditions on the data which allow to obtain our
existence result.

Assumption

From now on we assume that data are small enough in order the following

||Vm<.0.1x||00(9)

IN NN

(94)

INRIA



Periodic solutions of the Viasov-Poisson system 29

condition is satisfied:

”(P0||L°°(1Rt;W2*1/P:P(8Q)) + UOZ(Q)I/p ) ||g||L°°(1Rt><Z*)

o l(“ +3) - (%ﬂ =500 @2&) 9(9)° o

We summarized the results we have obtained above in:

Lemma 5 Under the assumption (95) with Cy and Cy given by (91), (93), F
maps X into itself.

Step 2 Continusty.
We work with the topology of C°(IR;; C*(9)) defined by the norm:

ol = llellze + Vol oo (96)

Let (¢n)n>1 C X be a sequence ¢, — ¢ in C°(IR;; C*(Q2)). By the continuity
of Ry, we also have R,p, — Ra¢ in C°(IR; C*(Q)). Let f,.. be the weak solu-
tions of the modified Vlasov equation which corresponds to the field V,R,¢,.
Obviously, we have the estimate:

”fn,oz”Lw(Rthx]R‘j) < ||g||L°°(Rt><E—)-

By standard compactness results, we can extract a subsequence of (fy o)n>1
such that:
fra = foin L®(R; x Q x RY), weak * . (97)

Using the weak formulation, for all function 6 € V we have :

T
/ / / fralt,z,v)(—a- 0+ 0,0 +v-V,0+ V,Ryp, - V,0)dvdzdt =
o JaoJmrd ’

= /OT/_ v-v(x)-g(t,z,v) - 0(t z,v)dvdodt

and we conclude that f, is a weak solution of the modified Vlasov equation
which correspond to the field VR, € C°(IR; C*(Q)):

T
/ / / falt,z,v)(—a- 0+ 00 +v- V.0 + V,Ryp - V,0)dvdxdt =
0o Jo/rd

= /OT/_ v-v(x)-g(t,z,v)-0(t z,v)dvdodt
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Now, using Lemma 2 , we deduce that f, is the mild solution for the modified
Vlasov equation which correspond to the field VR, € C°(IR;; C'(Q2)):

< for0> = —/()T/E_/;gv-u(x)-g(t,x,v)

0(s, Xa(s; 2,0, 1), Va(s: z, 0, 1)) - e *C"Vdsdvdodt. (98)
Since the limit is unique, the whole sequence converges weakly:
foa = fo weak x in L®(IR; x Q x IRY).
Furthermore, since f, , have compact support in velocity, we have:
Pra — Po Wweak x in L=(IR; x ),
which yields:
Pro — Pa Weak x in L"(IR; x Q).

Therefore we have:

Fen)(t) = Flp)(t) weak * in W*'(Q),  a.et€ R,

Since (F(¢n))n>1 is compact in C°(IR,; CH(Q)) ( because X is compact), the
convergence holds in C°(IR;; C*(Q)).

Step 3: Passing to the limit for o — 0.

At this point, we may apply the Schauder theorem, which yields an electric
potential ¢, € X and a density f, such that:

T
/ / / falt,z,v)(=a -0+ 00 + v - Vb + ViRapa - Vo) dvdadt =
0 JaJmRrd

T
= / / v-v(x)-g(t,z,v) - 0(t, z,v)dvdodt, (99)
0 s
for test function # € V and:
Aepa= [ falt,z,0)dv, (t2) € Rx, (100)
R’U

Yo = o, (t,x) € IRy x 0.

INRIA



Periodic solutions of the Viasov-Poisson system 31

In order to complete the proof, we have to pass to the limit for &« — 0. Since
(Pa)aso C X which is compact in C°(IR;; C*(Q)), we may assume, extracting
a subsequence if necessary, that (¢, )r>1 converges:

Doy, — ¢ in C°(IR; x Q), (101)

Ve, — Vaip in C*(IR; x Q).
We have the same convergences for the regularized potentials:

R, 00, = ¢ in C’O(Bt x ),

VR, Pa, = Vo in CO(R; x Q). (102)

Indeed, because the extension operator * is continuous, for all (t,z) € (IR; x
we have:

|Rak9006k(t’ .I) - Qp(t’ .I)‘ = ‘Rakgpak (t x) - @(t .CL‘)|
(@ =) Pa, (t,y) —B(t, ) Jdy |
)

—Y)[ @a, (ty) —B(t,y) | dy |

Al
——
oo

+ \/@k( ~ )l P(t,y) ~B(ta) ] dy |
<1 %0, (8) = 7O) lloogmey
TS et y) —o(t,z) | — 0. (103)

The second convergence (102) follows in the same way.
Obviously, we have:

T
ak/ / / for (t, z,v) - 0(t, z,v)dvdzdt — 0,
0o JoJmrd
(104)

and therefore we conclude that f,, — f weak x in L®(IR; x Q x IR%), where f
is a weak solution of the Vlasov equation which corresponds to the field V¢
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( we pass to the limit for o — 0 in (99)):
T
/ / / F(t,,0)(80 + v - Vol + Voo - Vo) dvdadt =
o JoJmg

/ / v-v(x)-g(t,z,v)-0(t, x,v)dvdodt, (105)

for test function # € V. We have to show that (f, ) verifies the Poisson
equation. Because (suppf,,) are bounded ( uniformly with respect to k ) we
have:

L P = / (t,z,v)dv, weak % in L*(IR; x Q).

Therefore passing to the limit in the sense of distribution in (100) gives A,p =
p. In view of the convergence (101) we also have ¢ = @y on J2. We summarize
our results in the following theorem:

Theorem 3 Let g and ¢y be T periodic functions, 2 a bounded subset of IR?
with 00 € CY, p>d+1 and 0 < vy < v1 such as:

supp(g) C {(t,z,v) |t € Ry,x € 02,0 < vy < —v-v(zr) < |v| <11},

g € L®(R,x¥),
0o € L®(IR;W*PP(9Q)),

dypo € L®(IR; W' 1/PP(9Q)),

19oll oo (i v/pp(0)) + Ellgllem(mexs-) < M,
with :

K = vl g [(“1 + Uzo)d - (%)d] - M=3 cSm)‘?ﬁm 5(Q)’

where wy 1s the volume of the unit ball of IR, C,(Q) is given by (90) ( reqularity
result for the Poisson problem ) and C5(2) is given by (94) ( Sobolev embedding
). Then, the system (78) has at least one weak periodic solution.
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