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Séminaire algorithmes, 1997-1998

Résumé : Ces notes de séminaires représentent les actes, en anglais, d’un séminaire
consacré a ’analyse d’algorithmes et aux domaines connexes. Les thémes abordés
comprennent : combinatoire, calcul formel, analyse asymptotique et analyse en
moyenne d’algorithmes et de structures de données.



ALGORITHMS SEMINAR
1997-1998

Bruno Salvy*
(Editor)

Abstract

These seminar notes represent the proceedings of a seminar devoted to the analysis of
algorithms and related topics. The subjects covered include combinatorics, symbolic com-
putation, probabilistic methods and average-case analysis of algorithms and data structures.

This is the seventh of our series of seminar proceedings. The previous ones have appeared as INRIA
Research Reports numbers 1779, 2130, 2381, 2669, 2992 and 3267. The content of these proceedings
consists of English summaries of the talks, usually written by a reporter from the audience?.

The primary goal of this seminar is to cover the major methods of the average-case analysis of
algorithms and data structures. Neighbouring topics of study are combinatorics, symbolic compu-
tation, asymptotic analysis and probabilistic methods.

The study of combinatorial objects—their description, their enumeration according to various
parameters—arises naturally in the process of analyzing algorithms that often involve classical
combinatorial structures like strings, trees, graphs, and permutations.

Computer algebra plays an increasingly important role in this area. It provides a collection of
tools that allows one to attack complex models of combinatorics and the analysis of algorithms via
generating functions; at the same time, it inspires the quest for developing ever more systematic
solutions and decision procedures for the analysis of well-characterized classes of problems.

The 40 articles included in this book represent snapshots of current research in these areas. A
tentative organization of their contents is given below.

PART I. COMBINATORIAL MODELS

In addition to its own traditions rooted in mathematics, the study of combinatorial models arises
naturally in the process of analyzing algorithms that often involve classical combinatorial structures
like permutations, strings, trees and graphs.

Polyominoes are a classical object of combinatorics, related to statistical physics. A survey of
enumeration results in this area is given in [1]. Two kinds of permutations are studied in [2]
and [3]: permutations that can be sorted with a bounded stack (a classical problem of Knuth)
and permutations with forbidden subsequences. A relation between equations on permutations and
combinatorial maps is exhibited in [4]. The classical inversion theorem of Lagrange is extended to
the multivariate case in [5] and applied to algebraic series in [6], while [7] shows how many power
series can be proved to be non-algebraic. Recently, a lot of attention has been paid to so-called
“Euler sums” (infinite multi-indexed sums of inverses of integers), this is the subject of [8] and [9].

!This work was supported in part by the Long Term Research Project Alcom-IT (#20244) of the European Union.
2The summaries for the past seven years are available on the web at the URL http://algo.inria.fr/seminars/.
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The talks [11] and [12] explore links between combinatorics and logic, while [13] and [14] apply
techniques from statistical physics to combinatorial questions.

[1] Enumeration of Remarkable Families of Polyominoes. Dominique Gouyou-Beauchamps
[2] Sorted and/or Sortable Permutations. Mireille Bousquet-Mélou
[3] From Motzkin to Catalan Permutations: a “Discrete Continuity”. Renzo Pinzani
[4] Products of Permutations and Combinatorial Maps. Gilles Schaeffer
[5] Multivariate Lagrange Inversion. Bruce Richmond
[6] Coefficients of Algebraic Series. Michéle Soria and Philippe Flajolet
[7] On the Transcendence of Formal Power Series. Jean-Paul Allouche
[8] Multidimensional Polylogarithms. David M. Bradley
[9] Monodromy of Polylogarithms. Minh Hoang Ngoc
[10] A Combinatorial Approach to Golomb Trees. Mordecai Golin
[11] Colouring Rules and Second Order Sentences. Alan R. Woods
[12] Fraissé-Ehrenfeucht Games and Asymptotics. Alan R. Woods
[13] Statistical Physics and Random Graphs. Remi Monasson
[14] Statistical Physics of the Random K-Satisfiability Problem. Remi Monasson

PART II. SYMBOLIC COMPUTATION

Combinatorial identities and their g-analogues are now amenable to an automatic treatment by
symbolic computation thanks to Zeilberger’s algorithm. This is presented in [15], together with a
nice application to obtaining a family of identities. Another connection between combinatorics and
symbolic computation arises via generating functions that often satisfy functional or differential
equations. Linear g-difference equations possess power series solutions whose divergence is studied
by [16]. In [17], it is shown that much of the analysis of solutions of systems of linear differential
equations can be done automatically. The problems in the non-linear case are of course more
difficult, but some theory and packages are already available and presented in [18]. The next
two summaries are concerned by the resolution of polynomial equations from two very different
viewpoints: bivariate Diophantine equations are solved efficiently by a new algorithm in [19],
while numerical solutions with arbitrary precision are found by the best known algorithm in [20].
Polynomials are also the topic of [21] where the problem is whether a given multivariate polynomial
can factor over an algebraic extension of Q. Progress in symbolic integration of algebraic function
is described in [22]. This part concludes with two talks on computational number theory.

[15] ¢-WZ-Theory and Bailey Chains. Peter Paule

[16] Summability of Power Series Solutions of g-Difference equations. Changgui Zhang

[17] Computing Invariants of Systems of Ordinary Linear Differential Equations. Eckhard Pfliigel
[18] Algebra and Algorithms for Differential Systems. Evelyne Hubert

[19] Solving Diophantine Equations. Guillaume Hanrot

[20] Solution of Polynomial Equations. Victor Pan

[21] Absolute Irreducibility of Polynomials with Rational Coefficients. Jean-Frangois Ragot

[22] The Lazy Hermite Reduction. Manuel Bronstein

[23] ECPP Comes Back. Francois Morain

[24] Cyclotomic Primality. Preda Mihailescu

PART III. ANALYSIS OF ALGORITHMS AND DATA STRUCTURES

Linear probing is a classical strategy for the resolution of collision in hashing. The problem
of its analysis was first proposed by Knuth in 1962; a solution by analytic combinatorics (an
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interplay between combinatorics and complex analysis) involving the Airy function is described
in [25]. Another special function, the Buchstab function is shown in [26] to arise quite generally
in statistics related to the smallest component in sets of structures. Analytic combinatorics is also
applied in [27] to analyze an efficient structure for tries. A relation between Pélya urn models and
random trees is exploited in [28] to analyze various families of random trees, in particular a fringe
balancing strategy for binary search trees. An approach based on analytic combinatorics for more
precise results on this latter analysis is developed in [29]. Binary search trees are present in [30] in
connection with partitioning processes. Binary trees are used also in [31] to model the behaviour of
a family of sorting algorithms. Functional analysis is applied in [32] to the old problem of analyzing
the complexity of the binary Euclidean algorithm. A randomized algorithm in molecular biology is
described by [33]. The last two summaries concern text searching algorithms.

[25] On the Analysis of Linear Probing Hashing. Philippe Flajolet

[26] Smallest Components in Combinatorial Structures. Daniel Panario

[27] The Analysis of Hybrid Trie Structures. Julien Clément

[28] Pélya Urn Models in Random Trees. Hosam M. Mahmoud

[29] A Top-Down Analysis of Fringe-Balanced Binary Search Trees. Helmut Prodinger
[30] Binary Search Tree and 1-dimensional Random Packing. Yoshiaki Itoh

[31] On Tree-Growing Search Strategies. Hosam M. Mahmoud

[32] Complete Analysis of the Binary GCD Algorithm. Brigitte Vallée

[33] A Probabilistic Algorithm for Molecular Clustering. Frédéric Cazals

[34] Greedy Algorithms for the Shortest Common Superstring. Wojciech Szpankowski
[35] Two Functional Equations in the Analysis of Algorithms. Wojciech Szpankowski

PART IV. PROBABILISTIC METHODS

This part contains talks of a more probabilistic origin, but not necessarily very different from
those of the previous part. For instance, [36] explores the connection between birth-death processes
and classical combinatorial objects like lattice paths and orthogonal polynomials. Branching
processes are related to trees and Dyck paths in [37]. Quantitative estimates on convergence
of Markov processes are given by [38]. Models of network traffic are discussed in [39] and [40]
studies the asymptotic behaviour of a routing strategy.

[36] Orthogonal Polynomials, Continued Fractions, ... Fabrice Guillemin

[37] Trees and Branching Processes. Brigitte Chauvin

[38] Convergence to Equilibrium of Finite Markov Processes. Philippe Robert

[39] Long Range Dependence in Communication Networks. Jean Bolot

[40] Some Dynamical Routing Algorithms in Large Systems. Nikita D. Vvedenskaya

Acknowledgements. The lectures summarized here emanate from a seminar attended by a com-
munity of researchers in the analysis of algorithms, from the Algorithms Project at INRIA (the
organizers are Philippe Flajolet and Bruno Salvy) and the greater Paris area—especially University
of Paris Sud at Orsay (Dominique Gouyou-Beauchamps) and L1P6 (Michele Soria). The editor ex-
presses his gratitude to the various persons who actively supported this joint enterprise and offered
to write summaries. Thanks are also due to the speakers and to the authors of summaries. Many
of them have come from far away to attend one seminar and kindly accepted to write the summary.
We are also greatly indebted to Virginie Collette for making all the organization work smoothly.

The Editor
B. Sarvy
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Enumeration of Remarkable Families of Polyominoes

Dominique Gouyou-Beauchamps
LRI, Université de Paris Sud (Orsay)

Mars 2, 1998

[summary by Cyril Banderier]

1. Introduction

Polyominoes are objects sprung from recreative mathematics and from different domains in
physics (such as Ising’s model; its generalisation, Pott’s model; directed percolation and branched
polymer problems) [14, 20, 21, 25]. Two great classes of problems relative to polyominoes are

— tiling problems;
— enumeration problems.

David Klarner began to study polyomino tilings in 1965. There are still open questions in this
field [12, 15, 16, 17], however several (un)decidability results are known [1, 2]. What is more,
aperiodic tilings are today a new spring of inspiration in noncommutative geometry [8]. In the
remainder, we only consider enumeration problems. Exact asymptotics of polyominoes on a square
lattice is still unknown. Accurate results are then limited to special families of polyominoes, for
which we know a generative grammar. We are therefore brought back to the study of a functional
equation which defines the generating function. Nevertheless, obtaining of a closed form (i.e., an
explicit solution) or even any form of solution often remains difficult. We will show several methods
to obtain them.

2. Definitions

il N

apolyomino associated row but not convex directed
animal column convex polyomino

A polyomino is a connected set on a lattice. A polyomino is said to be convex if it is both
column-convex and row-convex. A polyomino is said to be directed if, for each couple of points of
the polyomino, there exists a path only made of North and West steps which links this two points.

One can find in previous summaries [4, 13] how to obtain functional equations satisfied by the
generating functions (most of the methods are tricky decompositions [5] of polyominoes into very
regular smaller pieces, such as “strata” or “wasp-waist” decompositions). For results in dimension
greater than 2, see [3, 6].
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3. Differential Equation Method

Enumeration of convex polyominoes with perimeter 2n on the honeycomb (or “hexagonal”)
lattice can be solved with this method. Let P, the number of such polyominoes with perimeter
2n + 6, Enting [10] gives the following result. The generating function P(z) = ) 7, pnpa™ satisfies
the differential equation

P"(z)(2? — Ta* — 225 + 1225 + 827) + P'(2) (=112 — 422 + 532> + 222* — 4025 — 1625)

+ P(x)(20 + 22 — 5222 — 202 — 162* — 322°) = 20 + 222 — 5222 + 83 + 42t + 84°

which leads to

Pla) 1—2z+ 2% —z* — 221 — 422
) = .
(14 z)2(1 — 2x)2

Let us mention that the package GFUN in Maple is able to make such translations (recurrences,
differential equations, algebraic equations, closed forms), see [23].

4. Temperley’s Method

We are going to illustrate Temperley’s method [24] with the enumeration of column convex
polyominoes (on a square lattice) with respect to perimeter [7]. The generating function

Gly) =) ¢y
n>2

can be rewritten as
G(y) =D 9.y
r>1

where the g, satisfy a recurrence
gr+a =21+ y*)gra + (14 3y° + 3y* —4%)gr12 = 202 (L + 4%)gr1 +y'9r = 0

and g1, g2, g3, g4, the “initial conditions”, are known.

If we “guess” that g, has the shape A" (or is a linear combination of such monomials), we can
obtain A by solving the fourth degree equation associated to the recurrence formula, and we find,
as the equation easily splits:

AN =A1+y+y" =) +yH VP =M1 —y+y +y°) +9) =0.

So solving the two second degree equations gives four values (closed forms) A1, Az, A3, A4, two of
which are O(1) at 0. We then have to find the A; such that g, = Z§=1 AjN%. But g, = O(y*r+2)
at 0, so A; = 0if \; = O(1). There are still two coefficients to determine, say A; and A4. They can
be found by solving a system involving g1, g2, A2, A4, Ao, A4 and one finally obtains a closed form

As g Ay
G = ]
W =11

A very similar method is applied for unidirectional-convex polygons on the honeycomb lattice
in [19].



5. Kernel Method

In his talk, Dominique Gouyou-Beauchamps has also presented an exploitation of the “kernel
method” for the enumeration of parallelogram polyominoes with respect to horizontal and vertical
half-perimeter, area and first column height, respectively marked by z,y, g, s.

Remember that the generating function P with respect to horizontal and vertical half-perimeter
is easy to obtain: The wasp-waist decomposition directly leads to P = zy + P + yP + P? so

l—z—y—+/1-2x—2y+22+y2—2xy
P(z,y) = v 5 .
The full generating function P(z,y,q,s) satisfies a more intricate equation (obtained by a strata
decomposition), namely
TyYs xs
Yysq q P
—ysqg (1 —sq)(1—ysq)
When g = 1, this can be rewritten

(1 - (1 BE2 y)s + yz)P(l',y, 1) S) = .’,ESP(Z,‘,y, 17 1) + zys(l - 8).

It is typically the type of equation on which the kernel method applies. This method belongs to
mathematical folklore (see [18], exercise 2.2.1.4 for an early example). It works as follows: If one
cancels the kernel (1 — (1 — z — y)s + y?), i.e., one finds s such that (1 — (1 —x — y)so + y?) = 0,
then one gets 0 = zsoP(z,y,1,1) + zyso(1l — so), from which follows a closed form for P(x,y,1,1)
and finally one obtains a closed form for P(z,y,1,s), viz.,

—p—— — _ _ 2 2
s (1 z—y—/1 2w22y 2wy +aty ) +ays(1—s)

xsq
1—-sq)(1—ysq

P(J"ay7 q, 8) = 1 (xayaq)]-) - ( )P(l-)y)(b SQ)

P("L‘7 y’ ]‘5 S) =

1-(1—z—y)s+y?
6. Physicists’ Guesses
We have already mentioned that polyominoes are present in physical problems and in fact the

first people who found interesting results on this subject where physicists. They sometimes base
their works on empirical results. For example, in [9], the authors are doing as if

s s—1 s—1 s—1
NT _Nr—l +NT +N7‘+1
(N7 is the number of directed animals of size s with a “compact source” of size r) was a recurrence

formula satisfied by the V7 although it is only empirically verified for the first values. Nevertheless,
they go on and find that

Ls/2]
1 [ . . s—gq
N =— 1+ e®)e (1 + 2cost)*Ldt di ticul N =(s—1)! —_— .
r= o /0 (1+e")e ™ cost) and in particular N} = (s —1) qEZO (s — 29!

Another example of a typical physicist’s method is [14] (enumeration of directed animals on a
strip of width k); they consider a transfer matrix as an operator acting on a spin space and are
drawing their inspiration from standard techniques on integrable systems.

When k tends to infinity, they obtain:

apn = Z (n;1><Li/i2J> and thus Za,ﬁ":%(m—l).

0<i<n n>o

Analysis of singularities gives
ay ~ 3"n"1/2,



7. Matricial and Continued Fraction Method
We will show on a simple example (Dyck paths) how this method works. Let
dp(z) = Zah,lﬂ«"l
1>0

the ordinary generating function of Dyck paths which end at height h.
A path of length n which ends at height h is either a path of length n — 1 which ends at height

h — 1 followed by a NE step, or a path of length n — 1 which ends at height h 4 1 followed by a SE
step. Thus one obtains the following infinite system

(do(z) =1+ zdy(x)
dy(z) = zdo(x) + zda(x)
< dg(w) = :L'dl (l‘) + $d3(l‘)

dh(l') = a;dh_l(a:) + Idh_H(:E)

which can be written as

0 do(.’L‘) -1
z -1 =z 0 dy () 0
0 = -1 =z da(z) | =] O
0 0 =z -1 ds(z) 0
With an analog of Cramer’s formula for infinite matrices, one has
“1 @ 00 L
0 -1 =z O .
det] 0 = -1 =z
0o 0 =z -1
do(z) = L = lim det (s _ lim 2k ()
-1 z 0 0 k—oodet (), , k—oo Qr(z)
z -1 =z 0
det| O z -1 =z
0o 0 =z -1 ...

where ( )kxk stands for the & X k truncated associated matrices. The special structure of these
matrices gives the recurrence

Pu(z) = —Qi_1(7) = —Pr_1(x) — 22Py_s(x) with P (z) = —1,
Qr(z) = —Qr-1(z) — 2*Qp—2() with Q1(z) = —1 and Q2(z) =1 — 2>,



from which follows

Pi(r)  —Qr-a(z) _ —Qi—1(z) _ 1 _ 1
@@ " Q) | @) - 2Quale) 12 Bl g Beie)
and then
. P(x) 1
o) = i G =

1- 2
T
L

hence
1 . 1—+1— 422

d =———— e, d =
(@) 1 — 22do(z) ie, do(2) 212

In fact the continued fraction is a special case of a much more general result that we will express
in the next section.

8. Multicontinued Fractions Theorem

We will need the following notations. Let (A;x)o<k<i be a family of elements of a commutative
field and let (Py)x>0 be a family of monic polynomials which satisfy a recurrence relation:

k
Peia(z) = 2Pe(x) = Y M g—iPei().
i=0

One then defines a multicontinued fraction by

LAt = :

1
1= Aiit — Z;il ’\q+i,0tq+1qu:1_

1= Qoot = 222 1 Apot? T IE,

Let 6 be the operator defined by 5(/\k,l) = Ak+1,0+1- We note P* the reciprocal polynomial of P:
P*(z) == 298P p(L).
T

Theorem 1 (Roblet, Viennot). If one sets A; j := 0 in L(\,t) fori > k+1 and j < i, one gets a
rational fraction Li(t), it is the k-th convergent of the multicontinued fraction L(\,t) and we have

_ SB®)
Pia()
and the following approrimation near t = 0 holds

L\ t) = Li(t) + O(t*F+h).

Ly (1)

For a deeper understanding of links between continued fractions and combinatorics, see [11, 22].
The multicontinued fraction method allows to find the generating functions of diagonally convex
directed, diagonally convex, parallelogram, vertically convex directed, vertically convex polyomi-
noes and remains to be exploited to obtain generating functions of other classes of polyominoes or
directed animals.

You are now ready to try the different kinds of methods presented here on your favourite class
of polyominoes or even on other classes of combinatorial objects!
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Sorted and/or Sortable Permutations

Mireille Bousquet-Mélou
LaBRI, Université de Bordeaux

June 8, 1998

[summary by Cyril Banderier]

1. Introduction

The classical railroad cars switching problem [12] (viz. to reorder cars in a given order with the
help of a single garage-track) is here revisited and generalised in terms of permutations and trees.
Permutations which are sortable by one (or more than one) stack have been studied by West [14]
and some generating functions have been found [15]. By factorising permutations (following and
generalising an idea of Zeilberger’s), Mireille Bousquet-Mélou obtained functional equations for
one-stack sortable, two-stack sortable, sorted permutations, sorted and sortable permutations. She
shows g-analogues arise in counting inversions. Most of these functional equations involve divided
differences. The quadratic method allows to solve some of them while the other ones remain quite
mysterious. She also gives an algorithm which decides if a permutation is sorted.

2. Sorting Procedure

In his Ph.D. thesis [14], Julian West studied a procedure IT that permutes the letters of a word o
consisting of distinct letters in the alphabet {1,2,3,...}. The procedure uses a stack s and works
as follows:

T:=¢
s =c¢
while o # € do
f :=Firstletter(o)
if s =€ or f < Top(s)

then
s:=sf
o:=f"lo
else
s := s Top(s)™!
7 := 7 Top(s)
end
T:=T§
return 7

In this procedure, € is the empty word, § is the mirror of the word s and the inverse b~! of a
letter b of the alphabet {1,2,3,...} is a new letter with the property bb~* = b~ 1b = €. The output
word 7 has n letters, and we define it to be II(0), the word obtained by sorting o through a stack.

This procedure extends a procedure described by Knuth [12, p. 238].
9
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West observed that the map II can alternatively be described recursively by
I(c"me®) = NI (c®)m
where m is the largest letter of the word o = ofmo®. With at most n — 1 iterations, o is an

increasing word, i.e. II sorts the letters of o.

= 2351674 =0 23 ~— 51674 23 -— 674 | II(o) = 2315647

. . B .

FIGURE 1. The sorting algorithm applied to o = 2351674.

Let S,, be the set of permutations of {1,2,...,n}. We represent the action of Il on S, by a
sorting tree: the nodes of this tree are the elements of S,,, and an edge connects o to II(o) for all

oc€ES,.
1342
3142 ii:l>§\1243
1324
2341 :::;;7’2314 1423
3241 2413 1432
2431 2134
132 4231 2143
231 213 123 3124 1234
319 3412 ::;;;773214
301 3421 4123
4132
4213
4312
4321

FIGURE 2. The sorting trees for S and S;.
We can visualise on this tree the four classes of permutations we will consider in this paper.

One-stack sortable permutations. These permutations occur in the last two columns of the sorting
tree. Knuth [12] proved that the number of such permutations is (i?)/(n + 1). They are exactly
the permutations avoiding the pattern 231: there exists no triple (i,7,k) with 1 <i<j <k <n
such that o(k) < o(i) < o(j).

Two-stack sortable permutations. They occur in the last three columns of the sorting tree. Their
generating function ) c,x™ satisfies
2?F3 4 2(2432)F? + (1 — 14z 4+ 32)F + 2> + 11z — 1 = 0.
West conjectured that
2(3n)!
(2n+ 1)!(n+ 1)1

Cp =
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This was proved by Zeilberger [15], who found the previous equation and then used the Lagrange
inversion formula.

Sorted permutations. These are those permutations which belong to II(S,). Induction on the
length of permutations shows that any suffix of a sorted permutation is a sorted word. Sorted
permutations cannot be described in terms of forbidden patterns: in fact any pattern occurs as a
factor in some sorted permutation. We shall give a functional equation satisfied by their generating
function.

Sorted and (one-stack) sortable permutations. Their generating function satisfies

2 F 4+ 22(3 4+ 42)F3 + 2(3 — 29z + 622)F2 + (1 — Tz + 292 4+ 42®)F — (1 — z)® = 0.

3. Permutations and Trees

There is a classical bijection between permutations and binary search trees: one gets a permuta-
tion from a labelled tree by reading it with a “lower reading” (you start at the root, and recursively,
you read the subtrees, the left one at first, and when you have visited all the left children, you add
the label of the current node to a list, the final list is the permutation associated to the tree), on
the other hand one gets a tree from a permutation o = o“mo® by creating recursively the tree
with root m and a left subtree associated to 0¥ and a right subtree associated to o%.

We will now show on an example an algorithm that decides whether a permutation is sorted and,
if it is indeed sorted, gives the pre-image. Beginning with 7 = 6.3.11.1.4.5.2.7.9.8.10.12 € S14, one
splits it after each descent: 6|3.11]|1.4.5/2.7.9(8.10.12 then one reads it from right to left, and for
each factor one creates the associated tree where the root is the maximum and each node has only
a right child. One gets then fives trees (12,10,8), (9,7,2), (5,4,1), (11,3) and (6). And finally one
tries to create the associated binary search tree, which is possible if and only if 7 is sorted. What
is more, by noting o the word given by a “lower reading” of the final tree, we get 7 = II(0). With
our example, we have 7 = I1(6.11.3.12.9.5.4.1.7.2.10.8) is sorted.

4. Notations

The number of 231 patterns in a permutation o is the number of pairs (i, k) with ¢ < k such
that there exists j € [i,k] with o(k) < o(i) < o(j). Note that the number of 231 patterns in
a permutation o, denoted below INV(o), is the number of inversions of II(¢). For instance, the
permutation o of Fig. 1 has four 231 patterns (corresponding to the pairs of letters (2,1), (3,1),
(5,4) and (6,4)) and II(0) has four inversions (given by the same pairs of letters). For o € S,,, we
define z(o) by the largest £ such that n occurs before n — 1 and n — 1 occurs before n — 2 and - - -
and n — (£ — 2) occurs before n — (£ —1)}. For instance, z(519268374) = 3. For m,n > 0, we define
the sets S, , and gm,n by

S = {0 € Sppgn : 2(0) > n} and  Spp = {0 € Spyn: 2(0) =n}.

Let 0 € gm,n and o = oPmo®, we note m/ the largest letter of o, so we have the factorisation

o = Am/B. 1t is this factorisation which allowed the author to find equations verified by the

generating functions. We will use the usual notations [n] = 14+ ¢ + -+ + ¢"7! = % and
[n]! = [1][2] - - - [n]. Let C be a set of permutations. By the ordinary (resp. exponential) generating

function of C we mean the series
l.'m
C(m,y) = Z Cm,nxmyna resp. C(x,y) = Z Cm,nmyna

m,n>0 m,n>0
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where ¢, , is the number of permutations o of C of length m + n such that z(o) > n. The ordinary
(resp. Eulerian) INV-generating function of C is

m
C(SL‘, Y; q) = Z cm,nxmyn, resp. C(CL‘, Y; q) = Z Cm,n [m]'yn)
m,n>0 m,n>0 )

where ¢, , = Zaecrwsm,n ¢"™V(©)_ The definition for the inv-generating function of C is similar.

5. Functional Equations

Proposition 1. The Eulerian INV-generating function A(x,y;q) for general permutations is com-
pletely characterised by the initial condition A(0,y;q9) =1/(1 —y) and the equation
Az, y;9) — Alzq,959) Az, y; q) — A=, 059)
= [1+yA(zq,y; 9)] :
z(1 —q) Y
In the limit ¢ — 1, we find, for the series A(x,y), the initial condition A(0,y) = 1/(1 —y) and the
equation

O ) = 1+ (o)) 2D AR,

Proposition 2. The ordinary generating function B(xz,y) for one-stack sortable permutations is
completely characterised by the equation
Bla,y) = 1 L " B(z,y) —B(:L‘,O).
-y 1-y Y
Proposition 3. The ordinary INV -generating function C(z,y) for two-stack sortable permutations
1s completely characterised by the equation

C(z,y;q9) — C(=,0;q)
y

Proposition 4. The Eulerian inv-generating function D(z,y;q) for sorted permutations is com-
pletely characterised by the initial condition D(0,y;q) = 1/(1 — y) and the equation
D(z,y;9) — D(zq, 45 9) D(z,y;q) — D(=,0;9)
= (1 -y)[1+yD(zq,y;9)] :
z(1—gq) Y
In the limit ¢ — 1, we obtain for the exponential generating function D(z,y) the initial condition
D(0,y) =1/(1 — y) and the equation

8D D(z,y) — D(z,0)

5 @y) =1 —y)[1+yD(z,y)] :
x Yy

1

Proposition 5. The ordinary inv-generating function E(z,y;q) for sorted and sortable permuta-
tions is completely characterised by the equation
E(z,y;9) — E(x,0;9)

1
E(z,y;q) = T, z(1—y)[1+yE(zq,y;q)] ” :

Remarks. The ordinary length generating function B(z,0) for one-stack sortable permutations can
be solved by the kernel method. The equations of Propositions 3 (two-stack sortable permutations)
and 5 (sorted and sortable permutations) can be solved when ¢ = 1 via the so-called quadratic
method, which is due to Brown [6, section 2.9.1]. There is no known g-analogue of this method!
On the other hand, the equations for the general permutations and for sorted permutations can be
“solved” as we will see in the next section.
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6. Solving Equations with a g-Derivative

Both equations are of the following form:

) G ) = clg) [+ 9P (o)) D),

where ¢(y) = 1 for general permutations and ¢(y) = 1 — y for sorted permutations.
One uses the two following results in order to “solve” these equations.

Lemma 1 (Bernoulli linearisation). Let F(z,y) € R(y)[[z]] be defined by the initial condition
F(0,y) = 1/(1 —y) and Eq. (1), with c¢(y) = 1 or ¢(y) = 1 —y. Let G(z,y) be the following
series of R(y)[[z]]:

1
Goy) = I+ vy
Then G(0,y) = (1 —y)/c(y) and
Yo (2,) — ely) [1 + yF(z, 0] G(z,y) +1=0.

Most importantly, G(z,y) has polynomial coefficients in y, i.e., G(z,y) € Rly|[[z]].

Lemma 2 (Laplace transform). Let h(z,y) € Rly][[z]] be a formal series in x with polynomial
coefficients in y. Let G(z,y) be the series of R(y)[[z]] defined by an initial condition G(0,y) € R(y)
and the differential equation:

oG

S (@,y) = [+ yh(z,y)] G(z,y) + 1 =0.

Yy
Let )
T :L.Z
H(z,y) = exp [—/ h(u,y)du} = Hi(y)=-
0 i>0 v
Then the coefficients of G(x,y) are polynomials in y if and only if G(0,y) € Rly] and
> Hi(y)y' = G(0,y).
i>0
In other words, the Laplace transform of H(x,y) with respect to x is exzactly G(0,y) when evaluated
atx =y:

(% —
e H(u,y)du = G(0,y).
Y Jo
For general permutations, with ¢(y) = 1, one gets
1
F(z,y) = Alz,y) = [—

For sorted permutations, with ¢(y) = 1 — y, the series F(z,y) is the exponential generating func-
tion D(z,y) for sorted permutations. The series G(z,y) = 1/[(1 —y)(1 + yD(x,y))] satisfies (1)
with h(z,y) = (1 —y)D(z,0) — 1. Moreover, G(0,y) = 1. With the notations of Lemma 2, we have:

H(z,y) = exp(z + (y — 1)D(x))
where

D(z) = /0 " D(u, 0)du.

Lemma 2 gives the following result.
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Proposition 6. Let
> o
D(z) = dmo————
, !
= (m+1)!
where dy, o is the number of sorted permutations of length m. Then the series D(x) is completely
characterised by the following equation:

17y / e NV exp [(y — 1)D(u)] du =1 — y.
¥y Jo

In other words, let K (x,y) = exp [(y — 1)D(z)] = Yis0 Ki(y)a' /3!, and let K (z,y) = Y is Ki(y)!
be its Laplace transform with respect to x. Then B -

N Y ) ~ U 1
K (H,y> =1-—y, or, equivalently K (u, 1 —I—u) =1 T
The first coefficients of the series are 1,1,2,5,17,68,326,1780,11033,76028,578290,4803696. One
does not know if this series is algebraic, D-finite, ... Thus, the generating function for sorted

permutations remains mysterious. Mireille Bousquet-Mélou will give a solving method for the full
g-analogue equations in a for coming paper.
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Abstract
Let S’ be the set of all permutations with forbidden sequences 321 and (j+2)1(j+3)2---(5+
1). We give the generating function of S7 according to three parameters: the length of the
permutations, their number of right minima, and their number of inversions. The cases
7 =1 and j = 2 give the generating functions of the well-known Motzkin numbers and
left-Motzkin numbers, while the case j = oo leads to the Catalan numbers. This is joint
work with E. Barcucci, A. Del Lungo and E. Pergola.

1. Notations and Definitions

Definition 1. Let S, be the set of permutations of [n]. A permutation m € S, is said to contain
a subsequence of type 7 € Sy, if there exists a sequence of indices 1 < ir(1) <iyg) <+ <ty <n
such that 7 (i1) < 7 (ig) < --- < 7 (ix) . We denote the set of permutations of S,, not containing
subsequences of type 7 by S, (7).

Ezample. The permutation 6145732 belongs to S7(2413) because all its subsequences of length 4 are
not of type 2413. This permutation does not belong to S7(3142) because there exist subsequences
of type 3142: n(1)w(2)w(5)w(6) = 6173, n(1)7(2)7(5)7(7) = 6172.

Definition 2. A barred permutation of [k] is a permutation of Sy having a bar over one of its
elements. If 7 is a barred permutation, we note 7 the permutation on [k] identical to 7 but unbarred,
and 7 the permutation of [k — 1] made up of the k£ — 1 unbarred elements of 7, rearranged to get a
permutation on [k — 1].

Definition 3. We say that a permutation m € S,, contains a type T subsequence if 7 contains a
type 7 subsequence that, in turn, is not a type 7 subsequence. We denote the set of permutations
of S, not containing type 7 subsequences by Sy, (7).

Ezample. If 7 = 41352, then 7 = 41352 and 7 = 3142. The permutation 7 = 6145732 belongs to
S7(7) because all its subsequences of type 7: w(1)7(2)w(5)w(6) = 6173, and #(1)w(2)7(5)n(7) =
6172 are subsequences of 7(1)7(2)7w(3)m(5)w(6) = 61473 and 7(1)7(2)7(3)7(5)m(7) = 61472, which
are of type 7.

Given some barred of unbarred permutations 71 € Sg,,...,7, € Sk, of, we denote the set
Sp (11) N -+ N Sp(7p) by Sp(71,...,7). We call the family F' = {7,...,7,} a family of forbid-
den subsequences, the set S, (F') a family of permutations with forbidden subsequences.

Ezample. The permutation m = 6145732 belongs to S7(2413,41352).
15
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Let 7 € S,,. We denote the position lying on the left of m(1) by sg, the position lying between
m(i),m(i+1), 1 <i<m—1, by s; and the position lying on the right of 7(n) by s,. These positions
S0, 81, - --,Sn—1,Sn, are called the sites of .

Definition 4. Let F = {7,...,7,}. A site 5; (0 < i < n) of a permutation 7 € S, (F) is said
to be active if the insertion of (n + 1) into s; gives a permutation belonging to the set Sy,1 (F);
otherwise the site is said to be inactive.

Definition 5. Let w € S,,. The pair (7, ) is an inversion if 7 (i) > 7(j). An element 7 (3) is a right
minimum if © (i) < 7(j), V5 € [i + 1, n].

Ezample. The permutation 7 = 6145732 has twelve inversions:

(1,2)(1,3)(1,4)(1,6)(1,7)(3,6)(3, 7)(4,6)(4,7)(5,6)(5,7)(6,7)
and two right minima: 7 (2) =1 and 7 (7) = 2.

2. Succession Rules and Generating Trees

In this section we briefly describe the tools used to deduce our enumerative results, that is suc-
cession rules and generating trees; they were introduced in [1] for the study of Baxter permutations
and further applied to the study of permutations with forbidden subsequences by others (see [2]
for example).

Definition 6. A generating tree is a rooted, labeled tree having the property that the labels of the
set of children of each node v can be determined from the label of v itself. Thus, any particular
generating tree can be specified by a recursive definition consisting in:

1. the basis: the label of the root,
2. the inductive step: a set of succession rules that yield a multi-set of labeled children depending
solely on the label of the parent.

A succession rule contains at least the information about the number of children. Let 7 be
a forbidden subsequence. Following the idea developed in [1], the generating tree for 7-avoiding
permutations is a rooted tree such that the nodes on level n are exactly the elements of S,,(7); the
children of a permutation # = (1) ---w(n) are all the 7 free permutations obtained by inserting
(n + 1) into . Labels must be assigned to the nodes and they record the number of children of a
given node.

Ezample (Catalan tree and 123-avoiding permutations).

{basis: (2)

inductive step: (k) = (E+1)(2)--- (k).

The permutation of length one has two active sites (basis). Let # = w(1)---m(n) € S,(123); and
k, 2 < k < n, be the minimum index in 7 such that i; < k exists and 7 (i1) < 7(k); then the active
sites of 7 are sg,...,Sg_1. The insertion of (n + 1) into each other site on the right of sx_; gives
the subsequence 7(i1)m(k)(n + 1) that is forbidden. This means that the active sites of m are all
the ones lying between the elements of m constituting the longest initial decreasing subsequence.
If © has k active sites then its longest initial decreasing subsequence has length (k — 1). The
permutation obtained by inserting (n + 1) into s¢ give a new permutation with (k + 1) active sites;
the permutation obtained by inserting (n + 1) into s;, 1 < i < k — 1, gives (¢ + 1) active sites,
(inductive step). The generating tree representing 123-avoiding permutations can be obtained by
developing the above rule and by labelling each permutation with the right label (k) (see figure 1).
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2 1
/\ /\
3 2 21 12
AN SN N
4 2 3 3 2 321 231 213 312 132
AN A AN AN A A
5234 32 4 23 4 23 32 4321 3241 4231 4213 2143 4312 3142 4132
3421 3214 2431 2413 3412 1432

F1GURE 1. The generating tree of 123-avoiding permutations. (Left: nodes labelled
by the numbers of active sites. Right: nodes labelled by the permutations.)

Ezample (Schroder tree and (1234, 2134)-avoiding permutations).

basis: (2)
inductive step: (k) = (E+1)(k+1)(3)--- (k).

The permutation of length one has two active sites (basis). Let # = 7(1)---n(n) € S,(1234,2134)
and k, 3 < k < n, be the minimum index in 7 such that there exist 71 < 79 < k for which
m(i1)m(ig)m(k) is of type 123, or 213; then the active sites of = are sg,...,sg_1. The insertion of
(n+ 1) into each other site sg,..., s, gives at least one of the forbidden subsequences 1234, 2134.
Let 7 be a permutation with k active sites; the permutations obtained by inserting (n + 1) into sg
and s; have (k+1) active sites; the permutation obtained by inserting (n+1) into s;, 2 <7 < k—1,
has (i + 1) active sites; each other site gives at least one of the two forbidden subsequences because
(n+ 1) has at least two smaller elements on its left (inductive step).

3. Permutations with one Forbidden Subsequence of Increasing Length
Let
ST = Sa(321,(5 + 2)T(j +3)2--- (j + 1)).
n>1
Given a permutation m € S7, we denote its length by n(n), the number of its right minima by

m(7), the number of its inversions by (7). The generating function of S7 according to the above
mentioned parameters is the following:

S(z,y,q) = Y a"WymDgi),
TeSI
Note that the permutation of length one has two active sites and a permutation 7 having k active
sites gives k permutations with (k)---(j)(j) - (2)(k + 1) active sites respectively so the rule that
describe the active sites changes has the form:

{(2)
(k) = (k= 1) ()() -~ 2)(k +1).

Now we can present our main result concerning the generating series S7(x,y, ¢). One can observe
(for example by setting j = 1,2,3,... and then j = co in S’(x,1,1), or by means of bijections with
other combinatorial structures), that the classes of permutations described here are enumerated by
numbers lying between the Motzkin and the Catalan numbers (see figure 1). We view the obtained



Index Rule Family of permutations First coeffs.
j=1 % 1) (D4 D) S1(321,3142) 1,2,4,9.21, ...
j=2 % D 4 1) 52(321,41523) 1,2,5,13,35, ...
j=3 22 (= 1) BB+ 1) $3(321,516234) 1,2,5,14,41, ...
7 22 S (k= 1) (G- @)k +1) L oy 1asaa
= oo 52 e @4 ) 520(321) 1,2,5,14,42, ...

TABLE 1. A few permutations of S7.

sequences of numbers as providing a “discrete continuity” between the Motzkin and the Catalan
sequences.

Theorem 1. The generating function of S’ (x,vy,q) is such that:

(_1)nwn+1qn(]+l)

zy(1+ f(2,9,9)) 2020 Gy @i

52 b b = ; lth b b = ] bJ
(@9,9) = 7= xq—xq(1+q)f(x,y,9) with f(=:3,¢) =y . (z;;”qz)“g(gl)
, zy(1 — xq*)Aj(z,y,q) ,
SJ b b = bl 2 37
%9 = 0 )1 = 2500, 0) + oA, @00
where (aa Q)n = Hz;é (1 - aqk); and with Aj(ma Y, q) = Cl(xay, q))\{(:v, Y, q) + CZ(Ia Y, q)A%(:L‘, Y, q)
where
A )= 14 Ty n 14 zy 2 4zy
R4 1 —zq¢? 1 —zq? (1—2¢%) (1 —2z¢°)
Do ) 14 zy 14 zy 2 dzy
T =_ |- — 2 | - —
2L Y4 1 — xq? 1— xq? (1 —zq¢%) (1 — zq?)

The functions c1(z,y,q), c2(z,y,q) satisfy:
er(w,y, )AL (2,9, 9) + ca(@, 9, A3 (2,9,9) = 1+ f(x,,9)

2 (1+q)—zy 1+azy—azgd"
1—zgi—1 1—zgi-1

Cl(a"ay) q)A?(iL‘,y, q) + 62($7y7q))‘g($>y) q) = f(:l’.7y7 q)
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1. Counting Maps

A partition A = (A1, Ag,...,A;) is a finite non-increasing sequence of positive integers \; such
that Ay > -+ > Ag > 0. The non-zero terms are called the parts of A and the number k of parts is
the length of A, denoted £(\). We also write A = 1%12%2 ... n% when «; parts of A are equal to ¢
(¢=1,...,n). When the sum A\; + Ay +--- + Ay = n, we call n the weight of A\ and we write A - n
or |A| = n. The conjugacy classes C) of the symmetric group S,, are indexed by partitions of n
which are called the cycle types of the permutations o € Cj.

There exit relations between pairs of permutations and maps on oriented surfaces. A map (S, G)
on a compact oriented surface S without boundary is a graph G together with an embedding of
G into S such that connected components of the complement S\ G of the embedding of G in S,
called the faces of the map, are homeomorphic to discs. Multiple edges are allowed and our maps
are rooted, i.e., one edge of G is distinguished. Two maps (S,G) and (S’,G’) are isomorphic if
there exits an orientation-preserving homeomorphism f : S — S’ such that f(G) = G'. A map is
bicolored if its vertices are colored in black or white so that each edge is incident to one vertex of
each color. A map is unicellular if it has one face. The type of a bicolored unicellular map M with
n edges is a pair of partitions (A, ) whose parts give respective degrees of black and white vertices

of M.

Proposition 1 (see [3] for more details). Bicolored unicellular maps of type (A, pu) are maps on a
compact orientable surface of genus g which satisfy g = g(A, ). Moreover, the number Bi(\, p)
of bicolored unicellular maps of type (A, p) with n edges is the number of pairs (o,7) such that

ot =(1,2,...,n), which is also the coefficient cgz)l that we study below.

2. Equations in S,
Following [7], let z) = [[; 04!i®* for a partition A = 191292 ... n%*. Then
n!
Card(Cy) = |Cy\| = —.
N

Ezample. The conjugacy class T of transpositions is T = Cjn-2; and |T| = (}) = ﬁ

In this talk, we are interested with the general problem of computing the number

Z()\l,...,)\m;w)‘
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of solutions (aq,..., ) € Cy X -+ X Cym of the equation ajay - - @, = m where 7 is any fixed
permutation of S,, and where (a1, ..., a,) acts transitively on {1,2,...,n}.

Ezample. Factorization of any n-cycle into transpositions
C,_(FT,? . = |{(r1,...,7n_1) transpositions such that 7, ---7,_; = (1,2,...,n)}| = n" 2

IfaeCyand a =717k, then we have k > n —£()) = Zz()‘)()\ — 1) and parity of « is given by
parity of n — £(A). Thus if ajay - -+ oy, = 7, we have the first necessary condition for existence of
solutions in Y (AL,..., A™;7):

Z (n —£(\")) =n — £(r) mod 2.

=1
If (a1,...,qm) acts transitively on {1,2,...,n}, the underlying graph is connected.

Ezample. 7 --- 7, = 1. We need m = 2n — 2 transpositions: n — 1 transpositions to get an n-cycle
and one connected component, and n — 1 transpositions to return to 1.

Proposition 2. Let (a1,...,a;) be in Cy1 X -+ X Cym. If (aq,...,am) acts transitively and if
ay oy, =1, then Y 10, ('n — Z(A’)) > 2n — 2.
Definition 1. The genus of m partitions (A!,...,A™) of weight n is the non negative integer g
defined by the equation

m

Z =2n — 2+ 2g.

=1

For non transitive systems, we want to compute the number

of solutions (a1,...,am,) € Cy1 X -+ X Cym of the equation oy - - @ = 7 where 7 is any fixed
permutation of S,,.

We remark that i()\l, A ) = Set (30(AL,...,A™;7)). From this observation we deduce

the exponential generating function (in the variables (pg-i)), j>1,1<i<m)of i()\l, cey, AT )
for a fixed m:

1 2 m 1 2 m
D e 3T ID DI S, R

n>0 Al, ,An,ﬂ' n>1 Al, ,An,ﬂ'

where P( ) = p(l)

all the d Nam

pg\i). Hence, in order to obtain the generating function, we only have to know
k

3. Theory of Characters
Detailed proofs for this section can be found in [5, 6].

Theorem 1 (Frobenius formula). Let G be a finite group. The number of solutions (g1,...,9m) €
Cy1 X -+ X Cym of the equation g1+ gm =1 1s

|Cl |Cm| ZX X(Cm)

]mZ

where the sum is extended over the irreducible chamcters of G.
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If G is the symmetric group S,, the irreducible characters are {x*} and x*(C)) can be

computed by the Murnaghan-Nakayama rule

ey =xi= > 1[0

TET(\u) SET

pkn

Hence theoretically dY; ,,, can be computed since it can be rewritten as

. O] |cAm| Xy " X X
AL Am = Z ulm— 1
= ~ 0 1

where f# is the number of standard Young tableaux of shape p. But it is hopeless for n > 15.

4. Results for Genus 0

The following results are known.

Theorem 2 (Dénes theorem). Factorization of an n-cycle into n—1 tranpositions: C,}n) L =n""2
Theorem 3 (Hurwitz formula). Factorization of a of cycle-type (a1, a, ..., ayq)) into a minimal
product of n + £(a) — 2 transpositions acting transitively on {1,2,...,n}:
k %
la)-3 i
C2 ez = 0@ 3+ £() — 2 [ m
=1

A new bijective proof without using theory of characters is given in [2].

Theorem 4 (Tree cacti of Goulden and Jackson [4]).
o™ w7 L £(N:)
Ot =1 il;[lﬁ()\i) (oﬂi,...,ain

m
with A = 1%12% ... n% and minimality: Z(n — (X)) =n—-1.
=1

The proof uses a recursive decomposition of tree cacti and the Lagrange-Good inversion.

5. Our Main Theorem

Theorem 5 (A. Goupil and G. Schaeffer). Factorization of an n-cycle into two permutations of
cycle-types A and p with A = (A1,..., Ag), p = (p1,-..,px) and LX) +L(p) =n+1—2g:
n n
= am 2 () = 1420016 — 1+ 292)'80, (NS, (8)
™ g14g2=g

with Sg(A) = Z H (2zk + 1)

11+ +Zg()\) =g k=1

k

n n -1 ) —1)!
Ifg=0, C= (t) — ) H/\H;L]
=1 j=1

zAzM

In [1] this simple expression was derived. This coefficient was later interpreted combinatorially
by Goulden and Jackson [4] as the number of unicellular rooted bicolored maps with n edges on
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a surface of genus zero, the vertices of each color having degree distribution given by A and pu
respectively, that is the case where m = 2 in theorem 4.

Ifg=1 O\ = n(¢(}) —;);ii(u) —1)! (E(A); 1) Zk: (;) N (E(u)2+ 1) z’“: (;;)

=1 =1

Survey of the proof of Theorem 5:

1. Using explicit expressions for characters of the symmetric group, we give the following formula

n—1
(n) _ M T 1"(n—r)_ 17 (n—r
(1) Cp = e ;(—1) ri(n —1—7)lx, Xu (n=),

2. The evaluation of some characters are given as weighted summations over set of “quasi-painted
diagrams”.

3. We use a bijection to replace quasi-painted diagrams by properly “painted diagrams” and we
rewrite Formula (1) as a weighted summation over some “painted diagram matchings”.

4. The introduction of “connected components” of diagram matchings allows to set apart the
diagram matching from its painting and to show that the weight depends only on the painting.
This is used to apply a sign reversing involution.

5. As expected, the fix-points yield positive contributions. These contributions count “colorings”
of the diagram matchings.

6. We show that colored diagrams are enumerated by formula of Theorem 5.

6. Corollary for Genus > 0

om o mt n—1+2g il
Tn—142g — m Z Cly.--y,Cp—1 ~n—oo 9'27

C1y--Cn—1

where the sum is taken over the odd ¢; such that Y ¢; =n — 1+ 2g.

Bibliography

[1] Bédard (Francois) and Goupil (Alain). — The poset of conjugacy classes and decomposition of products in the
symmetric group. Canadian Mathematical Bulletin, vol. 35, n° 2, 1992, pp. 152-160.

[2] Bousquet-Mélou (M.) and Schaeffer (G.). — Enumeration of planar constellations. Advances in Applied Mathemat-
ics, 1998. — To appear.

[3] Cori (Robert) and Machi (Antonio). — Maps, hypermaps and their automorphisms: a survey. I, II, IIl. Ezpositiones
Mathematicae, vol. 10, n° 5, 1992, pp. 403-427, 429-447, 449-467.

[4] Goulden (I. P.) and Jackson (D. M.). — The combinatorial relationship between trees, cacti and certain connection
coefficients for the symmetric group. European Journal of Combinatorics, vol. 13, n° 5, 1992, pp. 357-365.

[6] Goupil (Alain). — On products of conjugacy classes of the symmetric group. Discrete Mathematics, vol. 79, n° 1,
1989/90, pp. 49-57.

[6] Jackson (D. M.). — Counting cycles in permutations by group characters, with an application to a topological
problem. Transactions of the American Mathematical Society, vol. 299, n° 2, 1987, pp. 785—-801.

[7] Macdonald (I. G.). — Symmetric functions and Hall polynomials. — The Clarendon Press Oxford University Press,
New York, 1995, second edition, Ozford Mathematical Monographs, x+475p. With contributions by A. Zelevinsky,
Oxford Science Publications.



Multivariate Lagrange Inversion

Bruce Richmond

University of Waterloo, Canada
May 25, 1998

[summary by Dani¢le Gardy]

Abstract
A new formulation of Lagrange inversion for several variables will be described which does
not involve a determinant. This formulation is convenient for the asymptotic investigation
of numbers defined by Lagrange inversion. Examples of tree problems where the number of
vertices of degree k are counted and where vertices are 2-colored will be given. Non-crossing
partitions give another example and the Meir-Moon formula for powers of an inversion is a
special case.

1. Running Example
Consider a rooted plane tree where internal vertices can have two or three sons and are green or
red, according to the following rules: (an example of such a tree is given below.)

— a green vertex has three children; one is red and the other two are green;
— a red vertex has two children, one of each color, and the left one is red.

Enumeration of such trees is best done by taking into account the colors of the vertices: let 1 and x5
mark the green and red vertices, and define wq(z1,z9) and wy(z1, z9) as the functions enumerating
the trees whose root is green (resp. red). These functions satisfy the system of equations

wi(z1,2) = z1(1 + 3w%w2); wa(z1,x2) = T2(1 + wrwy).

Introducing the vectors z = (z1,z3) and w = (wy,ws) and the functions f;(w) = 1 + 3wlws and
fa(w) =1+ wyws, one obtains the system wy(z) = z1 f1(w); we(z) = x5 fo(w). Such equations are
very similar to those that can be solved in one dimension by Lagrange inversion, and it is natural
to try and solve them with a suitable extension.

2. Multivariate Lagrange Inversion

In one dimension, Lagrange inversion is used for implicit equations of the type w(z) = zf(w(z)),
with f(0) # 0: It relates the coefficients of a solution w(z), or of a function of w(z), as formal

O  greenvertex
@ redvertex
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power series, to the coefficients of the simpler function f:

eue) = TN ew@) = B 0.

Extensions to the multivariate case have been considered for some time; surveys can be found in
the paper written some twelve years back by Gessel [6], or in the recent book by Bergeron, Labelle
and Leroux [4]. The version presented below is due to Good [7]:

Theorem 1. Let z be a d-dimensional vector, g(z) and fi(z) (1 < i < d) be formal power series
in z, s.t. fi(0) # 0. Then the equations w; = z;f;(w) uniquely determine the w; as formal power
xlaf]( )

series in x, and
[t g(w(t)) = [z"] (g(ﬁ)iﬂ(@ f,(z)0z; )

with 6;; the Kronecker symbol, ||A|| the determinant of the matriz A, f = (f1,..., fa), and f* =
]y ng
T fe

The determinant in this formula leads to trouble when one tries to get asymptotic information
from it. Let us consider the univariate case to see what the problem is.

For d = 1, Good’s formula applied to the equation w(z) = zf(w(x)) gives an identity equivalent
to the one presented above:

n _ e £ ()
(1) [z"w(x) = [t""] (f (t) (1 - tw))

When one wishes to obtain asymptotics, a natural tool is the saddle-point method, well suited
to approximating coefficients of (variations on) large powers of functions; see for example [5] for a
summary of results in this area. The idea is to use Cauchy’s formula [z"]F z)=¢ F(z 27" 1dz, for
F(z) = f(2)"(1 — 2f (2)/f(2)), with an integration path that is a circle going through the saddle-
point pg; po is itself is a perturbation of the saddle-point p; that appears in the evaluation of the
simpler coefficient [z"]f™(z). Now p; is defined as the solution of the equation 1—=zf (z)/f(z) = 0,
i.e. the integrand of the right part of (1) becomes zero close to py!

With care, it should be possible to work this out for one variable, but the outlook for a multi-
dimensional extension is not favorable, as we can expect cancellation of the determinant close to
the integration paths. Instead, Bender and Richmond have proposed a new multivariate version,
better suited to asymptotics; this formula will use the derivatives of a vector wrt a directed graph.

3. Differentiating a Vector wrt a Directed Graph

To define the partial of a vector relative to a directed graph, consider all trees with vertices
0,1,...,d and edges directed to 0. There are (d + 1)%! such trees; for example for d = 2 there are
three trees:

1

\O/ 2 -0 2 -1-0
L T T3

Now the derivative of a (d + 1)-dimensional function f according to such a tree is a product on
(d + 1) terms, where f; is differentiated according to the incoming edges into the vertex labelled
by 4; this is best explained on the above example, with f = (fo, f1, fo):t

! Although the definition is more general, trees are the only graphs considered here.
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of  &fo of  9fo ofs . of _9fo 9f

8—’1’1 B 82313.’112 . fl . f2; a—i - 3—552 ' fl 8x1 B—JT?, - 3.’1)1 31‘2 f2

4. The New Inversion Formula

Theorem 2. Under the assumptions of the former theorem,

g aw (H n) ooy 3 AT da)
T

where the sum s on the set of trees with d + 1 wvertices.

Proof. This result is proven in [3]; it relies on the simple formula n[z" !|f = [z"]0f/0z and on
the expansion of a determinant. The terms are all positive as soon as the functions f; and g have
positive coefficients; hence the coefficient [t2]g(w(t)), as a sum of (d + 1)?~! such terms, is itself
positive and there are no more cancellations. O

What do we obtain for the first values of d? For d = 1, the only tree is 1 — 0 and one gets back
the classical formula. For d = 2, g(¢1,t9) is a function of two variables and

(21" 23 ]g(wl(fﬂlawz),w(wl,@))——[t”l ey 99, /1", £>”)

oT
Te{To, 11,12}

_ [tnl ltng 1] ny 2 ag ny 3( ;2) + ag 3( {ll) no
- 1 1 2
niny Bt Bt 8t2 atl 8t1 3t2
1 ni4n n1 gn
= (nl—l)( 1)[t ltZZ]( 11f22h)a

with (f1 and fo are strictly positive at the saddle-points)
&g dg 0f 1 dg Of1 1

“onon T Monon Mot on fi

For general d, there is no determinant here, but a finite (although large!) sum of terms, each
of which can be evaluated individually. The asymptotic value of [t*]g(w(z)) is obtained by adding
the individual asymptotic values of the (d + 1)4~! terms.

It is possible to obtain a univariate local limit theorem for the number of red vertices in trees
having a fixed number of vertices, or a bivariate local limit theorem for the joint distribution of the
numbers of red and green vertices.

5. Local Limit Theorem

The usual approach towards a limiting theorem is through the covariance matrix (see for exam-
ple a former paper by the same authors [1]); checking the non-degeneracy of this matrix leads to
intricate conditions, which the authors try to bypass, by requiring instead the existence of a multi-
variate saddle-point. A local limit theorem holds whenever the functions g(z) and f;(z) (1 <1i < d)
are analytic; there is also an existence condition on the exponents of the variables in the functions
whose coefficients we are studying. Formally, this involves the lattice generated by the exponents
k for which the coefficient of t£ in f; is not zero; see [2] for a precise formulation.

For example, for the colored trees presented in Section 1, the only non-zero coefficients are
obtained, besides k = (0,0), for £ = (2,1) in f1, and for k = (1 1) in f. The lattlce generated by
{(1,1),(2,1)} is N?; hence all the terms t“tzz will appear in the function f
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The saddle-point condition is that we should be able to solve the system of d equations {k; =
> i<i<a k101og fi/0log vi} (with ; = ™).

We give the equations below for two variables, the better to understand what is going on, but it
should be understood that it is more general and applies to d dimensions.

At some point, we have to compute a coefficient [t7*¢5%|(hf{"* f3'*), where the functions A, f; and
fo are on the variables ¢; and to. The way to do this is through a saddle-point approximation; more
specifically we shall look at [t¥1¢52](hfI" f22) for k1 and ky of the same order as n; and ny, but not
necessarily equal. This coefficient can be written, by Cauchy’s formula, as ﬁ $¢ ehtnt2) g diy |
with h = nqlog f1 + nylog fo — k1logt; — kg logts. Now the saddle-points are defined by the two
equations 8h/dt; = 0 and Oh /Oty = 0, which give the two-dimensional system

df1 1 df2 1 afi 1 dfz 1
klznltl——-l-’nztl——; kg =n1t2——+n2t2——.
oty f1 oty f oty f1 Oty fo
Applied to our running example, this gives the system in ¢; and ¢,
62ty t1ty 32ty tity
ki =mn1 5 ng ; 2 =n 3 n2 :
1+ 3t7ts 141119 1+ 3t 1+tits
Define p := k1 /kq; p € ]1,2[. Solving, we get
— 1) 3(2 — p)?
1 = 7(/) ) =:7y; tg = 7( p)3 =: 7.
3(2—-p) (p—1)

This gives (k1,k2) = n(p/(1 + p),1/(1 + p)). The covariance matrix is obtained by differentiation
of log f, where f := f|" f3'?, with f1 and fo defined in Section 1. For example Bj; is the value of
t10(log f)/0t, + t20%(log f)/Ot%, taken at the point (rq,79), which gives By 1 =n(p — 1)(4 + 2p —
p)/p(1 + p). Similar computations give the other components of the covariance matrix:

n p—1 [4+42p—p? 242p—p?
p(1+p) 2420 —p? 142p—p?|"
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Abstract
The aim of this talk is to provide closed form formulee for the coefficients of algebraic series

using a general method involving finite sums of multinomials.

We start by giving an example of an algebraic series encountered in combinatorics.

Ezample. General planar trees without unary nodes can be described by
D =o0+0o(DD)+ o(DDD) + - .

The generating series enumerating the external nodes is a branch of the algebraic function defined
by the following equation:

d(z) = z +d(2)*/(1 - d(=))
and the coefficients of series d(z) are known to be the Schroder numbers, for which we give a closed
form expression in the third example while treating dissections of non-crossing configurations.

1. Form of Coefficients

The coefficients of rational generating functions satisfy linear recurrences with constant coefhi-
cients and they can be easily given a closed form expression in terms of exponential polynomials.

In general, algebraic generating functions satisfy linear differential equations with polynomial
coeflicients leading to linear recurrences with polynomial coefficients. One may wonder whether it
is possible to obtain a finite index formula for the coefficients of algebraic generating series.

The answer is yes. The simplest case is when the series y(z) satisfies an equation of the form
y = z®(y) with ® analytic at 0. Typically, the coefficients of such series can be given an explicit
form using the Lagrange inversion theorem:

2"y (=) = - ")),

Ezample.

(1 n 2) 1 2n+1
=z — =
Yy ) Yon+1 mt1 n s

1 2n—-1—p
. 2 2,3 = P —

The following theorem provides closed form formulae for a larger class of algebraic generating

functions using a similar approach.
27
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Theorem 1. Let ®(z,y) be a bivariate polynomial such that ®(0,0) = 0, ®,(0,0) = 0 and
Val(®(z,0)) > 0, where Val denotes the valuation in y and z. Consider the algebraic function
implicitly defined by f(z) = ®(z, f(z)). Then the coefficients of f(z) are given by

"5 = 3 e e, ).

m>1

Note that, as we have seen in the examples, the powers of ® induce multinomial expansions and
the valuation condition on ® gives rise to finite sums of these expansions.

Indeed, ®(z,y) can be expressed as ®(z,y) = zP(z) + yQ(z,y) where Val,(P) = v > 0 and
Val, ,(Q) = a + 8 > 1. The expansion of the mth power of ® is

m _ —
k

To avoid the cancellation of the quantity
[znym—l]q)m — [zn—m-}-kym—l—k] Z (T:) Pm—ka,
k

we must have
n—m+k>(m-—k)y+ka and m-—1—k > kg.
This entails
B+1 a—vy-—1
<n
T a+yp+p8 a+yB8+0

whence m < 2n — 1.

Ezample. Dissections:

1 n—+r L
= 22— n = _1n T 127"
y Z+2y Zy—>[2 ]y Zn—l—?“(?“—l-l,n—r—l,?“)( )

T

2-3 trees (edges and leaves):

1 m
— 2,2 3,3 ny,, _ -
y=z+y 42y — [y zm:m(n—m+1,5m—3n—2,2n—3m+1)'

2. Proof of Theorem 1

2.1. Formal Proof. Let y(z) = )  a,2" be the generating series implicitly defined by the func-

tional equation y(z) = ®(z,y) = 2zQ(z,y). We introduce a parameter u such that y(z,u) =

uQ(z,y(z,u)). The expression of y is now y(z,u) =Y
From the Lagrange theorem we derive

m _ l m—1 m
[ ly(z,u) = —[y™ 7 1Q™ (y, 2)-
Thus we obtain

() = 3 QM ).

m
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2.2. Analytic Part of the Proof. The following lemma is a classical formula derived from residue
computation.

Lemma 1. Let ¢(y) be analytic and yo be the unique root of ¥(y) = 0 inside a domain defined by
a closed curve v.Then
o = 1 / yi/)’(y)
2im " Y(y)
Since y(z) is a root of y — ®(z,y) = 0 and (0,0) is an ordinary point of y — ®(z,y) = 0, a formal

application of the lemma gives:
1 1- él (Z, y)
y(2) / y———r—dy.
gl

~2ir ),y = 0(zy)
A formal application (justified later) of the formula (1 —4)™' =14+ u+u? +u3 + - entails:
1 m dy
0 TORDIE =) KL AC L ERIETS
= 2w Jy Y

Using the Cauchy coefficient formula, we derive:
y(z) = D> " - ¥ (z,9)@" (2, y).
m>1
Still proceeding formally, we finally get the expressions stated in theorem 1:

u(z) = YW (y) - R R (2 ),

_ 1 m—11x/m
=3 e ).
m2>1
Hence
_ 1 n, m—1l1Fm
m>1

Let us explicit now the contours v and 7/ used in the computations above. Since the equation
y — ®(y,z) = 0 has a unique solution f(z) tending to 0 with z, there exists p; > 0 and 71 > 0 such
that |z| < p; implies |f(z)| <71 and |fi(z)| > 71 for all other solutions. Consequently

y={y;|ly| =r} forany 0<r<r.

The expansion that leads to formula (1) requires the condition |®(z,y)| < |y| around y = 0.
Consequently, the conditions on ®(z,y) around the origin imply that there exist constants K, ps
and 7y such that ®(z,y) < K(|z| + |2y| + |y?]) for |z| < ps and |y| < 73. Since

1— |yl
1+ y’

2]+ zy| + |y°] < ly| <= 2| < |y]

it follows that:
1—7

1+1"’)'

v ={(z,9);|ly| <7',|z| < p} forany =’ < min(ry,ry), with p= min(p,ps,7’
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3. General Case

Let y be the function implicitly defined by the algebraic equation P(z,y) = 0 where P is supposed
to be square-free, and assume this equation has several analytic solutions at the origin.

We present here an analytic technique designed to isolate the appropriate branch by giving more
information. Actually, it consists in a change of variable that leads to an equation of the form
Y = ®(z,Y) fulfilling the conditions of theorem 1.

Let y1,...,yr be the solutions analytic at the origin of the algebraic equation P(z,y) = 0. To
distinguish all these branches at the origin, we specify « the maximum integer such that

Elz';y?)(O) = yz(j)(O) forall j=0,...,a—1.
Now, to isolate a specific branch, we perform the change of variables
Yy=7+aqz" + aﬂzﬁ_lY,
where 4 is the common part of the expansions. The branch Y; = z + anl ar,z" is the unique
solution analytic at (0,0) of the equation ¥ = &(2,Y).

Ezample. Take the generating series of graphs in non-crossing configurations defined by the alge-
braic equation
v+ (—2-32+222)y+1432=0

The expansions of the branches at the origin are:

y1(2) = 14 2+ 22% + 82% + 482* + 3522° + O(2°)

ya(z) =1+ 2z — 42% — 82° — 482* — 3522° + O(2°)
The change of variable

y=14+2+2Y
results in
2(=Y +Y? 422 +22Y) = 0.

The algebraic function Y implicitly defined by —Y +Y 2 +22+22Y = 0 has only one branch tending
to 0 at the origin and the general form of this equation is in the scope of theorem 1.
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1. Introduction

Algebraicity of generating functions (gf’s) is of interest in combinatorial analysis as it is a sure
sign of strong structural properties. For instance, any (unambiguous) context-free model leads to
algebraic generating functions; in particular generating functions of simple families of trees and
random walks (defined by a finite set of node degrees or jumps) are algebraic. In another context,
the algebraic character of the gf’s associated with 2-dimensional directed animals in percolation
theory points to a wealth of puzzling combinatorial bijections; see [7] for a specific illustration.

Conversely, a transcendence result for the gf of a combinatorial class C means a sort of “structural
complexity lower bound” on C. For instance, elements of C cannot be encoded by an unambiguous
context-free grammar. Accordingly, if C already admits context-free descriptions, all such descrip-
tions must be inherently ambiguous.

Methods for establishing the transcendence of generating functions fall broadly into two cate-
gories.

— Arithmetic methods are based on number-theoretic properties of coefficients. The most famous
criterion in this range is Eisenstein’s criterion: If a series of Q[[z]] is algebraic, then the
denominators of its coefficients contain only finitely many primes. For instance, f(z) = exp(z)
is transcendental “because” its coefficients f, = % have denominators that contain infinitely
many primes (by Euclid’s theorem!).

— Analytic methods are based on the presence of a transcendental element in a local behaviour,
usually taken at a singular point. In this perspective, f(z) = exp(z) is transcendental “be-
cause” its growth is too fast at infinity, a fact incompatible with the fact that an algebraic
function is locally described by a Puiseux series (i.e., a series involving fractional powers).

The analytic approach is reviewed in [6]. The talk focuses on the arithmetic method, and more
specifically on the following powerful approach [2, 3, 4, 10].

Principle . If f(z) = )", fn2" has integer coefficients and is algebraic over (z), then its reduction
(f(z) mod p) := > (fn mod p)z" is algebraic over F,(z).

Principle . For a series g(z) = ) g,2" over a finite field IF,, the following three properties are
equivalent:

(z) the correspondence n +— g, is computable by a finite automaton that inputs the base-p
representation of n (“the g, are automatic”);
(7¢) the infinite word (go, g1, ... ) is generated by a regular (length homogeneous) substitution;
(¢43) g(z) is algebraic over Fp(z).
31
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This is the classical “Christol-Kamae-Mendeés France-Rauzy Theorem” [4, 5], the equivalence
between (i) and (i) being due to Cobham in 1972. For instance, the Catalan gf,

iy 1V

has a reduction modulo 2

=24+ 22 +22% +52% +142° +422% + 13227 + 42928 + - ..

gz)=z+ 22+ 24+ 284

where the coefficient g,, is 1 exactly when n = 2". Thus the coefficient sequence is computable by a
finite automaton from the binary representation of the index n. It is also generated starting from
the letter a by the regular substitution

a+— al, 1+ 10, 0 — 00.

2. Primitive words

An example originally due to Petersen serves to illustrate nicely the methods just introduced.
Say that a word over some alphabet is primitive if it is not a “power”, that is, the repetition of
a shorter pattern. Thus abbab is primitive while abbabbabb is not. Let m > 2 be the alphabet
cardinality, W (z) = (1 —mz) ! the gf of all words, and P(z) the gf of primitive words. Then, since
each word has a “root”, one has

W(z) = P(z) + P(2*) + P(%) +-- -,
so that, with u(n) the Moebius function,

PR) = Y pdW(E,  P= Y u(@m

d>1 dln
In particular, the reduction modulo m yields

% =p(n)+A-m=pu(n) modm.
Thus, the problem is reduced to showing that p(n) is the coefficient sequence of a transcendental
series.

Now, by a theorem a Cobham, if a sequence has an algebraic gf over a finite field, and if it assumes
some fixed value with a limit density 6, then 6 is a rational number. (Think of the characterization
by finite automata.) But, here, u(n) = 1 whenever n is square-free, an event whose density is %.
The transcendence of ) p(n)z" then follows from the irrationality of =.

Reduction modulo m thus provides a proof of the fact that the language of all primitive words
cannot be an unambiguous context free language.

In the analytic perspective, transcendence results from the fact that P(z) has infinitely many
poles inside the unit circle. Such poles, at points m=/" exp(@), arise from W (z) and the Moebius
inversion formula for P(z).

3. Stanley’s conjecture

In his fundamental paper of 1980 on D-finite series, Stanley [9] conjectured that the binomial
series

Bie) =Y (2:>tz"

n>0
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is transcendental for any integers t > 2. Of course, we have Bi(z) = 1//1 — 4z. In the case of even
t, By is clearly transcendental given the presence of logarithmic elements induced by the asymptotic

form of coefficients,
m\? 4%
n T onsT

In addition Bs is also known to be an elliptic integral. The case of odd t is harder. An analytic
proof was suggested by Flajolet [6] in 1987 and an algebraic proof was given by Woodcock and
Sharif [10] in 1989.

The proof of [10] consists in reducing first By(z) modulo a prime p. The resulting series is
algebraic, since a theorem of Furstenberg states that algebraic functions over finite fields are closed
under Hadamard (termwise) products. (This property is also clear from the characterization by
finite automata.) However, by means of arguments from algebraic number theory, Woodcock and
Sharif are able to estimate the degree of (B;(z) mod p) over F,(z) and deduce that there exists an
infinity of special prime values of p for which this degree grows without bound. This in turn implies
the transcendence of By(z).

In contrast, from the analytic standpoint, it is the examination of the Puiseux expansion of By(z)
near its singularity ¢ = 4% that leads to the transcendence result via the arithmetic transcendence
of the number 7.

4. Miscellaneous examples

There are a great many cases where reduction modulo a prime leads to transcendence results for
generating functions. Here are a few examples.
In [6], the language {a"bvia™vs} was shown to be inherently ambiguous through transcendence of

z2n
S<z):21—2z+zn+1’

n>1

since poles accumulate near 1/2. Alternatively, simple manipulations show that, modulo 2, the
transcendence of S(z) is equivalent to the transcendence of the divisor series
n

D(x)=3 1 = =Y dm)"

n>1 n>1

The latter form is transcendental over Fy(z) since, upon reduction modulo 2, it is the indicator
series of squares, and squares are known not to be automatic (Minsky).

A similar process applies to the Goldstine language whose gf involves the theta function ©(z) =
350 2™ D/2 and to the partition series P(z) = [[(1 — 2™)~" whose logarithmic derivative is
closely related to divisor functions.

An amusing example due to Allouche, Betrema, and Shallit is the “Bourbaki definition of inte-
gers”

0, {0}, {0,{0}}, {0,{0},{0,{0}}}, ...,

which, upon binary encoding, leads to the nonregular substitution [@ + aab, b +— b]. The
associated infinite word (interpret a as 0, b as 1) has a gf that is transcendental, being related to
the series

k
2201

Dy(z) =) PR

k>2
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that also shows up in a formal language example of [6].

5. Lucas sequences

The talk concludes with a description of some recent results of Allouche, Gouyou-Beauchamps,

and Skordev [1]. Lucas showed that
m mo m1 ma
()= Co)C) () o
n no niy 9y
where the mj,n; are the digits of m,n in base p for prime p. More generally, following (8], define
a p-Lucas sequence (p prime) by the property

Apn+j = @naj mod p.

=X () (7Y

are p-Lucas. Then, Allouche et aliz characterize the strong property for a sequence to be simul-
taneously algebraic (automatic) over Q and p-Lucas for all large enough p. In essence, the only
possibility for such a sequence is to be, up to normalization, the sequence of values of the Legendre
polynomials at some rational point. In other words, the corresponding gf F(z) is of the form

1
V1+az+b22

A particular case is the central binomial coefficient (Znn) From Lucas’ property and this character-

ization, a new proof of Stanley’s conjecture can be deduced. There are also interesting extensions

to Hadamard products of series involving (27?), (37?), etc.

For instance, the Apéry numbers

F(z) =
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1. Introduction

Recently, several extensions of polylogarithms, Euler sums (or multiple harmonic sums) and
Riemann zeta functions have been introduced. These have arisen in number theory, knot theory,
high-energy physics, analysis of quadtrees, control theory, ... In this talk, the author presents the
multidimensional polylogarithms and their special values [1, 2]. After definitions related to multi-
dimensional polylogarithms (Section 2), results, conjectures and combinatorial aspects concerning
unit Euler sums and unsigned Euler sums are discussed (Section 3). Integral representations are
also pointed out to understand multidimensional polylogarithms (Section 4).

2. Definitions
Definition 1. The multidimensional polylogarithms (MDPs) are defined as follows
b,

k
A S1,-.-55k _ 7 )
(bla"')bk HZ(V]++VI€)SJ

j=1v;>1

k is the depth and s = s + - - - + s is the weight ofA(Zl""’Zk>,
15---,0k

— When k£ = 0, by convention A({}) = 1;
— When k£ =1, s is a positive integer and |b| > 1, one get the usual polylogarithm

A (2) = b: — Lis(1/b).

v>1

The classical Riemann zeta function is obtained in the special case where b = 1.
— When & > 1, let n; = Zf:j v; and b; = [T/_; a;. Then

—n1 —MNpg
)\(817---,319 _ Z Ay Ay
bl PR bk - nsl...nsk )
e ni>o>nE>0 1 k

* If each a; = 1 then these sums are called Euler sums;
* If each a; = &1 then they are called alternating Euler sums.

Definition 2. The unit Euler sum is defined as follows
k —Vj
1,...,1 b;
) =2 (0 ) =TT Y
b1y bk jzlujZI(uj+---+l/k)
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Definition 3. The unsigned Euler sum is defined as follows

)\b(sl,...,sk)Z)\(sl" ) HZ +uk)sj'

Jj= 11/>1

— When b =1, A is often called the unsigned Euler sum or multiple zeta value (MZV)
1
A1(s1,.00,8%) = ((51,...,8%) = Z TR
ny>->ng>0 1 k
— When b = 2, Ay represents an iterated sum extension of the polylogarithm with argument 1/2,
and plays a crucial role in computing the MZVs.
3. Special Values of MDPs

Theorem 1. Let p and q satisfy 1/p+ 1/q = 1. If in addition, p > 1, or p < —1, then for any
nonnegative integer k,

(log q)k .

n({p}*) =

The proof is done by coefficient extraction in the generating function >, , zFu({p}*).
Theorem 2. Let A, = Li,(1/2), P, = (log2)" /7!, Z, = (=1)"((r). Then, for m > 1,n >0

W11, -1 = (0 Y () AP+ (0 Y (") s P

The proof of this theorem can be done via the duality principle (see Section 4).
For any nonnegative integer k, the following identities provide nested sum extensions of Euler’s
€(2),¢(4),¢(6) and ¢(8) evaluations, respectively

(2r)%k /1) 2F
({2} = m( ) ;

4(2m)* 1\ 2
(4k + 2)! <2> ’
6(27)%k
(6k + 3!’
8(2m)%*
(8k + 4)!

¢({4)*) =
¢({6}") =

¢({8}*) =

(+5) 65

In general, for any positive integer n, e = €/™/™, one has

Z( 1)k22n¢ ({2n)F) H sin(rze) '

mxel
k>0 =0

Theorem 3 (Zagier’s conjecture [6]).

27[.477.

31 =47 = gy
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Conjecture 1.

n

k
¢(2,{3,1}") =47y (~=1FC({4)"7") | (4k + 1)¢(4n +2) =4 (45 — 1)¢(4k — 4j +3)

k=0 7=1

In practice, one would like to know which unsigned Euler sums can be expressed in terms of
lower depth sums. When the sum can be expressed, it is said to “reduce”. Hoang Ngoc Minh and
Michel Petitot have implemented in AXIOM an algorithm to reduce the MZVs via a table of Grobner
basis of these sums at fixed weight [5]. Here, the authors also get the following

Theorem 4. For any positive integer k,

C(Sla s ask) + (_1)k<(3ka s ,51)
reduces to lower depth MZVs.

The following theorem gives Crandall’s recurrence for unsigned Euler sums ¢({s}*) and it can
be proved by coefficient extraction in the generating function 3, <, kz*¢({s}*).
Theorem 5 (Crandall’s recurrence). For any nonnegative integer k and R(s) > 0,

k

C({s}") = D (=1 ¢Gis) ({s1E ).

i=1
For example

() = (),
((f5,5) = 5C%(5) — 5C(25),
(({s,s,s}) = %C‘“‘(s) - %C(S)C(Zs) + %4(33), .

Crandall’s recurrence is also a special case of Newton’s formula

k

kek = Z(_l)j_klpjekfja k 2 0,
j=1

relating the Elementary Symmetric Functions e and and the Power-Sum Symmetric Functions p;.,
k= ), TpooT, o pr=)
J1>>gr r>0

with indeterminates z; = 1/5°%, e, = (({s}") and p, = {(rs).

Definition 4. Let 5= (s1,...,5%), £ = (t1,...,%.). The set stuffle(5]t) is defined as follows

1. (S1yeeySkyt1y...,t,) € stuffle(5]t).
2. If (U, sp,tm, V) is in stuffle(5]t) then also are (U, tm,sn, V) and (U, s, + tm, V).

One also has

max(k,r)

s -5-()0)- 3 () )

=0
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Theorem 6 (Stuffle Identities [4]).

= >, @
d€stuffle(s)t)

For example

C(r,s)C(t) = C(r,s,t) + C(r,s + 1) + ((r,t,8) + ((r+t,s) + ((t,7,8).

4. Integral Representations for MDPs
Let Ry,..., Ry be disjoint sets of partitions of {1,...,k}. For each 1 <m < mn, let

T = Zsi and d,, = Hb,-.

1€Rm 1€Rm

From the gamma function identity

r°T(s) :/ (logz)*~tz=""tdz, 75> 0.
1

one gets

Proposition 1.

M) - H/ Qg e 200 T (o [T I i

’ 7 ) m=1 j=1li€R;

-1

For example, given a rational function on z and y, R(z,y). Let I(R) be the following partition

integrals
B /°° /°° (log m)s_l(log y)t_l dxdy
1 1 [(s)T(t) zyR(z,y) '

(s—l—t

s,t
a,ab

)
o) =
(i)
(o) ()=

1 1 R S
(ax —1)(by —1)  abzy—1\az—1 by—1 ’

(o) () =2 () 2 () 2 ()

One can say that stuffle identities are equivalent to rational identities via partition integrals.

It follows that

I(abzy — 1),

(az — 1)(abzy — 1)],

I[(by — 1)(abzy — 1)],

[(az —1)(by — 1)].

From the rational identity

one gets
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Definition 5. Given functions f; : [a,c] — R and the 1-forms Q; = f;(y;)dy;, the iterated integral
over {2; are defined as follows

‘ 1 ifn=0
Q- Q=1 . ! ;
/‘l ' fa f(yl)ffl Qy---Qudy; ifn>0.

It turns out that MDPs have a convenient iterated integral representation in terms of 1-forms

wy = dy/(y — b), Le. )
S1y...458k k —1 s.—1
A (bl,...,bk) =(-1) /0 w(s)l Wy * W Wy

By the iterated integral representation, Broadhurst has generalized the notion of duality principle
for MZVs to include the relations between iterated integrals involving the sixth root of unity using
the change of variable y — 1 — y at each level of integration [3]. This principle generates an
involution wy — wi_p holding for any complex value b. For example

2,1 ! ! 1,2
)\ (1’ _1> = /0 wowi1w_1 = /0 Wwowow = )\ (2, 1)

1 n—1 _1k 1 "_12k
NS B ) B

n>1 k=1 n>1 k=1

which is

Several results can be similarly proved by using other transformations of variables in their integral
representations. Here, the authors get

Theorem 7 (Cyclotomic). Let n be a positive integer. Let by, ..., by be arbitrary complex numbers,
and let s1,..., s be positive integers. Then
S1y--+58k\ _ s—k 15455k
A(gb,...,bg)_” 2 /\<51b1,...,akbk>'
517___76ke{1,627ri/n7___7821\'(11,—1)/71.}

Theorem 8. Let sq,...,s, be nonnegative integers.

k Sj
1+s71,...,1+s )
A( T '“) =3 (Catb_y (=1} Cat o)) TTH-13 T v
) ) e paley

where the sum is over all 2° sequences of signs (e; ;) with each e; ; € {1, -1} for all 1< 1 < 55,1 <
j <k, and Cat denotes string concatenation.
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Abstract

Generalized polylogarithms are complex, multivalued functions with singularities at z = 0
and z = 1. We calculate the monodromy at the two singularities. As opposed to the classical
polylogs [11, 12], the monodromy of generalized polylogs involves the so-called “multiple zeta
values,” [14] which play an important role in number theory, knot theory [4, 6, 5, 10], and
physics [7, 9]. Via monodromy of polylogs, Radford [13] showed that the C-algebra of
polylogs is isomorphic to the C-algebra of non-commutative polynomials in two variables—
a “shuffle algebra” freely generated by the so-called Lyndon words. Here, monodromy is
used to give an induction proof of the linear independence of the polylogarithms. We also
obtain a Grobner basis of the polynomial relations between “multiple zeta values” using
the techniques of non-commutative algebra. By expressing multiple zeta values in terms of
the Grobner basis, one obtains symbolic algebraic proofs of relations between multiple zeta
values.

1. Polylogarithms and Combinatorics on Words
Let X = {xg,z1}. To any word w = xél_lwlxgz_lml . --a:f)"_lxl we associate the multi-index

s = (s1,82,...,5;) and define the generalized polylogarithm

. . Z"
Li,(z) = Lis(z) = Z IO
ni>ng>-->ng >0 1°"2 k

The associated multiple zeta value is (,, = ((s) = Li,(1) = Lis(1). The shuffle product is defined
on words by the recursion

zumyv = z(umyv) + y(zumv),

where z,y € X and w and v are words on X. We can extend the shuffle product linearly to
the non-commutative polynomials Q(X). The resulting polynomial algebra, denoted Shg(X) is
commutative and associative.

The Lyndon words L are those non-empty words on X that are inferior to each of their right
factors in the lexicographical order. They are algebraically independent and generate Shg(X), thus
forming a transcendence basis. More precisely, a theorem of Radford [13] states that the algebra

Shg(X) is isomorphic to the polynomial algebra generated by the Lyndon words, i.e. Q[L].
41
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2. Relations between Multiple Zeta Values

There are countless relations between multiple zeta values [1, 3, 2]. We content ourselves here
with providing only two examples:

(1) =¢3) and ((2,2,1) =~ 1C() +3(2C).

It turns out that a large class of relations can be explained by the collision of two distinct shuffles
obeyed by the multiple zeta values. We’ve already seen one type of shuffle. It provides relations of
the form (ym, = (u(»- A second type of shuffle provides relations of the form (., = (,(, and is
defined by the recursion

(515 S) * (tlat) = (Sla S * (tlat)) + (tla (517 S) * t) + (81 +11,8% t)a

where we have used the multi-index notation s = (s9,s3,...,8%), t = (t2,t3,...,t,) of Section 1.
With a slight abuse of notation, we define a map ( : w — (y, extended linearly in the natural way
to @(X). Then ( is a Q-algebra homomorphism which respects both shuffle products. Thus, if I is
the ideal generated by the words umv — u * v, then I C ker(. We can compute a Grobner basis for
the ideal I up to any given order using only symbolic computation. The first relation above is the
unique basis element of order 3. The second relation above is one of five basis elements of order 5.

3. Monodromy of Polylogarithms

To compute the monodromy, we use the standard keyhole contours about the two singularities
z =0 and z = 1. The monodromy is given by

MoLiygy = Liyg, + 2miLiy + - - -
M;Liyg, = Liyg, — 2miLiy + -+ - ,

where the remaining terms are linear combinations of polylogarithms coded by words of lengths
less than the length of w. For example, using the computational package Axiom, we find that

MiLigy, = Liy,, MiLig, = Liy, —2mi, MiLigg, = Ligyg, — 2meLiy,,
and so on. The generating series of the generalized polylogarithms is
L(z) = ) wliy(2),
weX*

with the convention that Lisz(2) = (log 2)" /n!. Drinfel’d’s differential equation [8, 9]

T1e) = (242 e

—L(z)= | — z

dz 1—2 ’

z

is satisfied, with boundary condition L(€) = exp(zglog€) + O(\/€) as € — 0+. It turns out that L
is a Lie exponential, and this fact can be used to obtain asymptotic expansions of the generalized
polylogarithms at z = 1.

4. Independence of Polylogarithms
Theorem 1. The functions Li,, with w € X* are C-linearly independent.

Corollary 1. The C-algebra generated by the Liy, is isomorphic to She(X). By Radford’s theorem,
the generalized polylogarithms coded by Lyndon words form an infinite transcendence basis.
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Corollary 2. Each generalized polylogarithm Li, has a unique representation as a Q-polynomial
in polylogarithms coded by Lyndon words. The classical [11, 12] polylogarithms Liy, which are coded
by the Lyndon words xlg_lxl, are algebraically independent.

Proof of Theorem 1. Given n > 0, assume that
(1) > Awliw =0, Ay €C,

w|<n

where |w| denotes the length of the word w. We prove by induction on n that A, = 0 for all w, the
case n = 0 being trivial. Rewrite (1) as

A+ D Aumoliug + Y Augy Liug, = 0.

lul<n lu|<n

Applying the operators (Mo — Id) and (Id — M7) on this latter expression, yields two new linear
relations

27 Z\u|:n—1 AuzoLliy + Z|u|<n_1 puliy =0,

271 Z\u|:n71 Augq Liy + Z|u|<n71 vuli, =0,
for certain coefficients u,, and v,. By the induction hypothesis, the coefficients Az, and Ay, with
|lu| =n — 1 all vanish (as well as the coefficients p, and v,). Consequently,

> AwLiy =0,

jw|<n—1

whence A, = 0 for all w, again by the induction hypothesis. O

Bibliography

[1] Borwein (Jonathan M.), Bradley (David M.), and Broadhurst (David J.). — Evaluations of k-fold Euler/Zagier
sums: a compendium of results for arbitrary k. Electronic Journal of Combinatorics, vol. 4, n° 2, 1997, pp. Re-
search Paper 5, 21 pp. — The Wilf Festschrift (Philadelphia, PA, 1996).

[2] Borwein (Jonathan M.), Bradley (David M.), Broadhurst (David J.), and Petr (Lisonék). — Combinatorial Aspects
of Euler Sums. — Research report n° 98-107, CECM, 1998. http://www.cecm.sfu.ca/preprints/1998pp.html.

[3] Borwein (Jonathan M.), Bradley (David M.), Broadhurst (David J.), and Petr (Lisonék). — Special val-
ues of multidimensional polylogarithms. — Research report n°98-106, CECM, 1998. Available at the URL
http://www.cecm.sfu.ca/preprints/1998pp.html.

[4] Broadhurst (D. J.), Gracey (J. A.), and Kreimer (D.). — Beyond the triangle and uniqueness relations: non-zeta
counterterms at large N from positive knots. Zeitschrift fir Physik. C. Particles and Fields, vol. 75, n° 3, 1997,
pp. 559-574.

[5] Broadhurst (D. J.) and Kreimer (D.). — Knots and numbers in ¢* theory to 7 loops and beyond. International
Journal of Modern Physics C. Computational Physics. Physical Computation, vol. 6, n° 4, 1995, pp. 519-524.

[6] Broadhurst (D. J.) and Kreimer (D.). — Association of multiple zeta values with positive knots via Feynman
diagrams up to 9 loops. Physics Letters. B, vol. 393, n° 3-4, 1997, pp. 403-412.

[7] Broadhurst (David J.). — On the enumeration of irreducible k-fold euler sums and their roles in knot theory and
field theory. Journal of Mathematical Physics, 1998. — To appear. Available as Open University Preprint.

[8] Drinfel’d (V. G.). — On the structure of quasitriangular quasi-Hopf algebras. Rossiiskaya Akademiya Nauk.
Funktsional’nyi Analiz 1 ego Prilozheniya, vol. 26, n° 1, 1992, pp. 78-80.

[9] Kassel (Christian). — Quantum groups. — Springer-Verlag, New York, 1995, Graduate Texts in Mathematics,
vol. 155, xii+531p.

[10] Le (Tu Quoc Thang) and Murakami (Jun). — Kontsevich’s integral for the Homfly polynomial and relations
between values of multiple zeta functions. Topology and its Applications, vol. 62, n° 2, 1995, pp. 193-206.

[11] Lewin (Leonard). — Polylogarithms and associated functions. — North-Holland Publishing Co., New York, 1981,
xvii+359p. With a foreword by A. J. Van der Poorten.

[12] Lewin (Leonard) (editor). — Structural properties of polylogarithms. — American Mathematical Society, Provi-
dence, RI, 1991, Mathematical Surveys and Monographs, vol. 37, xviii+412p.



44

[13] Radford (David E.). — A natural ring basis for the shuffle algebra and an application to group schemes. Journal
of Algebra, vol. 58, n° 2, 1979, pp- 432-454.

[14] Zagier (Don). — Values of zeta functions and their applications. In First European Congress of Mathematics, Vol.
II (Paris, 1992), pp. 497-512. — Birkhauser, Basel, 1994.



A Combinatorial Approach to Golomb Trees

Mordecai J. Golin
Hong Kong University

September 22, 1997

[summary by Philippe Dumas and Michele Sorial

Abstract

Given a set of weights, the problem of finding the binary-tree with minimum weighted
external path length is very well understood. It can be solved using Huffman encoding. The
problem of finding such an (infinite) tree, with minimal path-length for an infinite set of
weights, is not nearly as well studied. Twenty years ago Gallager and Van Voorhis described
such trees for the case in which the infinite set of weights is a geometric series. These trees are
now known as Golomb trees. Here, the problem is handled with a combinatorial approach.

Let F' be an alphabet equipped with a probability distribution. The problem is to encode the
alphabet into a language on the binary alphabet {0,1}, in such a way that the codeword length
mean value is minimal. Such a code is said to be optimal. For a finite alphabet, the problem is
known to be solved by Huffman encoding [3]: a tree is built in which each leaf is associated to a
(prefix-free) codeword. Hence the path-length of the tree is the codeword length.

When the alphabet is infinite, the problem is solved only for the geometric case, that is the case
when the set F' is an infinite sequence ag,ay,... and the probability of letter a; occurring in a
message is (1 — p)p® with 0 < p < 1. For example, suppose that we have a string of x’s and y’s
in which each character occurs independently of every other one, x’s occurring with probability p,
and y’s occurring with probability 1 — p. Every infinite message can be uniquely written as the
concatenation of words a; = 'y, each a; occurring with probability (1 — p)p’. The geometric case
was studied by Gallager and Van Voorhis [1], who exhibited an optimal tree. Their technique is to
construct the Huffman tree for each finite case {ag,a1,...,a,}, and take the limit in some sense
when n goes to infinity. They show that the infinite limit tree is an optimal tree.

Golin’s approach is based on combinatorial transformations of trees, which preserve optimality.
For his purpose, the important combinatorial feature of the tree is not the whole topological struc-
ture, but only its profile, that is the number of internal nodes at each level. He extends the problem
to d-ary trees. Considering the number p € ]0,1[ and the integer d > 2, there is a unique positive
integer m which satisfies

pr AP <L <p™ ™
Define oy, to be the unique positive root of equation
1l—a= ak(d_l)(l — ad),
with the particular case g = 0. Using this notation, Golin’s result can be stated in the following

way.
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Theorem 1. If ap—1 < p < quy, then there is a unique optimal tree profile: the first levels from
the root are 1,d,d?,... as long as the powers of d are smaller than m, and all the next levels are
equal to m.

If p = a,y, then there is an infinite set of optimal tree profiles. They all begin as in the previous
case, but after the transition each level is either m or m + 1.

Notice that this result extends the work of Gallager and Van Voorhis, who did not study the
uniqueness of the solution.

The key point is that the geometric character of the distribution entails that the width of an
optimal tree at each level is bounded. The proof is valid only for the geometric distribution, since
it strongly uses the fact that the shift from a level to the next one translates into a multiplication
of the weights p;’s. It does not extend to other types of distributions.
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Colouring Rules for Finite Trees
and Probabilities of Monadic Second Order Sentences

Alan R. Woods

University of Western Australia
March 10, 1998

[summary by Cyril Chabaud]

Abstract

Given a set of colouring rules applying to the vertices of any finite rooted tree, we study
the asymptotic behaviour of the probability that an n vertex tree has a given root colour.
These results will prove that the fraction of labelled or unlabelled rooted trees satisfying
any fixed monadic second-order sentence converge to limiting probabilities.

1. Introduction

Given a finite rooted tree and a set of k colours, the vertices are coloured from the leaves to the

root according to a set of colouring rules, namely a function h : N¥ — {1,2,...,k}. The colour
assigned to a vertex depends only on the number Cy,...,Cy of its immediate predecessors having
colour 1,..., k.

Ezample. Let

black if Cyiecr 1s even
white if Cyaer 1s odd

h(Chiack, Cwhite) = {

be a set of colouring rules. From the definition of h, the leaves of the following tree are coloured

black and we find its root colour is black.
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Note that the root of a finite rooted tree is black iff the number of its vertices is odd, with the set
of colouring rules defined above.

Let py,[i] be the fraction of n vertex labelled trees with root colour .

Theorem 1. Let p[i| = lim,_oopin[i] and the corresponding Cesdaro limit

N R
ali] = nh_)ngog Z,um[z].
m=1
For any set of colouring rules h, pi[i] exists for all colours i =1,...,k and either

1. afi] > 0 or
2. de > 1 such that py[i] < ¢ ™ for all sufficiently large n.

Although the existence of u[i] implies the existence of i[i] in general, the converse needs additional
conditions to be true.

2. Applications to Logic

2.1. First Order Logic. There exists an analogous result for first order sentences about a graph.
The language in which these sentences are written contains the usual quantifiers, parentheses and
connectives with an additional predicate symbol E(z,y) expressing the fact that vertex = and vertex
y are joined by an edge.

Ezample. The following expression is a first order logic sentence expressing “every vertex has de-
gree 2”:
VzIy;Jys(—y1 = yo AV2(E(z,2) & 2z =y Vz =y3)).

Fagin [3], Glebskii, Kogan, Liogon’kii and Talanov [4] have proved the following result

Proposition 1. Let p,(¢) be the fraction of n vertex graphs with property ¢. For every first order
sentence ¢ about a graph, p(p) = limy, o un(p) exists and p(p) =0 or 1.

That the only possible values are 0,1 is a consequence of the fact that graphs have no roots.

2.2. Monadic Second Order Logic. The situation for monadic second order sentences about a
rooted tree is quite different since the language provides a constant symbol R denoting the root,
and it can handle sets of vertices using second order variables.

Determining the satisfiability of a monadic second order sentence ¢ of rank r reduces to finding
the root colour of a rooted tree 7 for a particular system of colouring rules. Results arising from
Compton’s method of components [2] establish that if ¢ is a sentence of rank r, then there exists
sentences 11, ..., ¥ of rank r such that:

1. Every finite rooted tree satisfies exactly one ;;

2. Every ¢ of rank 7 is equivalent to \/,cg 9; for some set S.

If 7 is a rooted tree that has component trees 71,...,7,, that satisfy sentences v;,,...,%; , then
there exists a unique ¢ such that 7 satisfies v;, and this particular ¢ can be interpreted as the root
colour of 7. (For details see [8]).

2.3. Boolean Formulas. Assume we have M boolean variables x1,...,z3. Then the colours
turn out to be the 22 boolean functions ;. The existence of the limiting probability u[i] is stated
in the following theorem:

Theorem 2. Let uy,[i] be the fraction of formulas of size n which compute the boolean function ¥;,
ie{l,...,22"}. Then limp—oo ni] = pfi] eists and pli] > 0.
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3. Enumeration of Rooted Trees

3.1. Labelled Rooted Trees. We use generating functions methods to determine f[i] in the
labelled case. Note that a similar proof can be done for the unlabelled case.
Let T'(x) denote the generating function for labelled rooted trees:

T(z) = he+ Sz’ + g +---+n—”!
where t; is the number of ¢ vertex labelled rooted trees. Since this structure is decomposable, we
easily obtain a functional equation on T'(z) and find:

T(z) = ze @,

$n+...

Hence, using Lagrange inversion we get:
2 9 32 3 n—1
T(z)zw—kix +§:z: +--- 4+ y
The radius of convergence of this series is p = 1/e, © = p is the only singularity on the circle of

convergence, where there exists a constant h; such that T'(z) behaves like 1 + h14/p — z. One can
-3/2

ajn+_

then apply Darboux’s theorem and find that ¢,, behaves asymptotically like ¢, ~ Cp™"n

3.2. Labelled Trees with a Particular Root Colour. Let T;(x) be the generating function for
labelled trees with root colour 1,

Ti(z) ==z

3 TM(z)  T"*(x)

i T
My,..., My, My M!
(M, My )=

To find y; = T;(z) we have to solve the system:

M
s = N - - = y]‘ ' PR yk
{yz = gz(x, Yi,--- 7yk)}z€{1,...,k} where gz(xayla .- 7yk) =T MIEMk M,! M, :
h(Ml,i -,Mk)—1

4. Cesaro Probabilities
To determine probability fi[i] we use a partial converse of the following Abelian theorem:

Theorem 3. Let b(z) =) o bnz", c(z) =", oo cnx™ and p be the radius of convergence of b(x).
If lim, 00 ¢ /by, = p and En_>0 bop" diverges then:

lim ¢(x)/b(x) = p.

T—p—

Setting c¢(z) = T}(z) and b(z) = T'(x), we find that the conditions above are satisfied since
limg_,,— T"(z) = co. The result is given by the following Tauberian theorem:

Theorem 4 (Compton [1]). Let b, ~ Cn*, a > —1, b, #0 for n >0, ¢, = O(by,). If
lim c(z)/b(z) =
T—p—

where p is the radius of convergence of b(x) =), -, bnx™ then:

1 = ¢
o= lim — E M- 1b.
n—oo N bas
M=1
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Since

when x — p—, we have

k

- 9g; .. .

u[z]zg 8y.u[]] for i=1,...,k.
=1 J

Thus, the fi[i] are linearly dependent, as the following matrix relation shows:

. _r. a a

Ali] fili] B T Bye
=Qp) | : where Q(p) = | : s,

i i 9g 9g

1lk] filk] S ... gm

yielding the linear system: (Id —(p))T[a[i]---@[k]] = 0. Here Q(p) is a stochastic matrix, and
from the theory of nonnegative matrices, the rank of (Id —(p)) is k£ — 1. Consequently, the linear
system above has a unique solution satisfying p[i] + - - - + plk] = 1.

We associate with (p) its dependency digraph D. Namely, we put a directed edge from ver-
tex j to vertex 7 iff 2%(p,Ti(p),...,Te(p)) > 0. In other words, this directed edge exists iff

dy;
3AC; ---3CK(Cj; > 0 AR(Ch,...,Ck) =)

Property 1. There is a unique strong component S in D with the property that, for every colour
7, there is a directed edge in D from j to some colour in S. S s called the principal component of

D.
This property is the key point to prove the first part of theorem 1:

Theorem 5. For any system of colouring rules, fi[i] exists for all colours i. Moreover, if S is the
principal component of dependency digraph D then
Afi] >0 <=1ieS.
Proof. From the property above there exist A(z) and B(z) such that
_ A=) C(o)
Qz) = [ B(z)

and A(z) is an irreducible matrix. Matrix A(z) is indexed by S = {1,...,s} after renumbering.
Since 1 is the largest eigenvalue of A(p), from Perron-Frobenius theory (see for instance [7]) there
is a unique normalized solution mq,...,ms of

my my
| = Al
mg ms
with my > 0,...,ms > 0. Then we just show that 1 cannot be an eigenvalue of B(p) and prove
that [mq,...,ms,0,...,0] is a normalized eigenvector of 2(p). O

The colours that do not belong to the principal component S have probabilities that converge
exponentially to zero, as the following theorem shows:

Theorem 6. For any system of colouring rules, if 1+ ¢ S then there is some ¢ > 1 such that
pnli] < ¢™. (The same property holds in the unlabeled case).
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Sketch of proof. We prove that for each i such that i ¢ S, T;(z) has an analytic continuation on
the circle of convergence of T(z), meaning that the radius of convergence of T;(z), p;, is greater
than p. Since py,[i] =t /t,, this leads to desired result. For details, see [8]. O

5. Existence of pli]

We examine here a sufficient condition to ensure the existence of p[i] rather than just z[:]. The

existence of p[i] is conditioned by the presence of a unique singularity on the circle of convergence
of T;(x), indeed:

Lemma 1. Let A(x) be the irreducible block of matriz Q(zx). If det(A(x) —I) # 0 for all z # p
on the circle |x| = p then p[i] exzists for all i € S. The probabilities p[1],...,u[s] are all strictly
positive and form the unique normalized solution of

1] ©[1]

: = A(p) :
pls] pls]
Proof. See [8] O

If we look again the first example, clearly u[1] and p[2] do not exist since series Tpiacr(z) and
Twhite(z) have two singularities on the circle |z| = p.
The next theorem is a sufficient criterion on colouring rules to guarantee the convergence of y,[i]:

Theorem 7. Suppose that for each i € {1,...,k} there exists at least one pair of rules of the
following sort, namely: there exists C; > 1,...,Cy > 1 such that h(Cy,...,C; — 1,...,Cy) =
h(Cy,...,Ci,...,Cr). Then p[i] exists and p[i] > 0 for alli € S.

Sketch of proof. We prove that det(I — Q(z)) # 0 for all |z| < p except = p, and that each T;(x)
has at most z = p as a singularity on the circle |z| = p. O

6. Open Problems and Extensions

— Characterize the asymptotic behaviour of u,[i] for general systems of colouring rules;

— Assume ¢ is a monadic second order sentence. For labeled free trees, McColm [6] proved
probability p,(p) satisfied a 0-1 law;

— What happens when we distinguish multiple roots?

— Take unary functions y = f(z). If for some € > 0 and v > 0, probability p,(¢) > €/n” for
infinitely many n, is there always a simple asymptotic formula for p,(¢)?

A partial answer to this last question is that u,(¢) converges, and it has been given in the labeled
case for v = 0 by Compton and Shelah; Woods (also in the unlabeled case) [9]; Luczak and
Thoma [5].
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[summary by Julien Clément and Jean-Marie Le Bars]

Abstract

Fraissé-Ehrenfeucht games are played on two structures, where a structure might, for ex-
ample, consist of a unary function mapping a finite set into itself. Via generating series and
a Tauberian theorem, it is possible to investigate the asymptotic probability of having a
winning strategy for such a game, when it is played using a fixed structure, and a random
structure of size n, with n going to infinity. Actually for unary functions this gives a con-
vergence law for all properties of the structure which are definable in monadic second order
logic.

1. Introduction

We consider here structures A based upon a set A and finitely many relations E; of finite arity
A= <Aa El(xa y)a EZ('T)) E3(x5y7 Z)a .. ) -

A classical example is a set of vertices V' and an edge relation E(z,y) so that V = (V| E) describes
a graph. We can also think of simple structures A = (A, f) consisting of a finite set A and a unary
function mapping this set into itself (see fig. 1). This unary function induces a binary relation
F(z,y) & f(z) =y.

In order to use generating functions (see the last section) we need to translate a decomposition
property of structures to the generating functions: this will be done through the disjoint union.
Let us consider two structures

A= (AE{,...) and B= (B,EP,...).

10

15

29

28
9
FI1GURE 1. Graphical representation a structure A = ([29], f) (where the unary
function f maps {1,2,...,29} on itself).
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If AN B =0 and each EZA has the same arity as EP, the disjoint union is defined as the structure
whose domain is the union of the domains and whose relations are the unions of the corresponding
relations
AUB=(AUB,E{f UE},...).

A class of structures has components if each structure can be uniquely decomposed into disjoint
unions of structures (called component structures) from some components classes. For structures
A = ([n], f), where [n] denotes {1,...,n} and f is a unary function, one can define component
classes relative to the size of the unique loop present in each connected component of the graph
of f. From this point of view, for the structure A of figure 1, we see three components. The
first component of A consists of two component structures in the first component class (the class
corresponding to loops of size one i.e. fixed elements of f). The two other components consist in
two single component structures and are respectively in the component classes 2 and 7 (relatively
to the size of the loop).
Let us define the rank r(¢) of a formula ¢ in the context of the second order logic (or MSO logic
for short) inductively by:

1. If ¢ has no quantifiers, then r(¢) = 0;

2. If ¢ is =0, then r(p) = r(o);

3. If ¢ is obtained from 1,02 by the application of a binary propositional connective (e.g., if

¢ is 01 A 09, 01 <> 09, etc.) then r(¢) = max{r(o1),7(02)};

4. If ¢ is of the form Yvo, Jvo, VVo or 3Vo for some variable v, V, then r(¢) = r(o) + 1.
A sentence is a formula that has no free variables and is a property of a structure.
The key observation is that there are only finitely many inequivalent sentences &1, ...,&, of rank r.
Hence every structure A satisfies ezactly one of the sentences (also of rank r)

1/}1:flA"'A§m7¢2:_'SIA"'Aé-m,...,TﬁQm :—|§1/\/\—|§m

Given a rank r (and implicitly the sentences 1)1,...,19m), for each ¢ € {1,...,2™} we define
the class of structures which satisfies 10;. These classes can be viewed as equivalence classes of
Fraissé-Ehrenfeucht games.

2. Fraissé-Ehrenfeucht Games

The goal is to see whether or not we can distinguish two structures in a r moves game. The
game is played with two structures A = <A,Ef‘, . > and B = <B,Ef3, ... >
— At move ¢, SPOIL chooses A or B (let’s say B) and one of the following is satisfied
1. an element b; € B or
2. a subset B; C B.
— DUPE responds on the other structure (A here) choosing one of the following
1. an element a; € A or
2. a subset 4; C A.

DUPE wins if after 7 moves the map {a;,...} — {b;,...} taking a; — b; is an isomorphism of the
induced substructures of (A, A;,...), (B, Bj,...) on these sets. We write

A=, B < DUPE has a winning strategy.

Note that there is no ez @quo (either SPOIL or DUPE has a winning strategy). These games are
the main tools for proving the following theorems:

Theorem 1. Let us consider some structures A1, Ag, B1, By, one has
A=, B, Ay =, By = A1 U Ay =, By U Bs.
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FIGURE 2. The components classes Cy,...,C4 relative to =3 (left), the structure A
and its four components (right).

Theorem 2. For every structures A and B, one has

A=, B iff there exists i such that A= 1; and B = 1,
where the sentences 1V;’s are defined in the first section.
Corollary 1. There are only finitely many =, classes.

Another problem consists in determining the =, class of a given structure A. It is solved if we
know the number of component structures lying in each =, component class (or color if we think of
=, as a colouring). On figure 2, we have 5 component classes Ci,...,Cs relative to the =3 relation
(namely triangles, squares, cycles of odd length strictly greater than 3, cycles of even length strictly
greater than 4). The numbers of component structures in each component of the structure A are
respectively mi; = 5,m9 = 1, mg = 0, mq4 = 4.

3. Counting Structures with Components

We count either

1. the number a,, of labelled structures with n elements, or
2. the number b,, of unlabelled structures with n elements (which is, also, the number of noniso-
morphic structures with n elements).
Here we focus on counting labelled structures. So the exponential generating series
oo
a
a(z) = Z n—?x”
n=0
will prove highly useful. Indeed, for a structure A = G U H, letting a(x), h(z) and g(z) be the
corresponding exponential generating series, we write

whether G and H are in different classes or not. By induction the exponential generating series
associated to A = G ... 1 GM) the disjoint union of m structures g(l), . ,Q’(m), is

= g (z)... g™ _ 9@
o) = g0 () (@) or ()= LD,
respectively if G, ... G(™ are all from different classes or all in the same class. Hence the
generating series a(z) for structures with components in the component class C is
2 m
a@) =1+ c(e)+ D e,

2! m!
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where c(z) = Y, &a" (¢, is the number of labelled structures in the component class C with n
elements).

There is a connection with monadic second order logic due to Compton [2]. Let us consider the
component classes (relatively to =,) Cy,...,C; (so that the generating series for whole component
class is ¢(z) = 2?21 ¢i(z)). There is a unique k-tuple (mq,...,my) associated to each structure
A, where m; is the number of component structures of A lying in the i-th component class C;.
Moreover for two structures A and B (with k-tuples (mq,...,mg) and (nq,...,n%)), there is an
integer R = R(r) such that if Vi € {1,...,k} either m; = n; or m;,n; > R, then A=, B (plainly
speaking, too many component structures of the same component class prevent to distinguish
structures). Hence for a sentence ¢ of rank r, the number of labelled structures A such that A |= ¢
depends only on my,...,m; where m; € {0,1,..., R — 1,00} is the number of components in C;
(0o means anything equal to at least R = R(r)). Considering the exponential generating series
ay(z) = > aj;/n! where af; the number of labelled structures with n elements satisfying ¢, we can
write

_ a@)™ @)™
ap(@)= Y, ST
(m1,...,mp)ES
where S is finite and c¢;(x)*°/oo! denotes Y o0_p ¢i(x)™/m! = e%i(®) — Zﬁ;% ¢i(z)™/m!. The series
ay(x) is a finite sum of very similar terms. It is enough just to consider a series of the form

ci(x)™ ce(x)™
ap(T) = i )| al )' ect+1(@) . gen(@)
mi. M.
This formula means that a structure A satisfying ¢ has exactly m; components in the class
for i € {1,...,t} and any number of components in the other classes. We want to know aj, or

equivalently p,(¢) = af /a,, the fraction of structures of size n satisfying ¢. We are also interested
in the asymptotic probability p, = lim,_ . pn(p), when this limit exists.

It is Compton’s idea to use partial converses Tauberian lemmas to get limit laws for p,. Here is a
sample theorem whose proof is based on such lemmas.

Theorem 3. For any class with components, if ap/n! ~ C7"/n® and c,/n! = O("/n) (with
a > —1) then p(p) = lim, .00 pn(p) exists for all MSO sentences ¢ and is equal to ay(p)/a(p).

Due to known results about a,, and ¢, for structures with one unary function, we have also

Corollary 2. The asymptotic probability p, always exists with one unary function.
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Abstract

This talk addresses the random graph model originally introduced by Erd&s et Rényi in
1959. This model gives rise to a large number of threshold phenomena that are evocative
of phase transitions in statistical physics. The talk illustrates the way several results on
random graphs can be reexamined in a new perspective provided by a simple model of
statistical physics, the Potts model. The problem addressed is principally that of the size
of the giant component for which quantitative estimates are derived.

More generally, the talk is motivated by a desire to understand what statistical physics
models may bring to the realm of threshold problems, not only in random graphs but also
in the satisfiability of random boolean formulze.

1. The Random Graph Models

The most natural random graph models have been introduced by Erdos and Rényi in a series

of eventually famous papers that starts with [5, 6]. They are denoted by G, , and @n’e and are
defined as follow:

— G, p considers graphs with n vertices in which each of the N = (g) possible edges is present
with probability p;
— én,e considers all graphs with n vertices and e edges as equally likely.
The first model is of the Bernoulli type (there are N trials, each with independent probability p
of success), the second one is more “combinatorial”’. Given the fact that the Bernoulli distribution
B(N,p) is narrowly centered around its mean Np, we expect the following fact.

The characteristics of Gy, Tesemble those of @n,e provided e = Np.
We refer globally to Bollobds’s book [4] for a discussion of these rich models and for precise condi-
tions that make the assertion above into a valid mathematical statement. (The transfer from @n’e
to Gnp is an Abelian one, whereas the converse transfer has a Tauberian flavour.)

Imagine a graph as evolving in time from totally disconnected to complete, through successive
additions of edges that are reflected by increasing values of p from 0 to 1. What is characteristic
of Gy, p (and thus, of the companion @n,e model) is the presence of sharp thresholds. A threshold
phenomenon for a property P means that there is a function pg(n) such that, with (very) high
probability (as n — oco), P does not hold when p < pg(n) while for p > po(n), P holds. (Of course,
one may look for all sorts of detailed informations near the threshold py(n).)

Here is a simplified picture of what goes on in G, ,, expressed in terms of the mean number of

edges, m = Np. Only isolated vertices and edges will be present when m < n'/2; but trees of size 3
57
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will start appearing at m & n!/2, trees of size 4 at m = n*/3, etc. There is (almost surely) no cycle
when m < n. Later when m = An/2 and A < 1 there is at most one cycle in each component and
the largest component almost surely has size ©(logn). A dramatic phase transition occurs near
m = n/2 when one or several large components of size n?/3 appear. Still later, when m = An /2
and A > 1, we find a single “giant” component of size ©(n). However, we’ll have to wait a little
longer, namely till m = %n log n, to attain full connectedness, at which point the graph ceases to
be interesting for the problems under discussion here.

There are various approaches to these problems. Most of them, following Erdés and Rényi’s
original papers [5, 6], are probabilistic and well explained in [4]. Roughly, one has to cope in this
framework with random variables satisfying intricate dependencies; moment methods, tail inequal-
ities, or probabilistic inequalities are then essential. The literature in this direction is immense and
Bollobas’s book already includes more than 700 references. The best results relative to connect-
edness that are available at this time (formulated in terms of é\n’e) are probably those of Bender,
Canfield, and McKay; see [1, 2, 3]. In contrast, only a handful of papers starting with Knuth,
Pittel, and collaborators resort to analytic methods!; see [7, 9]. Even fewer papers rely on methods
from statistical physics. The work under discussion here is a pioneering attack on this range of
hard problems; see [10, 11] for applications of related ideas to the random k-satisfiability problem.

2. The Potts Model

The Potts model of statistical physics considers particles or sites whose states (sometimes referred
to as “colours”) may assume any of ¢ values. In the particular case of random graphs, it instantiates
as follows. Consider n sites that we may imagine as regularly spaced on a circle. Each site may be

in a certain state that is an integer of {0,1,...,¢ — 1}. The integer ¢ is a parameter of the model
and when ¢ = 2, one can think of the states as “spins” representing the orientation of some vector,
e.g., a magnetic moment. A configuration ¥ = (01,...,0,) is an assignment of states to each site,

so that there are ¢" possible configurations. The energy of a configuration is defined as

E(X) = —% Y Loio;
i<j
where 1;, is the indicator of z = y that has value 1 if z = y holds and 0 otherwise. There v is
a parameter; the fact that one takes all the N = n(n — 1)/2 combinations ¢ < j corresponds to a
model with complete interactions, that is, the underlying graph is the complete graph. (Models of
statistical physics often consider instead an underlying graph constrained to be a regular lattice in
dimension 1, 2, or 3.)
An essential object of statistical physics is the partition function defined here as

2

which is thus a sum of ¢" terms. There are two main points in the talk: (¢) the function Z
provides information on the random graph model; (i7) it is possible to estimate analytically various
characteristics of Z.

1 As said by Frieze in his discussion of the paper by Janson, Knuth, Luczak, and Pittel [9] in the Mathematical
Reviews [MR94h:05070]: “The paper [9] and its predecessor [7] mark the entry of generating functions into the
general theory of random graphs in a significant way. Previously, their use had mainly been restricted to the study
of random trees and mappings. However, at the early stages of the evolution of a random graph we find that it is
usually not too far from being a forest, and this allows generating functions an entry.”
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3. The Partition Function and Random Graphs

First of all, the partition function is (almost) a counting generating function in disguise. One

has
Y
2w = 3 [T ew (F1ees) = LT (1+ 10 (" = 1),
¥ o<y Y o<y
as results from the identity 1? = 1. Next,

(1) Zrm) =~ 3 ] (1 i %101.,%.))

Y i<j
» ¥ ()
G

The first line (1) is a natural approximation for n large. In the second line (2), ¢(G) is the number
of edges of the graph G, ¢(G) the number of its connected components, and the sum is over all
graphs G with n vertices. The reason why (2) is true is that the general term of the sum involves
a product over all possible edges, and a product like us, 5,Ug, o5 has value 1 only if 01,09, 03 are
of the same colour, in which case there are altogether ¢ degrees of freedom.

Now, a graph G with n vertices and e edges has probability

. ry € fy N—e¢
P@=(3) (0-3)
in the model Gy, p, where p = v/n and, like before, N = n(n — 1)/2. Then, equation (2) yields the
approximate formula,

(3) Z(y,n) = 2y P (GQ)g!9D.
G

(These approximations are stated here without error terms but it is not hard to assign them
sufficient validity conditions.)

4. The Potts Model and the Process of “Analytic Continuation”

In order to approach the number of connected components, we return to the definition of the
partition function and aim at transforming its expression. The energy, F(X) depends on n variables,
but only through their ¢ possible values, with g the parameter of the Potts model. Indeed, for
o € {0,...,q — 1}, define the occupancy variables,

1 n
XJ(Z) = E Z 10i,05
=1

that describe how many times each value of {0,...,q — 1} is used by a configuration. One finds
easily that

q—1
AL
o=0
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(The term ~/2 is ignored in subsequent computations.) Now, grouping states according to the
values of their occupancy vectors { X, } yields

qg—1
n an E 2
Z(vy,n) ~ Tyt
(v,n) Z (TLXO,---aan_1> P ( 2 = U> ’

{Xo}

where the X, are such that ) X, = 1 and the X, go by steps of % (The original derivation
of Monasson makes use of manipulations with indicator variables that are related to the theory
of “replicas”.) Then, Stirling’s formula employed to approximate the factorials present in the
multinomial coefficient produces

(4) Z(v,mn) = Z exp (—n (ZX” log X, + g ZXg)) .

{Xo}

The form (4) is indeed a g-fold sum and the original n-fold summations and products have been
eliminated.
The next step consists in evaluating what happens with the approximation (4) taken as

(5) Z(y,n) = Y exp(—nG({X,})).

{Xo}

The idea is to estimate the sum by means of the g-dimensional Laplace method, which requires
locating the global extrema of the exponential. It is observed that local extrema at least are obtained
by trying

(6) Xo=2(14(g-1)s), Xi=-=Xg1=—-(1—5).
q q

Then, the argument of the exponential in (4) is locally maximized if one fixes s as a root of

(1) log (w) ~ s,

1—s

It is believed that all global extrema are obtained in this way, up to permutation of indices. Under
this assumption, the Laplace method can then be applied to approximate Z(y,n) as

(8) Z(7y,n) = e @),

where F' is essentially G({X,}) of (5) evaluated at the X, given by (6) in terms of g,s, where
s = s(vy) satisfies the condition (7).

We now dive into a more conjectural world based on a special kind of formal reasoning The
principle of the heuristic analysis consists in extrapolating the asymptotic approximation of the
partition function that is defined a priori for integer values of ¢ only and make it an analytic
function of g. Then, let ¢ tend to 1 and hope for consistency. Once this is done, various results
that can be checked successfully against known ones (via analytic or probabilistic methods) are
obtained.

Let us postulate the validity of (8) for all real ¢, and in particular for ¢ near 1.Within this
is for instance

framework, the mean number of connected components of a random graph of G, ,/r,
accessible as ({(X) denotes expectation):

d
Q (@) = Lrogz(rv.m)|

q q:l
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where real values ¢ — 1 are used. For the region of interest which is thus ¢ near 1, equation (7)
becomes 1 — s = ¢7°. This equation defines s as a function of 7, s = s(y). The parameter s(v) is in
fact an indicator of the fraction of sites in the largest connected component of the random graph.
There is a bifurcation at s = 1. The function s(vy) is identically 0 when v < 1, a fact consistent with
known properties of the random graph before the emergence of the giant component. At s = 17, the
function s(vy) has a square-root singularity, while it becomes analytic for s > 1. Thus informations
about the giant component and its “phase transition” become amenable to this approach (details
omitted in this abstract).

5. Discussion

A summary of the methodology is as follows. For a given problem, there are a priori two
“partition functions”,

Zcomb = ZP(G)QC(G)a thys = ZeiE(E)-
G b

The process is then as follows.

1. Choose the configuration space and energy function so that Z.omp, = Zphys-

2. Evaluate Zpnys by: (4) identifying the order parameters (the X;); (¢7) determining asymptotic
approximations (here by the Laplace method); (iii) performing an analytic “continuation”
according to the chain “(q integer) — (g real) — (¢ — 1)”.

The major question to ask is why and to what extent does this approach provide useful quan-
titative result. Certainly, the approximations for fixed integer g can be justified. Also there is a
possibility of matching the analysis near ¢ = 1 against what we know from analytic approaches.
(For instance, it is known that the emergence of the giant component is related in an essential way
to the occurrence of two coalescing saddle points.) So, in a way, the most surprising fact to be
explained is that estimates initially conducted for integer ¢ only (we used a g-dimensional Laplace
method!) can be “analytically continued” to the region of ¢ near 1.

We observe that complex analysis does sometimes provide a framework for such analytic continu-
ation. For instance, a theorem of Carlson asserts that when a function ¢(s) is analytic (holomorphic)
in a right-hand half-plane and is of moderate growth, ¢(s) = O(e™)'*|), then: ¢(s) vanishes iden-
tically if and only if it vanishes at the nonnegative integers. Therefore, an identity A(s) = B(s)
can be inferred just from its specialization at the integers? provided it is known a priori that A, B
don’t grow to fast. For instance, it suffices to establish

sin2 =~ + cos? o1
4 4 ’
for s = 0,1,..., in order to be sure that it holds for all complex s. Observations of this kind
however fall short of providing a basis for the analytic continuation process employed here, given
the intricate nature of the approximations involved.
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The satisfaction of constrained formulae is a key issue in complexity theory. Many computational
problems are shown to be NP-complete through a polynomial mapping onto the K-Satisfiability
(SAT) problem. Recently, there has been much interest in a random version of the K-SAT problem
defined as follows. Consider N Boolean variables z;, 2 = 1,..., N. Call clause C the logical OR of K
randomly chosen variables, each of them being negated or left unchanged with equal probabilities.
Then repeat this process by drawing independently M random clauses Cy, £ = 1,..., M. The
logical AND of all clauses, F, is said to be satisfiable if there exists a logical assignment to the z’s
evaluating F to true, unsatisfiable otherwise.

Numerical experiments have concentrated upon the study of the probability Py(a, K) that a
given F including M = aN clauses be satisfiable. For large sizes of N, there appears a remarkable
behaviour: P seems to reach unity for @ < a(K) and vanishes for o > a.(K) [6]. Such an abrupt
threshold behaviour, separating a SAT phase from an UNSAT one, has indeed been rigourously
confirmed for 2-SAT, which is in P, with «.(2) = 1 [2, 5]. For larger K > 3, K-SAT is in NP
and much less is known. The existence of a sharp transition has not been proven yet but precise
estimates of the thresholds have been found: a.(3) ~ 4.25. Moreover, some lower and upper bounds
to a.(3) (if it exists), agp. = 3.003 and v, = 4.64 respectively have been established [4, 3].

The classical approaches to study the SAT phenomenon threshold are both combinatorial and
probabilistic. A statistical physics approach was used in [8, 9]. Such an approach allows properties
to be predicted. It has been applied already to random graphs and it has led to large deviation
results for the threshold phenomenon of random graphs in addition to previously known results.
This approach seems therefore to be powerful. However it proves much harder to apply to the
SAT threshold phenomenon. It yields in particular a surprising change concerning the proportion
of variables fixed in the neighbourhood of the threshold between 2-SAT and 3-SAT. This could
partly account for the complexity gap between these two problems. In order to apply the statistical
physics approach, the following steps were carried out.

First, the energy function corresponding to the K-SAT problem is identified. The logical values
of the z’s can be represented by N binary variables S;’s, called spins, through the one-to-one
mapping S; = —1 (respectively +1) if z; is false (resp. true). We then encode the random clauses
into a M x N matrix Cy; in the following way: Cy; = —1 (respectively +1) if the clause Cy includes
Z; (resp. z;), Cp = 0 otherwise. Consider now the cost-function E[C,S] defined as the number
of clauses that are not satisfied by the logical assignment corresponding to configuration S. The
minimum E[C]| of E[C,S], that is, the lowest number of violated clauses that can be achieved by
the best possible logical assignment [8, 9], is a random variable which becomes totally concentrated
around its mean value < E[C] > in the large size limit [1]. The latter is accessible through the
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knowledge of the averaged logarithm of the generating function

1) 2[C) = 3 exp (—E[C,S]/T)
S

< E[C] »= T <« log Z|C] > +0(T?)

when the auxiliary parameter T is eventually sent to zero. Being the minimal number of violated
clauses, < E[C] > equals zero in the SAT region and is positive in the UNSAT phase, allowing
the location of a.(K).

The calculation of the average value of the logarithm of Z in (1) is an awkward one. To circumvent
this difficulty, we compute the nth moment of Z for integer-valued n and perform an analytical
continuation to real n in order to exploit the identity

<L Z[C]" »>=1+n < log Z[C] > +0(n?).

The nth moment of Z is obtained by replicating n times the sum over the spin configuration S and
averaging over the clause distribution [8]

(2) LZICI">»= Y <exp (—ZE[C,S“]/T) > .
S1,82,..8" a=1

It is crucial to notice that the averaged term in (2) depends on the n x N spin replicas only through
the 2™ occupation fractions ¢(o) labelled by the vectors o with n binary components; ¢(o) equals
the number (divided by N) of labels ¢ such that S = 0%, Va = 1,...,n. Taking into account the
combinatorial entropy of the labels ¢ at fixed occupation fractions,

L Z[C]" >~ exp(N Fpaz)

where Fp,q, is the maximum over all possible zs of the functional [8]

n K
(3) Fl{c}]=- Z c(o)log c(o) + alog Z c(o1) - c(ok)exp <—% Z Z Olog + 1])

a=1 ¢=1

a 01,..4,0K

The optimisation conditions over F'[{c}]| provide 2" coupled equations for the cs. Notice that F' is a
symmetric functional, that is, invariant under any permutation of the replicas a. A maximum may
thus be sought in the so-called replica symmetric (RS) subspace of dimension n + 1 where ¢(0) is
left unchanged under the action of the symmetric group. Within the RS subspace, the occupation
fractions may be conveniently expressed as the moments of a probability distribution P(m) over
the range —1 < m < 1 [8]. Once the number of replicas n is sent to zero, we obtain a self-consistent
functional equation for the order parameter P(m) that can be solved numerically.

What is the meaning of the distribution P(m)? Consider a formula F and all the spin config-
urations S7, j = 1,..., A attaining the minimum E[C] of the cost-function E[C,S]. Define then
the average Boolean magnetisations of the spins

1
(4) my ::Kf;égéga

over the set of optimal configurations. Call H(C,m) the histogram of the m;s and H(m) the
average of H(C,m) over the choices of the formulae . H(m) is a probability distribution over the
interval —1 < m < 1 giving information about the resulting constraints on the variables induced by
the clauses. It has been shown that, if the RS solution is the global maximum of (3) (and not only
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a local one), H(m) equals the above mentioned P(m) in the limit of large sizes N — oo. Therefore,
the order parameter arising in the replica calculation reflects the “microscopic” structure of the
solutions of the K-SAT problem.

Of particular interest are the fully fixed variables, that is the xz;’s such that m; = +1. In the
following, the fraction of fully constrained variables will be denoted by v(«, K). Clearly, v(a, K)
vanishes in the SAT region otherwise the addition of a new clause to F would lead to a contradiction
with a finite probability. Two kinds of scenarii arise when entering the UNSAT phase. For 2-SAT,
v(e, 2) smoothly increases above the threshold a.(2) = 1. For 3-SAT (and more generally K > 3),
v(a, 3) exhibits a discontinuous jump to a finite value 7, ~ 0.9 slightly above the threshold. While
ac(2) =1 is correctly found, the RS prediction for a.(3) = 4.6 exceeds the experimental estimates
by 10%. Work is currently under progress to refine the above calculation and enlarge the subspace
where the global maximum is sought in.

Qualitatively speaking, however, we expect the main conclusion of this work to be correct: the
SAT/UNSAT transition is accompanied by a smooth (respectively abrupt) change in the structure of
the solutions of the 2-SAT (resp. 3-SAT) problem. Furthermore, we conjecture that this discrepancy
is responsible for the difference of typical complexities of both models recently observed in numerical
studies [10]. The typical solving time of search algorithms displays an easy-hard-easy pattern as
a function of @ with a peak of complexity close to the threshold. The peak time seems to scale
polynomially with N for the 2-SAT problem and exponentially with NV in the 3-SAT case. From an
intuitive point of view, the search for solutions ought to be more time-consuming in the presence
of a finite fraction of fixed variables since the exact determination of the latter necessarily requires
an exhaustive enumeration of the variables. To test this conjecture, a mixed 2 4+ p-model has been
introduced; it includes a fraction p (resp. 1 — p) of clauses of length two (resp. three) and thus
interpolates between the 2-SAT (p = 0) and 3-SAT (p = 1) problems. The RS theory predicts that
the SAT/UNSAT transition becomes abrupt when p > pg = 0.41. Precise numerical simulations
support the conjecture that the polynomial/exponential crossover occurs at the same critical po.
An additional argument in favour of this conclusion is provided by the analysis of the finite-size
effects on Py(a, K) and the emergence of some universality for p < pg. A detailed account of these
findings may be found in [7].
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Abstract

Many combinatorial identities can be formulated in terms of g-hypergeometric sums, for in-
stance, the celebrated Rogers-Ramanujan identities from additive number theory. Identities
of this type can be constructed iteratively from simpler ones, i.e., by proceeding along Bailey
chains. Another construction mechanism, different from this classical one, arises within the
context of ¢-WZ-theory. For instance, as a by-product of computer proofs, one automat-
ically obtains the so-called “dual” identities. The talk gives a short tutorial introduction
and discusses various relations between these concepts.

The talk consists of four parts. The first part is an introduction to Gaussian polynomials. The
second part is a brief account of ¢-hypergeometric WZ theory. The parts that follow are variations

on this theme.

1. Gaussian polynomials

Let p(m,n; k) denote the number of partitions of k£ in at most m parts, each part < n. Clearly,

p(m,n;k) =0, if k> mn,

p(m,n;mn) = 1.

Therefore the generating function G, () = Y pe p(m, n; k)q" is a polynomial in g of degree mn.

A few particular instances are:

1— qm+1
Gm,O(Q) = 17 GO,n(Q) = 1) Gm,n(Q) = Gn,m(q)7 Gm,l(q) = 1-— q

Gus(q) =1+q+ 2¢% +3¢% + 4¢* + 4¢° + 5¢° + 4q7 +4¢® 4+ 3¢” + 2¢"° + ¢ + ¢'2.

)

From the decomposition
follows that

(1) Gmn(9) = ¢"Gm-1,4(9) + Gmn—1(9)-
By symmetry, we also have:
(2) Gmn(9) = Gm-1,n(9) + 4" Gmn-1(9)-

So, by elimination between (1) and (2):
1— m-+n
Gmn(q) = 1_(17(1,1

Gm,mfl(q) — (1 — q'm+n) - (1 _ qm+1)

69 (1—q®)---(1—9q) Gm,0(q)-
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Using the standard notation (a;¢)r = (1 —a)(1 —aq)---(1 —ag*™1), k =1,2,... and (a;q) =
1/(a;q)—x for k < 0, we get a closed form representation of the Gaussian polynomials Gy, p:

) ] = () = L= (L =a™ ) (G 0)man

n

[m—l—n
(1-¢")--(1-9 (¢ Dm (6 Dn’

2. Some facts about ¢-hypergeometric WZ theory

Definition 1. A sequence (ty) is hypergeometric if the ratio of two consecutive terms is a rational
function of the summation index k: tx11/ty = P(k)/Q(k), where P and Q are polynomials in k.

Definition 2. A sequence (tx) is g-hypergeometric if the ratio of two consecutive terms is a rational
function of ¢*: tx11/tx = P(¢*)/Q(¢*), where P and Q are polynomials in ¢*. (Note that ¢ should
be contained in the coefficient field which should be of characteristic 0.)

2.1. From Gosper to Zeilberger. Gosper’s algorithm for indefinite hypergeometric summa-
tion [3] is given as input a hypergeometric sequence (f;). This algorithm finds a hypergeometric
sequence (gi) such that fx = ggi1 — gr (then gy is the product of fi and a rational function in k).
From there by telescoping one gets:

n
> e = gnt1 — g0-
k=0
Zeilberger’s algorithm computes definite hypergeometric sums. Given a proper hypergeometric
sequence (F}, ) (with finite support in k), this algorithm finds a hypergeometric sequence (Sj) such

that
Z Fp i = Sn.
k

The idea is to use an extension of Gosper’s algorithm in order to find polynomials aj(n) and a
proper hypergeometric term (G, 1) such that

aj(n)Fryjk = Gnis1 — G-

J
J=0
Then G, 1 is necessarily of the form R(n, k)F, » where R is a rational function called the “certifi-
cate”. Summing this equality yields the desired recurrence on S,;:

J

Z a;j(n)Spyj =0.

j=0
This algorithm has been implemented in Mathematica by P. Paule and M. Schorn:

Ezample. In[1]:= <<zb_alg.m

Fast Zeilberger by Peter Paule and Markus Schorn. (V 2.2)
Systembreaker = ENullspace

In[2]:= Zb[Binomialln,k] x"k, k, n, 1]

Out[2]= {(1 + x) F[k, n] - F[k, 1 + n] == Deltalk, R F[k, nll}
In[3]:= Show[R]
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Both these algorithms extend to the g-case, a corresponding implementation in Mathematica is
due to A. Riese.

2.2. Example. A variation of a g-analogue of Gosper’s and Zeilberger’s algorithms can serve in
finding g-analogues of binomial identities. For instance, in order to derive a g-analogue of the
binomial theorem, the question is to find «,8 € Z such that the following sequence satisfies a
recurrence of order one:

Sn(q) = kzn::o m ok qo(5)+6k,

Riese’s Mathematica package qZeil automatically determines the candidates o € {1}, 8 € Z.
Indeed, choosing @« =1 and 8 = 0:

In[3]:= <<qZeil.m
Out [3]= Axel Riese’s q-Zeilberger implementation version 1.8 loaded

In[4]:= qZeill[ gBinomial[n,k,q] x"k q"Binomiall[k,2], {k,0,n}, n, 1]
-1 +n
Out[4]= SUM[n] == -((-1 - q x) SUM[-1 + n])

So, we obtain the g-binomial theorem in one of its standard forms:

n k
> (o] #4® =4t a) (14,
k=0

2.3. WZ duality. Given a hypergeometric sequence (fy ), assume that Zeilberger’s algorithm
finds a1, a2 and g, such that:

ar(n) fnyik +a2(n) fak = gnkr1 — Gnk-

Then, in case of finite support:
a1(n)Sp+1 + a2(n)S, = 0.

By using this in the form ay(n)/S,+1 = —a1(n)/Sy, we rewrite the relation above as:

a1(n) fat1e  a2(n) fok _ Gkl — Gnk

Sn Sn—l—l Sn—|—1 Sn Sn—|—15n
Defining Fy, p = fn k/Sn, and Gy = gni/(a1(n)Sp41), we arrive at:
(4) Fn—|—1,k - Fn,k = Gn,k+1 - Gn,k-

This gives rise to the following definition:
Definition 3. A pair of sequences (F, G) that satisfy (4) is called a “WZ pair”.
Note that given such a WZ-pair (F' having finite support), from (4) follows that >, Fi, 1% —
> & Fnx =0, which means that the corresponding sum sequence S, := >, F(n, k) is a constant.
3. A Fibonacci g-analogue

The well-known Fibonacci numbers are defined by Fy = 1,F} =1 and F,, 19 = F,+1 + F},. Does
there exist a g-analogue of these numbers? In order to follow the strategy explained above (example
2.2), we take as a starting point the following well-known hypergeometric sum:

k=0
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For the («, 8)-Ansatz, we take:

Fulg) = ki [” v k} o (o) +0%,

0
and we want to determine «, 3 € Z such that (F,,(q)) satisfies a linear recurrence of order 2. Riese’s
implementation delivers as candidates: « € {1,2,3} and 8 € Z, but only the choice @ = 2 is
successful. This means, only for & = 2, the g-analogue of Zeilberger’s algorithm delivers (V3 € Z)
a recurrence of order 2, namely:

(5) Foi2(q) = Fara(9) + " P Fu(g).
Let us fix (for instance) 8 = 1, and we obtain for this choice:

Fo(q) = Xn: [n © k} ¢~

k=0

In the limit n — oo:

[e o] qu o0 o0 1
6 Fx(q) = =1+ byg" = ;
) 0= 2 gy = 20 = =

where b, is the number of partitions of n into parts with minimal difference two and the right-hand
side is one of the celebrated Rogers-Ramanujan identities [1].

Starting from (5), it is also possible to conjecture and then prove (by g-Zeilberger) the following
identity due to I. Schur

_ k(10k+1 2n 2%k—1)(5k—2 2n

4. The Bailey chain approach

Proposition 1.

n

2 42
@ (G Dk (G Dtk

= (@ Dn—j (659)j-#(4 0)j+x

=1.

(7)

Proof. Denote by f, ; the summand. Riese’s implementation yields:

(¢ — ¢")

This (¢)WZ-pair implies that the sum over f, ; is constant. That this constant is 1 follows from
instance from the evaluation for n =k [1, 4]. O

This identity is a special case of a g-hypergeometric formula that can be proved combinatorially as
explained in [4].
Multiplying (7) by an arbitrary sequence (ci), we obtain the following special case of “Bailey’s
Lemma”:
-2 7]62

(8) Z Ck _ Z ¢’ Z Crq

7 (@G Dnr(GDnre 55 (G Dn5 5 (601G Djr
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Definition 4. Two sequences ((G)keZ, (b)nen) are called a Bailey-pair when

=2

k n k Q; Q)n—i—k

k
Now, let’s walk in a “Bailey-chain” (using proposition 1) starting with: a; = q(z)(—l)k and by,
as above. Using qZeil, we get:

bo=Y" g(2)zk =z Qn(—q/z5q)n
n = - . - -
(6 Dk (G Dt (¢59)2n
Note that in the limit n — oo, this turns into Jacobi’s triple product identity:
J

3 g)at H 1-)1+d o+ 1.
k 7=1

From there (6) follows when substituting ¢ by ¢° and z by —¢?.
Now, with ¢ = quak and z = —1, (8) yields an identity due to Rogers:

(— 1)kqgk -1k 1
21 "o

G Dn—k(G Dtk (Gn

which can be found by the g-Zeilberger algorithm after “creative symmetrizing” (i.e., multiplying
the summand by 1 4 ¢* in this example).

The second step in the Bailey chain approach uses ¢y = qZkzak. This gives:
( 1)k 5k2_lk -2

q> _ ¢
zk: (@ Db (@ Dt ; (a:9) '

n—j(4;9);

In the limit n — oo and by Jacobi’s triple product identity, this gives again (6). The third step of
the Bailey chain gives:

2

resulting when n — oo in an identity due to B. Gordon

( 1)k 7k271k '2 2

q° _
% o

J
G Dn—k(G Dtk % On—j lz: 0)j-1(g; a)’

1 [e o] oo q(J+l)2+l2
1— n+3 1— 7n+4 7n—|—7
(4 9)oo nl;[O( 7N - 2:: (g0)i(g0)0

whose first automatic proof was given by Chyzak [2].
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The C-algebra C{z}[o4] of (linear analytic) ¢-difference operators is the algebra of polynomials
in 0, where o,z = gqzo, and where the coefficients are taken in the algebra C{z} of convergent
power series at = 0 in C. The elementary operator o, acts on = by multiplication by the number
q and we make it act on functions of z by o4f(z) = f(qx). The theory is very different depending
on whether |g| is smaller, equal or greater than 1. We deal here with the case when |g| > 1 and,
for simplicity, we assume that ¢ is a real number.

Like differential equations, g-difference equations may have divergent power series solutions and
the aim is to develop a theory of summability for such series like it has been done by Martinet-
Ramis and Ecalle for solutions of differential equations. A theory of summability means having a
rule to change in a unique well-defined way a series solution into an actual solution.

The similarity with differential equations is very strong. However new concepts had to be devel-
oped and new phenomena occur.

1. Jacobi equation

The simplest non trivial example is given by the Theta series
@(1.) — Z qn(n—l)/QIn’
n>0

solution of the Jacobi ¢-difference equation
(J) zy(gz) — y(z) = 1.
The O series can be viewed as an analog of the Euler series
Z(—l)"n!x"+1
n>0
solution of the Euler equation
xzy' +vy=x.
The function

y(x) — q—%(long—l)logqm’

solution of the homogeneous g-difference equation zy(gz)—y(z) = 0, is the analog of the exponential
function exp(1/z), solution of the homogeneous differential equation z?y’ 4+ = 0 and it plays with
respect to (J) a like role. Notice however that the series © is more divergent than the series

solutions of linear differential equations which are known to be of Gevrey type.
75
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Letting
y= Zq—%(logq;c—l)long

changes (J) into the equation

z(qz) — z(z) = —q%(l"ng—l)lquz
and, letting then « = ¢* and u(t) = z(z), into the equation
) w(t+1) —u(t) = _q%(t—l)t_

This latter equation is a linear difference equation the second member of which has an essential
singularity at infinity. However the Fourier method can be used to solve it as follows.
Denote by

1 a-+i00 +oo+ib
Flut)(r) = — / w(t)etdt  and  F(p(r)(t) = / o(r)emdr
227r a—100 —oo+1b
the Fourier and the inverse Fourier transform. Assume that a solution u(t) of (A) is left invariant
by successive application of F and F~!. Using the identity F(u(t + 1))(7) = " F(u(t))(r) we get

]_ q_%(%—i—lo‘;q)z

Fu®)(r) = et

and then solutions of (A) in the form

]_ /+OO+29q q_%(%—f_lo;q)z
V2mlogq J_ootin, 1—e”

There correspond the following solutions of (J) defined on all of the Riemann surface of log:

ug(t) eTtdr.

. q_1/8 —%(logq%—l)logq% 1
() \/27T10gq/d6q a-o%

the integral being taken on the half line dy starting from 0 to infinity with angular direction
# = 641og g provided that 6 # 0 mod 2w. When 6 varies between two successive forbidden values
2k and 2(k 4+ 1)7 the corresponding yg(z) are equal. When 6 is taken in different such intervals
they are equal up to a multiplicative g-constant (a g-constant is a constant in the algebra C{z}[o,],
i.e., a function C(z) satisfying C(qz) = C(z)). Thus we can concentrate on one of them. We
choose 0 €]0, 27| and denote by fo the corresponding yg solution. Such a solution can be taken as
a model for g-sums of ¢g-Borel-Laplace summable series.

We emphasize its main property. Writing, for all £ # 1, the identity 1/(1 — &) = an_zlo &M+
£"/(1 = ¢) yields the equality

-1/8 2 = n—1
q q—%(long—l)long £ dé

n—1
z) = m(mfl)/me _r
fo(x) mz_joq * arond E(1-¢)

and then the inequality

n—1
fola) = 3 gDl

m=0

n(n—1 —3
< Cyq (2 )+%argg(ze 9)|$|n

where Cp is the constant Cyp = max(1,1/|sin6|) and arg, = @ arg. Note that the constant Cy is

locally uniform in 6. Such a condition can be taken as a model for fy to be the g-sum of level 1 of
its Taylor series ) <, gmm=1)/2m
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We will see that, in all generality, g-Borel-Laplace summable series and ¢g-summable series of
level 1 are the same series.

2. g-Borel-Laplace summability or g-summability of level 1

Translating the Fourier and inverse Fourier transforms in terms of the variables z = ¢* and £ = ¢”
yields the g-Borel and g-Laplace transforms
_,L'ql/8

/27 log q z|=p

%(logq % —1)log, % f(m) d_x

Bq(£)(¢)

—1/8 —Lllog Z_1)log. Z d
L4 (o)) = 2 g B0 EDlog,¥ o) %

- V2mlogq Jg, £’
where p > 0 is chosen small enough for f(z) to exist. The formal analog of Bq is given by
= ny _ an€"
Bq(z anz") = Z P TEN
n>0 n>0
Definition 1. A series ), -, an,z" is a ¢-Borel-Laplace summable series for the direction 6 if it
can be applied a ¢-Borel and g-Laplace transform relative to the direction § and close directions.

The Theta series is the typical example of a g-Borel-Laplace summable series.

Definition 2. — A series ano anz™ is of g-Gevrey type (of level 1) if it satisfies a growth
condition |a,| < Kq“n=1/2 A" for all n and suitable constants K and A.

~

— A function f is g-asymptotic of level 1 to a series f(z) =), ~,anaz™ for the direction 6 if, for
suitable constants Ky > 0 and Ay > 0, the inequality -

n—1

flz) — Z Az

m=0

< Keq%(nz-l—argq(we_ie))Ag|l_|n

(*0)

holds for all n and small enough = on the Riemann surface of Log.

The Jacobi function fy is g-asymptotic to the Theta series for all directions but the directions
6 = 0 mod 2.

A g-asymptotic expansion is also an asymptotic expansion in the usual Poincaré sense. Hence, if
it exists, it is unique and can be called the Taylor series of the function. There exist g-flat functions.
However one has the following result.

Proposition 1. The unique function to be q-flat in two different directions is the null function.

~

Definition 3. A series f(z) = ano a,x"™ is said g-summable of level 1 with g-sum f for the
direction € if the condition (%y) holds locally uniformly with respect to 6, i.e., if there exist a
neighbourhood (0 — €,0 + ¢) of § and constants K and A such that
n—1 -
(%%g) flz) — Z amz™| < Kq%(n2+argq(ze—w))An|x|n
m=0

for all n, all § € (§ — &, + ¢) and all small enough z.

It results from Proposition 1 that the g-sum of level 1 of fif it exists for the direction @ is unique.

Theorem 1. A series is g-summable of level 1 for the direction 6 if and only if it s q-Borel-Laplace
summable in the direction 60 and the sums are equal.
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~

Definition 4. A series f(z) = )_ a,z" is said g-summable of level 1 (or g-Borel-Laplace summable)
if it is g-summable of level 1 for all directions but locally finitely many which are called singular
directions.

The series Theta is g-summable of level 1 with singular directions # = 0 mod 2.
One can extend the previous notions to any level k£ by substituting z* to z or so.

3. Summability of series solutions of g-difference equations

Using the elementary operator o4 instead of the derivation % one can define the Newton polygon
of a linear g-difference operator like it can be done for a linear differential operator. A fundamental
set of formal solutions was given by Adams in [1]. It is made of finite linear combinations of terms
of the form R

f(@)z*log™z e?
and where f(x) is a power series (possibly in a fractional power of x). The numbers p are the
different slopes of the Newton polygon N(A). It was proved by Carmichael [2] that when N(A)
has the unique slope 0 then there are no exponential terms and all the power series are convergent.
The origin 0 is then either an ordinary or a regular singular point.

When there is the slope 0 and a non zero slope then the origin 0 is an irregular singular point; the
number of solutions without an exponential factor is equal to the length of the zero slope. Those
solutions we will call the formal series solutions even though they can contain a factor z®log™ .

2
log"2  where o€ C,meN,peQ

Theorem 2. Suppose that the Newton polygon N(A) of a linear q-difference operator A admits a
unique non zero slope equal to k. Then, the formal series solutions of A are g-summable of level k.

Following the same kind of idea one can also define g-accelerators like it was done by J. Ecalle for
differential and difference equations and introduce a notion of g-accelero-summability, also called
g-multisummability for finitely many levels p1,..., pp.

Theorem 3. Suppose that the Newton polygon N(A) of a linear g-difference operator A admits
the non zero slopes 1, ..., pp. Then, the formal series solutions of A are g-multisummable of levels

(,u'la"' 7:u'p)'

Proposition 2. g-summable series of level k are naturally given a structure of C{x}-module, not
a structure of algebra.

For example, if fis a non convergent g-summable series of level 1 then P is not g-summable of
any level k; however it is g-multisummable of levels (1, 2).
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The MAPLE package ISOLDE is a package for studying and solving systems of linear differential
equations. More specifically, it deals with two main kinds of problems:

— local problems: compute formal tnvariants at a point; compute formal solutions at a point;
— global problems: compute closed form solutions in a certain class, like that of polynomial,
rational, or exponential functions.

The approach followed is a direct treatment of the system, avoiding any method akin to that of

cyclic vectors. Formal invariants of linear first-order differential systems are introduced in the next

section, where we also briefly list the operations available in ISOLDE. Then, we focus in the last

two sections on an efficient algorithm due to E. Pfliigel to search for ezponential solutions [4].
The package ISOLDE is developed by A. Barkatou and E. Pfliigel and is available at

http://www-1lmc.imag.fr/CF/logiciel.html.

1. Formal Invariants, Formal Solutions, Closed Form Solutions

For a subfield K of the field C of complex numbers with algebraic closure K, and a matrix A €
M, (K(z)), consider the linear first-order differential system

(1) Y’ = AY.

One either looks for vector solutions or for matrix solutions, i.e., whose columns are vector solutions.
A formal fundamental matriz at zo € KU {oo} is a matrix solution of rank n of the form [6]

(2) ®(t) = H(t)t e where t" = x — z( for a positive integer 7,

for a matrix of formal power series H € M,,(K)[[t]], a constant matrix A € M,,(K) and a diagonal
matrix @ with Laurent polynomial entries in +"!K[t~!]. Note that

®(t) = H(t)exp (/ W (t) dt) for W=At"'+Q € t ' M, (K)[t ']

The expression exp ( JW(t) dt) = t2eQM s called the ezponential part of ®. A formal invariant
is any quantity appearing in or related to @, like Newton polygons, Newton polynomials, expo-
nential parts and formal solutions, i.e., linear combinations of columns of ®. Formal solutions are
asymptotic expansions of functional solutions near zy. Their general expression is

(3) y() = 2(B)Pet® = 2(t) exp ( / w(t) dt)
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with z(t) = z(t) + 21(t) Int+- - -+ z,(t) In® ¢ for vectors z; € K[[t]]", a constant A € K and a Laurent
polynomial ¢ € t~'K[t~!]. Here again w = A\t~! + ¢’. ISOLDE implements algorithms to compute
several formal invariants, in particular exponential parts and formal solutions.

Specialized algorithms have been developed to solve for solutions in several elementary classes
of closed form expressions. Their principle is that local data contains essential information on
potential closed form solutions. In particular, ISOLDE implements algorithms to solve for:

— polynomial solutions, that are related to formal solutions at oo with trivial exponential parts
and with no logarithmic component;

— rational solutions, whose denominators are bounded by computing the indicial equation (i.e.,
the Newton polynomial of slope 0) at all finite singularities;

— exponential solutions, for which candidates can be computed from the exponential parts at all
singularities, as detailed in the next two sections.

2. Exponential Solutions

We now use the formal invariants previously introduced to compute exponential solutions of a
linear differential system. Throughout this section, we assume that we know the set of all possible
exponential parts of exponential solutions, whose determination is the topic of the next section.

An ezxponential solution is a vector solution y obtained when the vector z in the general expres-
sion (3) reduces to a polynomial vector:

y(@) = p(z) exp ( / u(z) d:c) for u € K(z) and p € Kla]™.

As an example, an exponential solution of the system described by the matrix

=7 2 =
Tt 1 ik ; 1 4 5
(4) A= Gz_es?icjf) zlz ﬁ is exp (/udm) 1 , where u = — — — 7 .
8 8z45z2 1z 418z 1—z T -
z6 x? z(1—x)

Note the more explicit form exp ([ udz) = 27*(1 — z) ™ exp(—z™1).

Methods to determine exponential solutions of a system first evaluate or give constraints on the
exponential part before computing the polynomial part p. This bases on the local analysis of u. One
distinguishes between the singular and regular parts Sz, (u) and R, (u) of u at a point zy € KU{oo},
defined by:

u = Syo(u) + Ryy(u),  with Sy, (u) € t 'K[t™'] and Ry, (u) € K[[]].
For the example above, one gets
1 4
Sg(u)zt—2—¥ and  Rp(u) =5+ 5t + 5t +---
Basic known algorithms allow us:

1. for each singularity zo of a given rational function u, to compute the singular parts S;,(u)
and a finite number of terms of the regular parts R, (u) in an efficient way;
2. to reconstruct a rational function w from its singular parts at all its singularities.

Two different methods based on these algorithms allow the calculation of exponential solutions:
1. Beke’s method:
(a) compute candidates for u by combining the singular parts allowed at all singularities;
(b) set Y = Zexp (fudx) and search for polynomial solutions Z.
2. Alternative approach based on Padé approximants:
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(a) bound numerator and denominator of u;
(b) determine the singular part S;,(u) of u at a (single) singularity xzo so as to be able to
compute a Padé approximant for R, (u) next.

The methods contrast to one another inasmuch as Beke’s method requires splitting fields for its
completeness but avoids the use of Grobner bases, while the alternative Padé-based approach does
not appeal to splitting fields but generally requires Grobner bases. Besides, note the combinatorial
exponential complexity of step (a) in Beke’s algorithm.

Solving the example (4) by Beke’s method, one first obtains the following sets of exponential
parts at 0 and 1:

1 4 200 — 44 5
Eo:{___g_f_ai}, EIZ{O }, where o + Ta — 2 = 0.

x2  z’ x? 5Tx 11—z
With this simple example, this yields only two candidates:
1 4 5 a 200 —44 5
MEETL T, M ettt T 1o

With the first candidate, the system (1) reduces to Z' = (A—w1)Z. One then verifies that it admits
the polynomial solution already mentioned in (4).

For a formal solution y = z exp ( Jw dt) such that z has valuation 0 at zg, w is called a generalized
exponent. Noticing that each S;,(u) is a generalized exponent, the idea of the second method is to
compute Ry, (u) from a formal series solution, more specifically from the series z after setting w =

Szo(u). More explicitly, for an exponential solution y = p exp ( Ju dt) with logarithmic derivative U,
we have Sy, (u) = Sz, (U), so that

Ry, (U) = Rao(u) + (Inp)’ = (Inz)’

is a vector of rational functions, which can be computed from z as a Padé approximant. By inte-
gration, one obtains R, (u) as the rational part and p as the logarithmic part, next an exponential
solution if there exists any for this u.

Following up the example (4), choosing the singularity o = 0 and the exponential part candi-
date w = Sp(u) = 272 — 4™, one first computes the following formal solution (at 0):

0
Yy = exp (/So(u)d:c) 145z + 1522 +---
144z + 1422 4 ---

Taking the logarithmic derivative and computing Padé approximations yields
!

0 0 0
RyU)= |5+5z+---| = :Li_w =— |In(1 -2z)%| ,
4+ 4x+--- =+ In(1 — )4

from which one gets the exponential solution already mentioned in (4).

3. Exponential Parts

To complete the description of the previous algorithms, we finally describe how to compute all
possible exponential parts of solutions of a linear first-order ordinary differential system.

As opposed to the case of a (single) scalar higher order ODE, exponential parts cannot be
obtained immediately in the case of the system (1). An obvious indirect method is to compute the
Newton polygon by transforming it into an nth order scalar equation, which becomes very costly
with the increase of n. This is why several other methods have been developed to transform the
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initial matrix A into a form from which exponential parts can be read off. All such methods use
two special transformations:

1. the change of unknown Y = TZ, where T is a polynomial matrix with non-zero determinant

transforms the system (1) into the equivalent system Z' = (T7'AT — T—T")Z;

2. the change of exponential part Y = Z exp (f adt) leads to the new system Z' = (4 —a)Z.
Using the above, algorithms have been proposed to put a differential system into:

1. companion form, as obtained by the method of cyclic vectors;

2. Turrittin’s canonical form [5], however obtained by a not so constructive process;

3. Moser’s irreducible form [3];

4. Hilali’s and Wazner’s super irreducible form, a refined version of Moser’s form [2].

We now comment on applications of the last two forms. If a system
(5) MY’ = Ay, for a series A = Ag + A1z + -~

admits a solution of the form

(6) zexp ( / xq"H d:c) ,

then the matrix Ag—a necessarily has a zero determinant. Elaborating on this fact, Moser [3] proved
that when A is an irreducible system, if Ay is not nilpotent and a is a non-zero root of det(A4g — A)
with multiplicity m, then there exist m solutions of A of the form (6). Based on this, Barkatou
used diagonalization by blocks to devise an algorithm to compute exponential parts [1].

Similarly, a necessary condition for a system like (5) to admit a solution of the form

zexp(/#dm), for 0 <k <gq,

takes the form det(Ny — aDy) = 0 for two matrices Ny and Dy computed from Ag,...,A; .
Consider the non-zero polynomial

0, (\) = z° det(z %A + )]0

obtained for the appropriate exponent s. Hilali and Wazner [2] proved that when A is a super
wreducible system, if a is a non-zero root of multiplicity m of the polynomial 6y, then there exist
precisely m generalized exponents equal to —az~(@F) up to higher valuation terms. Using this
fact, Pfliigel [4] obtained a recursive algorithm to compute all exponential parts of ramification 1,
i.e., for the case » =1 in (2). The case of higher ramifications r is work in progress.
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Abstract

This talk investigates algorithmic issues related to the formal resolution of algebraic differen-
tial systems, with a stress on the problem of testing components inclusion. Index reduction
and applications to control theory are also considered.

News are also given of the diffalg2 maple package which improves upon Boulier’s work
and will be part of a future Maple distribution.

1. Basic Algebraic Results

1.1. Differential Algebras. Details may be found in the classical book by Ritt [12], which remains
an illuminating reference. The two first chapters provide a clear exposition of basic definitions and
results. Some details on the low power theorem may be found in chapter 3. The book by Kolchin [9]
is a reference book reserved to those having a good familiarity with the subject. Chapter 2 of
Buium’s book [3] is also a good introduction to differential algebra. The remaining chapters may
be quite hard without a good previous knowledge of “modern” algebraic geometry, but contain
many interesting new results. The paper [6], and thesis [8] contain details on the components
problem. Details on Boulier’s algorithm can also be found in [1, 2].

Differential algebra is a generalization of classical commutative algebra. We complete the ring
structure with the datum of a set of mutually commuting derivations A = {61,...,6,}. We may
then define differential fields, modules and algebras in a straightforward way. A differential ideal
of a differential ring A is an ideal I such that 61 C I, for all § € A. Let A be a differential ring,
and I be a differential ideal, then A/I has a natural structure of differential ring. The smallest
differential ideal containing a set ¥ is denoted by [X].

We define differential polynomials in the following way: if A is a differential ring with derivation
set A, © the free commutative monoid generated by A and X a set, the differential polynomial
algebra A{X} is the polynomial algebra A[©X] equipped with the only derivation set whose action
restricted to A and ©X is that of A.

Let A be a Ritt ring, i.e. a differential ring containing Q. Then for every differential ideal I C A,
the radical ideal V/T is differential. A differential ring A is radically Noetherian if for every set
3. C A there exists a finite set B such that \/E = \/@ In the sequel, we will denote the perfect

closure 1/[X] by {X}.
Theorem 1 (Ritt-Raudenbush). If A is radically Noetherian, then for all finite set X, A{X} is

radically Noetherian.

'http://daisy.uwaterloo.ca:80/ ehubert/Diffalg/
83
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Corollary 1. Le I be a radical differential ideal, then I is a finite intersection of prime ideals
Ni=1Ps-

1.2. Differential Field Extensions. Let F be a differential field, and P be a prime differential
ideal of F{X}, then the quotient ring F{X}/P is a differential domain, and we can consider its
fraction field K. So we can associate to any prime differential field P a differential field exten-
sion K/F.

It is clear from the theorem above that a system of equations ¥ C F{X} admits solutions in
some field extension of F iff {3} # 1. So we need an algorithm to test if a system is consistent.

2. Algorithmic Tools

2.1. Boulier’s Algorithm. Boulier’s algorithm [2] is able to solve such problems as eliminating
differential variables, and testing consistency of a differential system. It provides a description
of the set of solutions as a finite union of algebraic quasivarieties, i.e. Zariski open subsets of
differential algebraic varieties. Each of them is described by a characteristic set A (see [12] for a
precise definition of this notion), according to a compatible ranking on the set of derivatives, and an
inequation h 4 # 0. Let up denote the greatest derivative of a polynomial P. The separant of P is
Sp := 0P/Oup. As h4 is a multiple of the products of separants of polynomials in the characteristic
set, the ideal [A] : A is radical. Unlike Ritt’s algorithms, Boulier’s avoids factorizations for better
efficiency. This is why it cannot return prime components.

Boulier’s algorithm first proceeds by constructing an autocoherent set by repeated pseudo Euclid-
ean reductions. An autocoherent set A being found, one need to test that it is the characteristic set
of a radical differential ideal. According to Rosenfeld’s Lemma, this may be reduced to an algebraic
problem. We only have to test that A is a characteristic set of the algebraic ideal (A) : AS°. This
may be done by computing a Grobner basis of the ideal (A, hqw — 1), using an extra variable w
and Rabinovich’s trick.

2.2. Singular Solutions and Inclusion of Components. A difficult problem of differential
algebra is to test whether two irreducible components defined by their characteristic sets are in-
cluded one in the other. We are only able to test equality, and have necessary conditions, sufficient
conditions, but no necessary and sufficient condition in the general case.

Consider a single polynomial equation: P(t,y,... ,y(r)), where P is prime. The perfect ideal
{P} is a finite intersection of prime ideals, P;, associated to characteristic sets reduced to a single
polynomial A;. The general component A; is associated to P. The other correspond to essential
prime components assuming that the P; are not included one in the other.

Boulier’s algorithm, like Ritt’s algorithm, produces the characteristic sets A; of singular compo-
nents, but also characteristic sets B; corresponding to the singular locus of the differential algebraic
variety corresponding to the general solution. (Notice that, as we avoided factorizations, the A;
need not be prime and can represent more than one prime component.) The B; and the A; cor-
respond to the solutions of the perfect ideal {P, Sp}. We have {P} = {P,Sp} N {P} : Sp. The
solutions corresponding to non essential singular components are Zariski adherent to the regular
place of the general component.

We may remark, that according to [11], determining the essential singular components is equiv-
alent to finding a finite basis of {P} : Sp, i.e. to have an effective version of the Ritt-Raudenbush
theorem.

2.3. Some Effective Criteria of Inclusion. For a differential equation of order 1, the singular
solutions are envelopes of regular ones. E.g., for the equation (y')? — 4y, the solutions in the general
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component are parabolas y(t) = (t + c)?, and the essential singular solution y = 0 is the envelope
of these parabolas.

If we have a prime decomposition, we can obtain an algorithm for finding the minimal essential
components of { P} by using the low power theorem of Ritt.

Theorem 2. The prime differential ideal {y} is an essential component of { P}, iff the lower degree
terms of P do not contain any strict derivative of y.

From this, we deduce that {y} is not an essential component of 3’2 — 4y3. In such a case, the
regular solutions are of the form y(t) = 1/(t + ¢)?>. When ¢ goes to infinity, then y goes to 0. So
the solution y = 0 is adherent to the the set of regular solutions. See [12, Chap. 6] for analytical
versions of this adherence property.

The necessity proof relies of Levi’s lemma which characterizes the monomials belonging to the
differential ideal [yP] [12, Chap. 2], or on Kolchin’s domination lemma. The sufficiency proof was
obtained by Ritt, using a Puiseux series expansion.

In the case where we want to test the inclusion {P} : Sp C {Q} : Sg, where Q # y, we need
to find a preparation polynomial, i.e. a polynomial M(z) = Zf;:o cym~(z) such that ¢, does not
belong to {Q} : Sg, CP = M(Q) and C is not a zero divisor modulo {Q} : Sg. An algorithm is
given to compute a preparation polynomial.

We also have a low power theorem for regular differential polynomials (see Hubert [7]). This
theorem, together with Boulier’s algorithm allows to find a minimal regular decomposition for { P}
without performing factorizations.

Theorem 3. (Sufficiency) Let P be a non zero differential polynomial of F{Y'}, Q a square free
polynomaal. Assume that the preparation polynomial of P with respect to Q i1s M = czP + R,
where R € [2]PT, p > 0 and c is partially reduced with respect to Q. Then, Q/gcd(Q,c) is the
characteristic set of an essential singular component of P.

(Necessity) Under the same hypotheses, if the preparation polynomial is M = COzp+Z§:1 Cy My +
R, where R € [2]PTL, the cy are partially reduced with respect to Q, then Q/ged(Q,co,...,ce) is a
characteristic set of a redundant component.

2.4. Implementations. The Rosenfeld-Grébner algorithm of Boulier, implemented in the Maple
package diffalg, has been improved with the new version diffalg2. Functions for computing
preparation polynomials and finding initial components were added. It is available on the Web
with a clear documentation, and an impressing set of examples.

3. Applications

3.1. Control Theory. Elimination in differential algebra allows to go from state-space to input-
output representation by eliminating the state variables. It allows to test observability [4] and
identifiability [5, 10].

Consider a system of the form a} = P;(z,u),y; = Q;(x). To test observability, one has to compute
a characteristic set for an ordering eliminating the variables z. The system is observable iff for each
variable xy, the characteristic set contains a polynomial whose x, is the main derivative. Such a
polynomial gives an implicit expression of z; as an algebraic function of the outputs y and the
inputs or commands u and their derivatives. This makes such an expression of little applicability,
due to the noise.

3.2. Implicit Systems. If we consider an implicit system P;(z’,z) = 0 where det(@P,-/aac;-), it
is not possible to compute a power series or a numerical solution in a direct way. The system is
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not formally integrable. In fact, solutions, if any, do not exist for all initial conditions, and one
may need first to determine the variety of compatible initial conditions. For this, one will need to
differentiate the equation a number of time which is known as the indez of the system. Computing
characteristic sets, using the Rosenfeld Grobner algorithm is a way of doing it.

[1]
2]

3]
[4]
[5]
[6]
[7]
[8]
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1. Introduction

Solving Diophantine equations, that is finding integer solutions to polynomial equations, is one
of the oldest mathematical problems. The very name “Diophantine” reminds us of the great Greek
mathematician Diophante who solved some of the most basic equations.

At the beginning of the twentieth century, Hilbert asked about the existence of a universal
algorithm that would compute all integer solutions of a polynomial equation, and it was not until
1970 that Matiyasevich [13] showed the inexistence of such an algorithm.

Even before the negative answer to this problem, many mathematicians have developed algo-
rithms for special cases. For the univariate case, the problem is related to good rational approxi-
mations of a non rational root a of a polynomial P with integer coefficients. Let n be the degree
of P and p/q a rational number. Put §(«) = | — p/q|. Thue [19] showed that

G1
() > YRR
with the consequence that there are only a finite number of solutions of the equation Q(X,Y) =
1, where @ is an homogeneous, irreducible polynomial of degree > 3. Siegel [17] improved the
bound to: Cn(e)
21 &
6(a) > JEN e
which was enough to prove the finiteness of the number of solutions of y? = f(xz) for f a separable
polynomial of degree > 3 and p > 2 [18]. Later, in 1955, Roth proved [16]:

Cs(e)
q2—|—5

&(a) 2

a result that is the best possible, due to well known results in continued fraction theory, namely
that if « is irrational, then there exists an infinite number of rational numbers p/q such that

1

As is often the case, the constants are ineffective and this does not help us when we want to find
the solutions of a given equation. Around 1966, Baker [1] (see also [3]) found a very deep bound:

Theorem 1. Let aq,as,...,a, denote algebraic numbers. Then for every n-tuple of integers

(b1,b2,...,b,), we have
K =0 or K >exp(—Cslogmax|b;|), where K = |bjlogay + balogas+---+ b,logayl.
(]
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Unfortunately, the constant Cy, though effective, is very huge and specialists thought it was
completely useless. However, Baker and Davenport [2] gave the first use of such a bound, for
solving a system of simultaneous Pell equations.

2. Solving Homogeneous Equations

2.1. Statement of the Problem. Let P(X,Y’) be a homogeneous polynomial of degree n, monic
in Y, and let «; denote the roots of P(1,Z). In this section, we want to solve the equation
P(X,Y) =1 in integers X and Y, which we rewrite as:

n

(1) [ - ax)=1.

=1

Suppose (Xo,Yp) is an integer solution of this equation. In view of (1), it is obvious that at least
one of the terms Yy — o; X is small. This implies that:

YO — OéjXO ~ (Otj — Oti)XO
when j # 7. Using (1) again, we get that:

Oti—

IXol" H Iag — o

or in other words, Y/ X is a very good approximation of «;.

2.2. Using the Baker Bound. In algebraic terms, equation (1) tells us that for each ¢, the
number Yy — o; Xp is a unit in Q(ay;).
One knows that the set of units of a number field Q(«) is a group of finite type. There exists

a set of units, the so-called fundamental units n1,m2,...,n, such that every unit can be written
as: (bo I, 77?" where ¢ denotes a root of unity in Q(«) and the b;’s are integers. Without loss of
generality, it can be shown that we can restrict to the case where { = —1.
Now suppose that a; is a real root of P(1,Z7). If j # k # 1, we can write:

‘Yo - C!jX() ap — 7 _ 1‘ < C5(P)

Yo — o Xy aj — oy - |X0|n )
From this, we deduce that:

log Yo — o Xo ap — g CG(P)'

Yo — o Xy aj —aoy| |X0|n

Write Yy — ap Xo = 77;21 e 772’#. We can rewrite the last inequality as:

af — Cr
2 —1lo 74- bylo ——i—sz
) ‘ oy —on Z B e T S T
It is not hard to see that log|Xo| &~ B = maxy|b|, so that the right-hand side of the inequality is
bounded by

C7 exp(—nCgB).
For the left hand side, we use the Baker bound to finally obtain the lower bound
exp(—Cy log B) < C7exp(—nCsB).
This clearly gives a bound B on B.
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Unfortunately, this bound is much too large to be useful. For instance, in the case of the equations
(3) XY 42y = 41, or +2,

one finds B = 2.32 x 10%2.

2.3. Refining the Bound. Once we know that the b;’s are bounded, we would like to find a better
bound. The idea is the following. Suppose the b;’s are integers subject to |b;| < B. We would like
to prove some result on the minimum of the quantity | ,_; bpAs| where the Ay’s are real numbers.

Using the Lenstra-Lenstra-Lovéasz theory [12] as in [8], it is possible to show that this minimum is
bounded from below by ClO/BT_l. Since we also have the Baker bound:

Z bedy

exp(—C11B) >

)

we get
B <log(B"!/Cyy) = (r —1)log B —log Co

or a bound which is logarithmically smaller.
For instance, for our example, we find that B = 29 instead of 2.32 x 10%2.

2.4. Finishing the Computations. At this point, one can finish the computations by enumer-
ating all solutions. As easy as it seems, do not forget that there could be a lot of computations still
to be done. In our example, there are 9 values for the b;’s, with |b;| < 29, which amounts to 59°
combinations.

This is enough when n is small, but can be quite cumbersome when n increases, since the
computational determination of units in a general number field is no easy task at all (see for
example [7, 14, 15]).

3. A Faster Approach

The idea of Bilu and the speaker [4, 5] is the following: we can rewrite equation (2) as:

Lo+ Z beLyj,
=1

that is we have r linear forms in r + 1 logarithms. The idea is to transform these forms so as to
obtain a new form of the type 6 = |aa+ bB+ 6| where the integers a and b are bounded. Minimizing
such a form can be done using continued fractions, and therefore is very fast. Once this is done,
and using a bound as C/|Xo|"”, there are two cases. Either # < 1/2 and we can easily deduce b
from a, or # > 1/2 and since C/|Xo|™ > 1/2, | Xo| is quite small and we are done. In brief, we have
reduced a large enumeration problem in a large number of unknowns to one in a single unknown.

For our leading example, we get that B = 4 and it takes 12 seconds on a workstation to find all
the solutions.

4. Conclusions

We have shown how to solve some special cases of Diophantine equations by a clever use of
Baker’s bound combined with casual ingenuity. It is possible to use more tricks, for example using
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units that are not fundamental, or to work with relative norms. For instance, the speaker has the
world record in the field, with the solution of the equation

2505

[T (v = cos(2kn/5011)X) = +1

k=1
using an intermediate field of degree 3. The original Baker bound, 10*°, was reduced to 46, yielding
a total running time of 8 minutes. More examples are given in [6] and in [10, 11], refinements are
given when one does not have the full unit group of the number field under consideration.

The ideas we have described above can be used mutatis mutandis to solve equations of the type
Y? = f(X). The only difference comes from the construction of the units. We refer to the speaker’s
thesis for this.

As a final comment, we note that similar techniques can be used to solve equations on elliptic
curves [9, 20].
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[summary by Bruno Salvy]

Abstract

An algorithm for approximating complex polynomial zeros is presented. Its complexity is
optimal up to polylogarithmic factors and holds the current record.

Finding roots of a complex polynomial numerically in a guaranteed way with a fixed prescribed
accuracy is difficult when no approximation is known in advance. This task cannot be performed in
a fixed precision environment and implementations in computer algebra systems (where arbitrary
precision is available) are seldom able to treat polynomials of degree a few hundreds. However,
polynomials of very high degree arise frequently when solving a polynomial system by elimination.
The work summarized here provides an algorithm supporting the following theorem.

Theorem 1. Let p(z) be a monic polynomial of degree n and zi,...,z, its zeros, with |z| < 1,
i=1,...,n. For a fized positive b, approzimations z} satisfying
(1) |zi —2f| <27% i=1,...,n

can be computed at a cost bounded by O(n) arithmetic operations and O(n2(b+ n)) boolean opera-
tions. The notation O means that factors logn, logb or smaller are neglected.

Much more precise statements, proofs and parallel complexity estimates can be found in [5] and
a pedagogical introduction to this area is [6].

The statement of the theorem can be modified to accommodate polynomials which are not monic
(by first scaling the coefficients) or with roots of modulus larger than 1 by computing a bound on
the moduli (see below) and then scaling the polynomial.

1. Lower Bounds

It is clear that the arithmetical complexity O(n) is optimal, since n coefficients of the input
polynomial have to be treated. The boolean complexity O(n?(b+n)) is optimal in the very frequent
case n = O(b).

Actually, O(n?b) is even a lower bound for the computation of one root of polynomials of degree n.
This bound follows from the high susceptibility of the roots of a polynomial with respect to the
coefficients. For instance, the polynomial z* — a with a small @ > 0 has for root a!/™. If this root
is of order 2%, changing a to 0 is a change of the nb-th bit of a coefficient that changes the b-th
bit of the root. This reasoning extends to other coefficients: let p = O(n) and consider z" — az?.
Then again a change of a bit at position O(nb) modifies the b-th bit of the solution. Thus b bits
of the solution depend on O(nb) bits of each of O(n) coefficients, whence the O(n?b) lower bound.
This example also illustrates why clusters of zeros defeat many numerical algorithms.
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2. Outline of the Algorithm

The algorithm is based on a splitting technique where the polynomial p is split into factors of
degree k and n — k with k& = an, for some a € (1/2,p), p being fixed. Applying this process
recursively, any polynomial can be completely factored in O(logn) steps.

The splitting itself is computed in 3 steps:

1. Find a “splitting” circle not “too close” to roots of p and containing an of them;
2. Compute the polynomial vanishing at these an roots;
3. Divide p by this polynomial to obtain the other factor.

Each of these steps has to be performed in O(n?b + n?®) boolean operations to yield the theorem.

The factors py and p,_i of p are computed numerically. The following two lemmas show how
the precision with which they are required can be bounded by ensuring that €* is sufficiently small
in the following inequality:

(2) Ip(z) = pr(z)pn—r ()|l < €lp(z)]],

where ||g(z)|| denotes the sum of the moduli of the coefficients of a polynomial g.

Lemma 1. [8] If

n

p(e) =[] (= - 2})

=1

with —logy € > bn + n + 2, the inequalities (1) are satisfied.

< ellp()l],

Lemma 2. [8] Let p(z), fi(z),-.., fr(z) and f(x),g(x) be polynomials such that

3) () ~ @)+ fule)l < e )]
(4) 1f1(2) - F@)@)] < exll f1 @),
then
lp(z) — F(@)g(@) falz) - fu(@)] < L p(a)]

n
holds, provided

lp(=)]l
Le——F——.
= n[TE, | fi(2)]|

From these lemmas follows that it is sufficient to compute the splitting with e* < e/(n2") in (2),
where € comes from Lemma 1.

The splitting circle method was introduced by Schénhage [8, 9]. We now review the algorithms
used in steps 1 and 2, together with the recent progress due to Victor Pan.

3. Numerical Factorization

To simplify the notation, assume the unit circle is a splitting circle for the polynomial p(z).
Let px(z) be the monic polynomial whose k roots are those roots of p lying inside the circle. The
computation of pi(z) relies on the following integral representation of the power sums s; of its

ZE€eros:
1 ! .
2w |Z|:1 p(Z)
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This idea originates in [2] and was refined by [8] to produce error bounds, i.e., to bound @ such
that the s;’s can be computed by the discretization

Q-1 /
1 ; (w?)
= = § e\
7Q ; p(w)

The value of @ depends on a lower bound for |p(z)| on the unit circle, which in turns is related to
a bound on the distance from this circle to the closest root of p, hence the need for a circle “not
too close” to the roots in Step 1 of the algorithm.

Efficiency is attained at the price of quite technical developments [8]. If the closest root to the
circle is at distance O(1/n), a value of Q of order O(n?) is used' and the corresponding p'(w?)
and p(w?) are computed by a discrete Fourier transform. From there, the sums s;- forj=0,...,K
are computed by DFT, K being the smallest power of 2 larger than k£ = sg. An approximation of
the factor pg(z) can then be recovered efficiently by a variant of Newton-Hensel’s lifting (see [1,
p. 34]). Then the other factor is obtained by division. In order to reach the right level of complexity,
it is necessary to compute only O(n) bits for these steps and then refine the factorization by another
Newton like algorithm as follows. Starting from the approximate factorization

0 0
Ilp(@) - 2 (@) (@) < e
where pgco) has degree k, the aim is to find a refinement pg) = pgco) + gk, pgll_)k = p;o_)k + n—k
with deg¢; < 1, improving the error. Since

p— pg)pfﬂk =(p- p§£>p$?2k) — pg)piolk - pé”pﬁjlk — pg)pff_)k,

the Newton iteration is obtained by satisfying

(5) (p— pg))pfzolk) = pg)pfflk + pg))pfflk,

which determines pgcl) and pSz . uniquely. These polynomials could be found by Euclid’s algorithm,

@

but this is too expensive. Instead, one also computes an inverse ¢(9 of p,,.;, modulo pgj) by a

second, parallel, Newton iteration and then pg) is given by q(i)P = q(i)(P - péi)pgzk) mod pg)- A
similar formula gives pgf)_
bounded by O(n log €*).

x- Then the required precision is obtained after a few iteration at a cost

4. Finding Splitting Circles

The basic technique to find discs containing a known number of roots of a polynomial is the
iteration of Graeffe’s method (see [3]). Starting from p(z) of degree n, one performs the following
iteration:

pir1(e®) = (=1)"pi(2)pi(—2),

which transforms the polynomial p;(z) into a polynomial p;11(x) whose roots are the squares of the
roots of p;(z). This process emphasizes the differences of moduli between the roots. The coefficients
of these iterates are Newton sums from which precise information about the different moduli of
the roots of the original polynomial can be recovered at a low cost. More precisely, one gets the
following lemma.

"More precise values are given in [8, p. 35].
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Lemma 3. Let z1,...,2, be the roots of p(z), satisfying |z1| < -+ < |z, < 1. Given ¢ > 0
and d > 0, it is possible to compute r1,71,...,7,,Tn such that 1, < |z| < Tt = (1 + ¢/n)ry,
k=1,...,n with O(n) arithmetic operations.

This iteration is applied after having first shifted the origin to the center of gravity of the roots,
which is given by the first two coefficients of the polynomial. When it follows from this computation
that there is a £ = an, a in a fixed interval (p,1—p), with some p < 1 such that |zxy1|/|2x| > 14+¢/n
for some c fixed in advance, then this yields a splitting circle and the factoring algorithm of the
previous section can be applied.

It is when no such circle can be found that progress has been made by Victor Pan recently. In
this case, there is an annulus centered at 0 which contains most of the roots of the polynomial.
Now the idea is to shift the origin to each of r’ = 2T 11512 and ir', and apply the same method.
Then either a good splitting circle is found, or there is a small circle which is easily computed and
contains the intersection of these three annuli, itself containing an important cluster of zeros (at
least half of the zeros of p if ¢ = 1/100). In this case, the idea is that one of the zeros of a derivative
of p of high order (for instance, one can take p(L”/2J+1)) is either the center of a good splitting
circle or makes it possible to isolate a massive cluster of zeros, where more than half of the zeros
of p are at distance less than the desired accuracy 2-°. In both cases, the polynomial can then be
factored numerically and the computation proceeds on those factors that do not correspond to a
massive cluster. Many refinements are given in [5], in particular it is shown that it is not necessary
to compute all the zeros of p{l?/2]+1)

Conclusion

This summary is a very rough sketch of a very detailed study given in [5]. For practical polynomial
solving, other algorithms are known to perform extremely well, but their complexity analysis has
yet to be done.

The talk also mentioned extensions to the multivariate case, this is described in [4].
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While univariate polynomials with coefficients in a field £ can always be factored as products of
linear polynomials over the algebraic closure k of k, in the multivariate case irreducible polynomials
over k may have arbitrary degree. A multivariate polynomial with coefficients in k which is irre-
ducible over k is called absolutely irreducible and the decomposition of a multivariate polynomial as
a product of absolutely irreducible polynomials is called its absolute factorization. Geometrically,
absolutely irreducible polynomials correspond to irreducible algebraic varieties. Factorization is
available in all the general computer algebra systems, but absolute factorization is much harder.
There are algorithms that compute the absolute factorization of polynomials over Q and one of
them is available in Maple. There are other algorithms that only test whether polynomials over Q
are absolutely irreducible. Both these operations are computationally expensive. In this work,
J.-F. Ragot gives a probabilistic test for absolute irreducibility.

1. Algorithms

The property on which are based the algorithms dealing with absolute irreducibility is related
to stmple solutions of polynomials.

Definition 1. Let k be a field. The polynomial f € k[z1,...,z,] is said to have a simple solution
at a point P € k& when

feI(P)\I(P),
I(P) being the ideal of polynomials vanishing at P:
I(P) = {g € k[z1,...,2,],9(P) = 0}.

For instance, the polynomials belonging to I(0)? are those that do not have any monomial of
degree less than p.

Theorem 1. If f € k[zy,...,z,] is irreducible over the perfect field k and has a simple solution at
a point P € k", then f is absolutely irreducible.

Proof. Examples of perfect fields are fields of characteristic 0 and the fields Z/pZ (for prime p).
The polynomial f being irreducible over k, its absolutely irreducible factors are conjugate over k.
Thus if P cancels one of them it must cancel the other ones; simplicity then implies uniqueness. [

For instance, the polynomial

f =+ 2zy + 5z — 3zy® — ¢°
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can be seen to be irreducible over Q (e.g., by attempting to factor it). Since (0,0) is obviously a
simple solution, f is absolutely irreducible.

One of the algorithms for absolute factorization then proceeds by constructing extension fields
where the polynomials have simple solutions. Absolute factorization is thus reduced to factorization
over algebraic extensions, which is possible but expensive when the degree of the extension is large.

Theorem 1 can also be used to prove absolute irreducibility when one can find simple solutions.
While this is difficult in characteristic 0, it is relatively easier in characteristic p. Then, one can
use the following theorem to obtain the conclusion over Q.

Theorem 2. [3] Let f be a polynomial in Z[x1, ..., x| and p be a prime number. If deg(f mod p) =
deg(f) and f mod p is absolutely irreducible (i.e., over F,) then f is absolutely irreducible (i.e,

over Q).

For instance, the polynomial
_ .3 3 2
g=x"+y’ +Tey+4y+z°+5

is irreducible mod 5 and there (0,0) is a simple solution. Therefore, g is absolutely irreducible.

Now the good news is that by a theorem of Emmy Noether, there are only finitely many p for
which an absolutely irreducible f over QQ is not absolutely irreducible modp. Moreover, there are
also finitely many p for which f does not have simple solutions mod p. Combining these two results
it is even possible to compute an explicit upper bound B(f) for the largest “bad” prime p. This
gives a deterministic algorithm. However, the bound is so large that this approach is completely
impractical. Instead, J.-F. Ragot’s idea is to use a few prime numbers to check whether a polynomial
is absolutely irreducible. This is implemented by a very simple procedure which loops over a finite
set of prime numbers p until the polynomial is found to be irreducible modulo p and to have a
simple root in F, (success) or the set of prime numbers is exhausted (failure).

The remaining question is to evaluate the probability of success of this technique and bound the
probability that a failure corresponds to an absolutely irreducible polynomial.

2. Probability Estimates

2.1. Irreducible Polynomials. Let g = p™ for p a prime number and n a positive integer. The
number of polynomials of degree at most d over F,[X] = F,[z1,...,z,] is ¢*(4") where w(d,r) =
(Tji'd) . From there and the fact that IF,[X] is a unique factorization domain it is possible to compute
an exact formula for the number of irreducible polynomials of F, [ X] of degree at most d [1, 2]. Then
very sharp inequalities can be obtained: for » > 2 and d > 3 the probability p that a polynomial
of F,[X] of degree at most d be reducible obeys

T (1) <p<c— T (148
qw(d,r—l) q =P= qw(d,r—l) q '

2.2. Polynomials having simple solutions. For any P € [y, the set of polynomials of degree at
most d in I(P)\ I(P)? is a subspace of the vector space F,[X]4 of polynomials of degree at most d.
This makes it easier to compute the probability that a polynomial of degree d has a simple solution
at a fixed point P or at a point P in a given set of points, since from the dimension D of a vector
space over [y, its cardinality is given by qP.
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The quotients Fy[X]/I(P)?. We first consider the point P = 0. There are w(p — 1,7) monomials
that cannot occur in a polynomial of I(0)P. In terms of dimensions, this is equivalent to

(1) dim F,[X]/I(0)P = w(p — 1,7).
This enumeration applies to any point P possibly different from 0.

Chinese remainder theorem. It Py # P are two points of Iy, it follows for instance from Bézout’s
theorem that F, [X] = I(Py)P + I(F,)? for any p,q. One can therefore apply the Chinese remainder
theorem which states the ring isomorphism

Ry [X]/ (Y 1Py = [T R [X)/1(P)™,

when the points P;, i = 1,...,n are distinct. This translates into a result on the dimensions of the
corresponding vector spaces:

n

dim (]Fq X1/ I(Pi)pi> = dimF, [X]/I(P;)P:.
=1

=1
It follows from (1) that the quantity D in the left-hand side is finite, and for any degree d > D,
(2) dim (Fq [X]aN ﬂ I(Pi)m) =w(d,r)— D.

=1

Inclusion-Ezclusion. Let again P; # P, be two points of ;. Then the number of polynomials
having a simple solution at either P, or Py, or both, is the cardinality of

(I(PO\I(P)?) U (I(P) \ I(P2)?)
— I(P) UI(Py) \ I(PL)? \ I(P,)* \ (I(P) N I(P))
U (I(P)? N I(By)) U (I(Py) N I(Py)2) \ (I(P)2 N I(Py)?) .

The cardinalities are evaluated from the right-hand side by (1) and (2), which gives for d > w(1,7) =
2r + 2

2qw(d,7")7w(0,r) - 2qw(d,7")7w(1,r) - qw(d,'r)wa(O,r) + 2qw(d,7")7w(0,r)7w(1,r) - qw(d,T)72w(1,r)
2
_ o) (1 — (1= 40 4 00 ) ,

This extends to the case of n distinct points Py, ..., P, to give that for d > (r+ 1)n, the proportion
of polynomials in Fy[X]q having at least one simple solution at one of the P;’s is

1 1 "
(3) (1= )

Now it is sufficient to take n = ¢" the cardinality of Iy in the previous expression to obtain the
probability that a random polynomial of degree d > n has a simple solution at a point of F.
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Refining the Bound. The bound d > ¢" that we have just derived can be made much more precise
by having a better look at the quotient on the left-hand side of (2) in the case n = ¢". The system
of polynomials

{(@f —21)% ..., (2] - 2,)"}
generates the ideal of polynomials having multiplicity at least 2 at every point of . This ideal is
responsible for the largest value of D in (2), whence the bound ¢". It is easy to see that the system
above is a Grobner basis of this ideal for the lexicographic order. This means that one can take a
basis of the quotient (as a vector space) where the polynomials of largest degree have degree 2q — 1.
This way, one gets the following.

Proposition 1. [3] For d > r(2q — 1), the proportion of polynomials of Fy[X]4 having a simple
solution in B s

(g

1 1 1 1 \?
- _;—i_F .

2.3. Conclusion. We are interested in polynomials that are irreducible and have a simple solution.
Using both previous results yields a bound on the complementary event: the probability that a
polynomial of degree d > r(2p — 1) is reducible or does not have a simple solution is upper bounded
by

7

pT16 11 1 \?
par ") T T )

where the first term is neglectible compared to the second one, the sum being of order

exp(1/p) exp(—p" ).
By taking several prime numbers p, we get a product of similar quantities which can be made as
small as desired. Polynomials whose degree decreases when reduced mod p have to be taken into
account, but their quantity does not change the final result much. Thus we get a bound on the
probability that an absolutely irreducible polynomial hold the probabilistic algorithm in check.
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Abstract

The Hermite reduction is a symbolic integration technique that reduces algebraic functions
to integrands having only simple affine poles [1, 2, 7]. While it is very effective in the case
of simple radical extensions, its use in more general algebraic extensions requires the pre-
computation of an integral basis, which makes the reduction impractical for either multiple
algebraic extensions or complicated ground fields. In this work, Manuel Bronstein shows that
the Hermite reduction can be performed without a priori computation of either a primitive
element or integral basis, computing the smallest order necessary for a particular integrand
along the way.

1. Preliminaries

We recall in this section some terminology and results from [2, 4, 6] that will be needed in the
main algorithm. Let R be an integral domain, K its quotient field and E a finitely generated
algebraic extension of K. An element o € F is called integral over R if there is a monic polynomial
p € R[X] such that p(«) = 0. The set

Ogr = {a € E such that « is integral over R}

is called the integral closure of R in E. It is a ring and a finitely generated R-module. A basis of
FE over K that generates Or over R is called an integral basis. Any submodule of Op is finitely
generated over R.

Let now & be a differential field of characteristic 0 with derivation ’. An element ¢ in a differential
extension of k is called a monomial over k if t is transcendental over k and ¢’ € k[t], which implies
that both k[t] and k(t) are closed under differentiation. We say that p € k[t] is normal (with respect
to ’) if ged(p, p')=1, and special (with respect to ’) if ged(p,p’)=p. Factors and products of specials
are special, and factors and least common multiples of normals are normal. Note that normal
polynomials are squarefree. Conversely, for p € k[t] squarefree, let p; = gcd(p,p’) and p, = p/ps.
Then, p; is special and p,, is normal.

2. Extending a Module

Let R be a Euclidean domain, K its quotient field, V a finite-dimensional vector space over K
with basis (wy,...,w,) and M,, = Rw; + --- + Rw, the module generated by (w1,...,w,). Let
w €V and M = Rw+ M, be the module generated by (w,ws,...,w,). We describe in this section

an algorithm for computing a generating set (my,...,my) of M over R.
99
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Since (wy,...,w,) generates V over K, we can write
1
w = E(alwl + -+ apwy)

where d,al,...,a, € R and d # 0. This implies that M is the submodule of R(1/d)ws + --- +
R(1/d)w, generated by wy,...,w,,w, i.e., by the rows of

d

a; ag ... (7%

Using Hermitian row reduction, we can zero out the last row of M, obtaining a matrix of the form

bl,l b172 ... bLn
ba1 bao ... bay
vl )
bn,l bn,2 . bn,n
0 0 - 0

with b; ; € R. A generating set for M over R is then given by
1 n
m; = Ez:lbi’jwj for 1<71<n.
]:

The cost of this computation is O(n®) operations in k[t].

3. I-Bases

Let k be a differential field of characteristic 0 with derivation ’, ¢ a monomial over k, R = k[t],
K = k(t), E a finitely generated algebraic extension of K and O the integral closure of R in E.
Given any vector-space basis (w1, ...,w,) of E over K, let f; ; € K be such that

n
(1) wi = Zfi,j’wj for 1<i<n
i=1

and F,, € R be the least common multiple of the denominators of all the f; ;’s.

Definition 1. With the above notations, we say that (wi,...,w,) is an I-basis if F}, is normal
and w; € O for each 1.

For any vector-space basis of F over K we have an algorithm for transforming it into an I-basis
within O(n3) operations in k(t).

4. The Lazy Reduction

With the notations as in the previous section, let (wi,...,w,) be an I-basis for E over K, the
fi;’s be given by (1), Fy, be the least common multiple of the denominators of all the f;;’s, and
M, be the n by n matrix with entry £, f; ; at row ¢ and column j. Let f € £ and write

f_A1w1+---+Anwn
- D
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where D, A;,..., A, € k[t] and ged(Ay,...,A4,,D) = 1. Let D = dyd3-- dﬁi% be a squarefree
factorization of D, d;s = gcd(d;,d;) and U; = d;/d; s for each i, S = dl,sd%s' dmi}s, U =
U1U22 ---U" and V = U,,41. Then,
D = syym™t!
where S is special, V' and all the squarefree factors of U are normal, and ged(U,V) = 1. Let
Gy = Fy/ ged(Fy,, UV). Note that Gy, | Fyy | G,UV. In addition, ged(G,,, V') = 1 by construction,
and since the basis is an I-basis, F;,, and therefore G,,, are normal.
Consider the following linear system in k[¢]/(V):

By Ay

G,UV B A

2) ( o Mfu—mGwUV’In> 2logust |
B, A,

where M!, is the transpose of My, I,, is the n by n identity matrix, and S~! is the inverse of S
modulo V. The classical Hermite reduction (where the w;’s form an integral basis) proceeds by
computing a solution of (2) in £[t]/(V') and using it to reduce the poles of the integrand. Even with
an I-basis, any solution in k[t|/(V') does reduce the poles of the integrand.

Theorem 1. For any solution (B1,...,B,) of (2) in k[t]/(V),

S B\ | YR, Cow;
3 — 1= 1=
(3) f ( ym s uvm

G, SG,UV'B
(4) Ci= 2= wUB! +m #—ZSG Uf;iB; €kt

It remains to study under which circumstances the system (2) has a solution in k[t]/(V): we
show that, whenever the system has no solution, we can extend the module k[tjw; + --- + k[t|w,
Let

. !
(5) S; = suym™tl (%) , for 1<i<n.

Theorem 2. Suppose that m > 0 and that {S1,...,Sn} as given by (5) are linearly independent
over k(t), and let Ty, ..., T, € k[T] be not all zero and such that y ;- T;S; = 0. Then,

SU &
=1
Furthermore, if gcd(Ty,...,T,) =1, then w & Oy = k[tjwy + - - - k[t|wy,.

Theorem 3. Suppose that m > 0 and that {S1,...,S,} as given by (5) are linearly independent
over k(t), and let Q,T1,...,T, € k[t] be such that

=1 =1

Then,

SU(V/ ged(V, Q))
ged(V, Q) ZTizEO
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Furthermore, if gcd(Q,T1,...,T,) = 1 and (2) has no solution in k[t]/(V), then w & O, =
E[tjwy + - -+ + k[tjwy,.

The lazy reduction algorithm follows from Theorems 1, 2, and 3: if m = 0, then D = SU;, where
S is special and Uj; is normal. Otherwise, we solve the system

=1 =1

for hi,...,hy, € k(t). Any solution in k(¢) whose denominators are coprime with V' is a solution
of (2) in k[t]/(V). In that case, (3) reduces integrating f to a new integrand whose denominator
divides SG,UV™. If the above equation has no solution in k(t) whose denominators are coprime
with V| then either the S;’s are linearly dependent over k(t) or there is a solution whose denominator
has nontrivial common factor with V, so either Theorem 2 or 3 produces w € O such that w & O,,,
and the algorithm of Section 2 produces a new basis by, ..., b, for the submodule k[tjw + O,, of O.
We transform that basis into an I-basis, express f in the new basis and continue the reduction
process. In both of the above cases, the integrand after the reduction step has an expression
whose denominator has strictly less zeroes of multiplicity m + 1 than before (it has none when the
system has a solution), so after finitely many reduction steps, we have produced a new basis made
of integral elements, and a new integrand, whose denominator with respect to that basis is the
product of a special and a normal polynomial. This is the same result as obtained by the Hermite
reduction (with an integral basis) as presented in [1, 2, 7).

Conclusion

We have presented a lazy Hermite reduction for which each reduction step uses only rational
operations and performs Gaussian or Hermitian elimination on matrices of size n by n or n + 1 by
n, while computing an integral basis requires Hermitian elimination on matrices of sizes n? by n, so
the lazy reduction is expected to cost O(n?) operations in k(¢) as compared to O(n?*) for computing
rationally an integral basis. In the case of pure algebraic functions, this yields a complete algorithm
for determining whether the integral of an algebraic function is itself an algebraic function. The
natural direction in which to extend this work is to ask whether the complete algebraic integration
algorithm can be performed rationally without computing an integral basis. Another interesting
direction would be to generalize the Hermite reduction (and its lazy variant) to solve equations
of the form 4’ + fy = g in a finitely generated algebraic extension of k(t), as was done for the
transcendental case in [5]. This could yield a better algorithm than the reduction to a linear
differential system in k(¢) [3].
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1. Introduction

Prime numbers have always attracted attention from both mathematicians and computer scien-
tists. One of the reasons is perhaps the fact that the definition of a prime is very simple, most of
the famous conjectures concerning primes can be stated in elementary terms, yet these problems
are extremely high and the techniques involved are most often very sophisticated.

We outline a few more concrete motivations to study prime numbers and to try to discover huge
prime numbers (that is, apart from trying to understand the asymptotic properties of primes via
experimentation):

— prime numbers are the elementary particles of the arithmetician; we just do as physicists do!

— primality testing/proving can be used as a benchmark for complexity studies (does there exist
any polynomial-time algorithm for factoring?), devising and programming efficient algorithms;

— prime numbers are heavily used in modern, number-theory based cryptography (RSA, discrete
logarithms, etc.). Thus it is an important matter to be able to produce large primes at will,
and to be able to prove them prime.

The main trends in the computational study of primality are the following:

— Let N be a large integer. Can one tell if N is prime?
— Find large Mersenne numbers, i.e., primes of the form 2P — 1;
— construct large “general” primes.

In this talk we will describe the solutions to the first problem, the so-called “primality testing”
problem, but we shall call it “primality proving”, to emphasize the fact that we shall describe an
algorithm with produces an easy-to-check proof together with its yes/no answer.

We shall first make a quick overview of existing primality tests; we will then concentrate on
the ECPP test, describing its principles, its main features and recent progresses in theory and
implementation. We shall end by a list of current records and perspectives.

2. Primality Tests: an Overview

A general reference for all the tests mentioned in this section is [9].

2.1. Compositeness Tests. This section covers the so-called “compositeness tests”. Given a
number N, these tests check whether IV verifies a certain criterion, which is known to be the case
if NV is prime. If it is not so, the number is known to be composite, whence the name of this group
of tests. However, if the test is passed, one can by no means be sure that N is prime.
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In a nutshell, they are fast (O((log N)?)), but can only provide one with negative answers to the
question “is IV prime”. Examples of such tests include:

— Fermat tests and extensions, where the criterion is 2V ! =1 mod N;

— Field extensions tests: cyclotomic fields (Lucas), general fields (Arno [3], Gurak [13]);
— Elliptic curves tests (Bosma [6], Gordon [11]);

— Polynomial tests (Grantham [12]);

— Combination of several of those last tests (PRIKIN).

Due to their efficiency, and their relative accuracy concerning “small” numbers N when suitably
combined, those tests are usually implemented under the name isprime in various computer algebra
packages (Maple, Pari, ... ).

2.2. Primality Proving. A real primality proof is somewhat different from the tests described in
the last section. It should be able to give an answer, either yes or no, together with a proof, for any
given number N. Of course, it should at the same time be as fast as possible.

Examples of such tests include:

— cyclotomy tests: O((log N)¢logloglog V)
* Gauss sums test: Adleman, Pomerance, Rumely (1979) [2, 15].
* Jacobi sums test: Cohen, Lenstra, Lenstra (1980) [8].
* cyclotomy tests: Bosma & van der Hulst (1990), Mihailescu (1997) [17].
— elliptic curves tests: O((log N)¢): Bosma, Chudnovsy & Chudnovsky (1985) [7]; Goldwasser
& Kilian [10], Atkin & Morain (1986) [5, 4].
— genus 2 curves: O((log N)?), Adleman & Huang (1986) [1], the interest of which is mostly
theoretical (can be proved to be polynomial probabilistic).

3. The Principles of ECPP

In this section, we shall describe the principles on which rests ECPP (which, by the way, stands
for Elliptic Curves Primality Proving). This test is an analog of the N — 1 test which has been
known for long, and is very efficient when the number N — 1 is smooth, i.e., has only small prime
factors.

3.1. The N — 1 Test. Assume that N is neither even nor a prime power (these two possibilities
can be easily avoided). Then we have the following

Theorem 1. N s prime iff (Z/NZ)* is a cyclic group. In other words, there exists a € Z such
that a1 =1 mod N, and for all prime p dividing N — 1, aN"1/P £ 1 mod N.

The triple (N, {p|(N — 1)}, a) is a certificate of primality for N. It is very easy to check from
these data that IV is indeed prime.

A more practical version of this theorem (due to Pocklington, 1914) allows one to restrict to a
set of prime factors of (N —1) whose product is larger that v/N. This however does not address the
main problem of the method, which is the need to factor N — 1, at least to some extent. Compared
to this, finding a is a merely trivial matter: if the generalized Riemann hypothesis is true, there
exists one such a smaller than 2(log NV)2.

3.2. Elliptic Curves. The main idea in the N —1 test is that if a certain group is cyclic, then IV is
prime. Thus we just need to find a generator. Proving that a given number is a generator amounts
mostly, from a computational point of view, to factor to some extent the order of the group.
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The idea of Goldwasser and Kilian was to construct a vast number of groups of different orders
with the same property that the N — 1 test, so that one can hope to find at least one such group
with a smooth order.

Let us introduce quickly elliptic curves. Let K be a field of characteristic # 2,3. An elliptic curve
defined over K is a projective nonsingular curve defined by an equation Y27 = X3 +aXZ2% + b2Z3,
where (a,b) € Kx K. More concretely, E(K) = {(X,Y,1),Y? = X3+ aX +b} U{(0,1,0)}, this last
point being “at infinity”. The non-singularity can be expressed by the condition A := 4a3+27b2 # 0.
To an elliptic curve, we can attach an invariant defined by j(E) = 1728(4a/A). Conversely, given
jo € K, the family of elliptic curves Y2 = X3+35, /(1728 — jo)c? X +250 /(1728 — jo )c? has j-invariant
jo (except when jo = 0 or 1728; for jo = 1728, take Y2 = X3 + aX, for jo = 0, take Y? = X3 + ).
The set of points of an elliptic curve over a certain field can be given a group structure by using
the following rules: the neutral element Og is the point at infinity; if A, B, C lie on the same line,
then A+ B + C = 0g. (Note that if a line has at least two points of intersection with a cubic
(counting multiplicities) over a given field, then it has three, so that the addition is well-defined
over the ground field.) This rule is illustrated on the following picture: M; + My + P = Op and
0p + P+ M3 = 0g, so that My + My = M3.

M, P/ D
Ml
K/ M,

If K =T, is a prime finite field, the group E(K) is finite. We can however be much more precise:

Theorem 2 (Hasse, 1933; Deuring, Waterhouse). 1. One has |#(E(IF,)) — (p + 1)| < 2,/p,

2. for all t integer in ]—2\/5, 2\/}_)[, there 1s a curve E defined over F, with ezactly p+1 —1
points over If,.

We now have to (a) find a primality criterion linked with these groups (b) make the second part
of this theorem effective. The main feature of ECPP is the use of complex multiplication to solve

problem (b).

3.3. A Primality Criterion. Both Goldwasser and Kilian’s method and the ECPP test are based
on the following

Theorem 3. Let B be an integer, m and s two integers such that slm, E an elliptic curve defined

over Z/NZ and P a point on E. Then mP = Og and
Vq primels,[m/q|P = (X :Y : Z),gcd(Z,N) =1 = Vp|N,#E(Z/pZ) = 0 mod s.

If we can find a point P satisfying the conditions of left part of this implication with s >
(/N + 1)?, then using Hasse’s theorem we see that any prime p dividing N is larger than VN,
which means that N is prime. The primality can be easily checked given (E,m,s, {q|s}, P) (the
certificate).
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This theorem, together with Schoof’s algorithm which enables one to compute the number of
points of an elliptic curve on a finite field in time O((log N)8), leads to the following algorithm
(Goldwasser and Kilian, [10]):

Repeat Choose a random elliptic curve E modulo N, compute #E(Z/NZ).

until the primality criterion can be applied [ i.e., #FE(Z/NZ) is smooth ]

Note that the application of the criterion is most often recursive: one factors #E(Z/NZ), and
gets one large factor presumably prime. ECPP is then recursively used to actually prove the
primality of this large factor. Since this factor is at worst N/2 + o(NN), the recursion depth is
O(log(N)). The complexity is thus O((log N)(log N)#), under the heuristic assumption (verified in
practice) that there are many good curves (giving smooth #E(Z/NZ)).

This algorithm has been generalized to the case of curves of genus 2 (i.e., curves Y? = f(X),
where deg(f)=5 or 6) by Adleman and Huang. In that context, the algorithm can be proved to be
polynomial probabilistic.

However, both of these algorithms are definitely unpractical. First, Schoof algorithm has never
been very efficient, and even with the more recent improvements which reduce the complexity to
O((log N)%), 4000 hours are needed to compute the cardinality of a single curve linked with the
primality of a 500-digits number.

3.4. Complex Multiplication, or Finding Curves with a Smooth Number of Points. A
partial answer to the question (b) raised above is given by the theory of complex multiplication.

Let p be a prime number such that 4p is of the form U2+ DV?2, where (U, V, D) are integers, with
D > 0. Class field theory of imaginary quadratic fields tells us that given D, one can construct a
polynomial Hp(X), of degree h(—D) (the class number of Q(v/—D)), the roots of which generate
the maximal abelian unramified extension (class field) of Q(v/—D). Moreover, this polynomial
splits on [F, as a product of linear factors, and its roots are the j-invariants of elliptic curves E
with #E(F,) =p+1-U.

For instance, for D = 4, Hp(X) = X — 1728 and one can take for E the curve of equation
Y2=X34aX. Ifp=1moddorp=2,4p=U?+V? and #E = p+1 — U. Note that U is only
defined up to sign, and according to the choice of a (square or non-square mod p), both possibilities
can occur.

The previous algorithm becomes:
repeat

repeat
Find D such that 4N = U%2+ DV?, and compute (U, V') using Cornacchia’s algorithm.
until N +1 — U is smooth;
find a root of Hp(X) mod N (use Berlekamp’s algorithm); construct E so that j(E) = jo,
and choose among the family constructed an F such that #E =N +1—-"U,
until one of the primality theorems can be applied.

4. Recent History

4.1. Recent Improvements. In this section we describe shortly the recent improvements included
in the last version of the ECPP software.

First of all, the problem of whether the number of points on the CM-curve is N +1 — U or
N + 1+ U is now almost completely solved. For D = 3,4, this follows from a theorem by Katre.
For h =1, see [14]. For D = 20, see [16]. A recent paper by Stark [19] settles the case (D,6) = 1.
We have recently solved, using new invariants, the case D = 0 mod 3, and partially solved the cases
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D = +1 mod 3 [18]. As a consequence, one no more needs to compute [p+ 1=+t P to find the exact
cardinality of the curve.

Several implementation tricks have also be added: trial divisions steps have been improved, and
I/O have been drastically reduced. The use of Montgomery’s arithmetic has allowed a speedup by
a factor of 2. Berlekamp’s algorithm (which is used to factor the polynomial Hp over the field I, )
has been adapted according to an idea of Atkin: Classically, one splits the polynomial P over F,
by computing ged(P(X), XP~1)/2 £ 1). If small factors of p — 1 are known, we can take a d-th
root of unity (4, and compute ged(P(X), X~1)/d _ (%) for all 0 < 4 < d. Instead of splitting the
polynomial into two parts of degree roughly half of the initial polynomial, this should split it into
several parts of smaller degree. Since our goal is just to find one linear factor, this should be much
better, and indeed it is. This variant of Berlekamp’s algorithm proved to be extremely efficient.
Finally, backtrack was implemented at the request of E. Mayer, to allow one to restart interrupted
computations. The current publicly available version of ECPP! is v.5.6.1 which, though newer than
the one in MAGMA, for instance, does not include any of the improvements or the tricks described
above. The up-to-date version is version 6.4.5, currently unstable.

4.2. Records. Large primes proved to be prime by using ECPP software include the following
“world records”:

— Cofactor of 22" + 1 (564 digits, 458 hours on a Sun 3/60) (1988);

— Titanic (2339 +1)/3 (1065 digits, 328 days on a Sun 3/60) (1988);

— p(1840926) (1505 digits, 4 years of Sun 3/60) (1992);

— (2731 _1)/458072843161 (2196 digits, 1 month on an Alpha 400 MHz, 6 hours to check the
certificate) (1998, joint work with E. Mayer).

However, the record is now the property of P. Mihailescu, using cyclotomy-based tests.

5. Conclusion

ECPP now seems to have reached a “stable” stage, where most of the theoretical problems with
a real algorithmic pertinence have been solved, and the code has been cleaned and speeded up.

Perspectives include exploration of higher genus (a4 la Adleman-Huang). The main trouble is
that the theory of complex multiplication is much more complicated in higher genus, and lots of
practical problems arise when studying curves of genus > 2.

Another direction of exploration which needs further development is to try to make the best two
primality tests (ECPP and cyclotomy) interact with each other, for instance through the concept
of “dual pairs”, i.e., couple of integers (p,q) together with an elliptic curve E defined over Z such

that #E(F,) = q and #E(Fy) = p.
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Abstract

The cyclotomic test was invented by Lenstra to combine the Jacobi sum test with Lucas-
Lehmer tests. Although it has an odd asymptotic behaviour—O(logn logloglogn)—and
an “almost” deterministic approach, which makes certificates impossible, the cyclotomic
test is robust and much faster than ECPP for numbers that can be proved with current
computers. Also, in its central step, it is better understood, which does not leave much
room for improvement.

This talk describes the general theory of cyclotomy of rings, the test and interesting
relations with older tests of the Lucas-Lehmer type. In a second part, open problems
related to primality tests are discussed. Although new records continually increase the size
of numbers that can be proved prime, a general lack of knowledge will be uncovered.
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For uniform data, hashing is known to provide fast access schemes [12]. The idea in hashing is
to maintain a table, of size m say, and map n keys to the locations of the table. In the absence of
complications, later on we can retrieve the key by looking up its hash position in the table. A key
x is associated with a hash address h(z) € {1,...,m}. In practice, data may collide: the chosen
hash function may map two keys to the same location in the table. In this case we must resolve
collisions. Standard mechanisms for collision resolution are chaining and linear probing, among
other. For hashing a set of n keys to be successful, m must be at least as large as n. The ratio
a =n/m < 1 is called the load factor and plays an important role in the analysis. The special
case a = 1 corresponds to eventually filling the table at the end of hashing the entire data set;
this case will be dubbed the title full table. A sparse table (small o) may be viewed as a collection
of smaller full tables separated by empty locations. These smaller full tables are also figuratively
called islands.

The situation is paralleled to balls-in-urns arguments. In this analogy, the n keys are emulated
by n balls, and the m hash locations are emulated by m urns. The random allocation of balls unto
urns is the parallel of a uniform hash function. Several results are mentioned to indicate some facts
about random allocation of balls in urns and are related to classical theory:

— Collisions occur early (the Birthday Paradox);

— The probability of no collision in a full table is rather small (exponentially so);

— Empty cells disappear late (Coupon Collector’s Problem);

— In a sparse table, the maximal share of a bucket is moderately high. For instance if the

average share of an urn is @ = n/m = 1/2, still one of the shares grows on average as fast as
log n/ log log n.
A proof is sketched to argue that when both m,n — oo, in such a way that n/m — «, the
number of urns that receive exactly k (fixed) balls follows a Poisson law with parameter a:
. o*
P{an urn receives k balls} = e .
Noticeably, even when the number of balls and urns are the same (o = 1) the proportion of empty
urns (k = 0) approaches e~ = 36%.

In passing, the analysis of Separate Chaining (when all keys hashed to the same location are
linked in a linear chain) is mentioned. The main thrust of the talk, however, focused on Linear
Probing Hashing. In this latter collision resolution method, when a key is hashed to an already
occupied location, the resolution algorithm looks for the nearest unoccupied position above the hash
position (wrapping around to the beginning of the table, if necessary). The distance a key travels
till collision is resolved, the displacement, is a measure of efficiency for data insertion and retrieval.
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Stochastically, the displacement increases as more keys are placed in the table. For example,
stochastically the last key has the highest displacement. This last displacement is intuitively small
for small a. If «v is close to 1, “clotting” occurs and the average displacement is asymptotic to m/2.

The problem was first proposed by Knuth in 1962. Over the course of time connections to Abel
identities and Ramanujan’s function were discovered. “Generating functionology” is a key element
in the analysis. A broad array of analytic constructions (a dictionary of formal operators so to
speak) together with singularity analysis play a central role in the analysis. A starting point is the
decomposition of an almost full table (n = m — 1) into two full tables:

(full) = (full) * (full),

with the x indicating an empty slot at any position. In the language of the enumeration generating
function F'(z), this decomposition corresponds to an integral operator in the dictionary, giving

F:/@mT.

The substitution T" = zF gives an ordinary differential equation from which it is then demonstrated
that T'(z) is the tree function that solves the equation

T = ze'.

By Lagrange’s inversion and methods of Eisenstein and Cayley, an explicit formal series is obtained:

T(z) = Znn_ L
n=0
Trees also have a decomposition, discussed by Knuth as early as 1963. The number of almost-full
tables for n keys is
F,=(m+1)""

The talk then shifts focus from counting (the totality of the sample space) to distributional
analysis of almost full tables. Conditioned on where the empty slot falls in an almost-full table,
one obtains a convolution formula for the probability generating function of full tables:

n—1
n—1
B@=-Y (", )atat s R R 0

k=0
Let F(z,q) be the bivariate generating function of the sequence F;,(¢). Via a number of differential
operators on F'(z,q), moment generating functions are expressed by differential equations involving
rational polynomials of the tree function. Let d, ,,, be the total displacement to place n uniform
keys into a hash table of size m. Extraction of coefficients then yields the following result [7, 2].

Theorem 1.

Bldual = 5(Qm) ~1),  E[d},] = 75 (5n* + 4n— 1 - 8Q(n)),
where Q(n) is a Ramanujan function.
Asymptotic analysis of the mean and variance gives a series expansion.

Theorem 2.

V2w 2 V2T 2
Bldnn] = =0 — g+ Zgmnt? = g +0(n ),
103 16 — 3 V2
Var[dy, »] = L T2y Y2032 L

24 144 135
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Higher moments are “pumped” from the functional equation on F(z,¢q). Through the rth de-
rivative, one gets a functional equation for the rth moment. The latter functional is solved either
exactly or asymptotically. The method has been used before in various combinatorial analyses, such
as Quicksort [4], path length in trees [17], Brownian excursions [11], in-situ permutations [9, 6].

The Airy distribution is introduced next. Its distribution function solves the differential equation

Y" —2Y =0,

and is known to have the integral representation
) 1 [ 1,
Ai(z) = = cos(—t + zt) dt.
™ Jo 3

The Airy distribution is uniquely characterized by its moments, as its exponential moment gener-
ating function converges in a neighborhood of 0. By showing that all moments of the random total
displacement converge to the moments of the Airy distribution, one main result of the investigation
is obtained.

Theorem 3. In an almost full table the random total displacement d, ,—1 converges in distribu-
tion to A, a random wvariable having the Awry distribution, in the usual sense of convergence of
distribution functions: for every real x,

dn,n—l
P{WS$}—>P{AS$}, as m— oo.

Full tables are building blocks of general hash tables. Generally, a table can be decomposed as
(full) = (full) % - - - x (full).

Given that there are k islands, the bivariate generating function becomes the convolution F¥(z,¢q).
The whole analysis package outlined above can then be “recycled” to derive the result for a
general load factor, as in [2, §|.

Theorem 4.
n
Eldpn,] = §(Q0(m,n -1)— 1),

Bld},,] = 35
— ((m—=n)* + 4(m —n)® + (6n + 3)(m — n) + 8n)Qo(m,n — 1)].

where Qo(m,n) is a Ramanujan function. Asymptotically, these expressions simplify to

Eldn) = 2(1‘i 5" _O‘a)B +0(n ),

6 — 602 + 403 — ot
Var[dy, n] = 1201~ o)

The convolution form of the generating function admits a Gaussian law.

(m—n)*+(n+3)(m-n)*+Bn+1)(m—mn)+5n®+4n—1

Theorem 5. The random total displacement s asymptotically normally distributed.

This result is obtained by a delicate saddle point analysis on the integral
1 F’rn—'n
x ]{ (2,9) dz,
271 P

an expression for the coefficient (a probability generating function) of 2™ in F™~"(z, q), the bivariate
function for a table of m locations receiving n keys.
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This general law for coeflicients of functions that are large powers of generating functions has
wide applicability and appears later in other contexts, like for example the analysis of Distributive
Sort (a flavor of Bucket Sort) with a large number of buckets [13].

By no means the Airy distribution appears in hash tables as an isolated phenomenon. It seems
to be a ubiquitous law in combinatorial analysis. We now know that it appears in full hash
tables for Linear Probing with Hashing; inversions in trees; random walks; path length and Dyck
or Catalan walks in random trees. These connections to the Airy distribution may be found
in [10, 3, 8, 5, 16, 11, 17, 18, 14, 1, 15]. These works connect various areas of combinatorial analysis
to each other and eventually to the Airy distribution. Although closed forms for bivariate functions
for random variables with the Airy distribution are known, their moments are still hard to find.
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Abstract
The smallest size of components in random decomposable combinatorial structures is studied
in a general framework. The results apply to several combinatorial structures in both

the labelled and the unlabelled case. Typical examples are the cycle decomposition of
permutations and the factorization of polynomials over finite fields into irreducible factors.

1. Introduction

Many types of combinatorial objects decompose as sets of simpler basic objects diversely known
as “prime”, “irreducible”, or “connected” components. For instance, a permutation decomposes as
a set of cyclic permutations, a polynomial as a (multi)set of irreducible factors, and a graph as a
set of connected components. Such situations are combinatorial analogues of the fact that natural
numbers uniquely decompose as products of primes.

Let Z be a class of basic objects, F the class of all sets of objects from Z, that is

F =Set(I).

As usual, this schema covers both the labelled case (L) where sets are built upon labelled products,
and the unlabelled case (U) where multisets are intended. Enumeration is treated by generating
functions [5]. The generating functions (gf’s) F'(z),I(z) corresponding to F,Z, are taken to be
either the exponential generating function (egf) in the labelled case or the ordinary generating
function in the unlabelled case,

n

(L) : Fz)=Y R I(z)=Y" Ini—j

U): F(z)= ZFnz" I(z) = ZInz”,

with F,,, I, the number of objects of size n in F,Z. Then, the fundamental relations between
generating functions are given by the exponential formulee:

(L): F(z) =€l
W (U): F(z)=][-) " =exp (I(z) 1) + I ) .
k=1

The construction covers a number of classical combinatorial structures like permutations (cyclic,
general), monic polynomials over a finite field of cardinality ¢ (irreducible, general), functional
117
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graphs (connected, general) in either the labelled or the unlabelled case. In fact, the examples just
cited all belong to an interesting class called the “exp-log” class that was introduced in [4].

Definition 1. A pair (Z,F) is said to have the exp-log property if I(z) has a unique dominant
singularity p of the logarithmic type,

(2) 1(z) z:palog =2/

+ o+ 0((1 - 2/p)),

for some € > 0, where a is called the multiplier. Accordingly, one has
(3) F(z) ~e'® ne (1 —2)79, ¢ = e®.

It is understood that these expansions should hold in an indented disk of the type required by
singularity analysis.

Based on the known facts for integers [12] and on specific combinatorial examples, the following
properties are expected to hold true:

1. Prime Number Theorem: The asymptotic density of irreducible objects satisfies

I, . 1

— ~ (ae”°T'(a))—.

2~ (@ T (@)

2. Gaussian law: The number of irreducible components in a random F-object of size n is
asymptotically Gaussian with mean and variance each asymptotic to alogn.

3. Dickman’s law: The density of F-object of size n whose largest Z-component is of size
m = n/u involves a function of which a prototype is the Dickman function p(u) classically

defined by the difference-differential equation
) =1(0<u<l), up(w+pu—1)=0(u>1).

4. Buchstab’s law: The density of F-object of size n whose smallest Z-component is of size
m = n/u involves a function of which a prototype is the Buchstab function w(u) classically
defined by the difference-differential equation

ww(u) =1 (1 <u<?2), (uw(w)) = wlu —1) (u > 2).

The Prime Number Theorem for exp-log classes derives immediately from basic singularity analysis
theorems. The Gaussian law was established in [4] by means of characteristic functions, thanks to
the uniformity afforded by singularity analysis; it is an analogue of the classical Erdos-Kac theorem
for the number of prime divisors of integers. The Dickman law is known originally from number
theory [12] and it holds as well for the cycle decomposition of permutations [10], its extension to
the general framework of exp-log classes being due to Gourdon [7]. The purpose of the talk is
precisely to establish for exp-log structures the Buchstab law of smallest components by building
upon Gourdon’s analysis of largest components.

2. Cycles in Permutations

In its simplest terms the problems are well exemplified by the analysis of smallest and largest
cycles in permutations. In an important paper, Shepp and Lloyd [10] established the Dickman
law and the Buchstab law for permutations. Their approach is however based on an asymptotic-
probabilistic model of permutations as sums of Poisson random variables of rates 1, %, %, ... relayed
by nonconstructive Tauberian arguments. Gourdon [7] was instead able to push the analytic ap-
proach to its ultimate limits, thereby solving the long-standing Golomb-Knuth conjecture; see [6].
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From standard methods of enumerative combinatorics the egf’s of permutations with all their
cycles of size at most m (PIS™(2)) or at least m + 1 (PP>™(2)) are given by

m

2 m
(4)

1 zm+1 Zm+2
f—d exp — — — e
1—2z m+1 m+2
m—+1 m—+2
P[>m](z) = exp Z + Z +---
(5) m+1 m+2
B 1 z 22 2™
TP \TT T m

Let L, and S,, be the random variables that represent the largest cycle and the smallest cycle in a
random permutation of size n. Equations (4) and (5) give access to probabilities, as

Pr{L, < m} = ["|P="(2),  Pr{S, >m} = [z"|PP™(2).
In the analytic perspective, an important role is thus played by the decomposition of the loga-

rithm into its partial sum and remainder,
k

=z P
= $m(2) + Tm(2), Sm(z) == Z o Tm(z) == Z e
k=1

k>m

lo
& 1—-=2

Consider now smallest cycles. For any fized m, singularity analysis at z = 1 immediately implies
a formula for generalized derangements,

(6) PP™ = [MPPT(z) = e 4 0(1),

where H,, = 1+ % + -+ % is the harmonic number and the error term is exponentially small.
There is no claim to uniformity, but this argument suggests for m tending to oo (at least sufficiently
slowly) the approximate formula

ei’y
(7) poml o €

m

Let S, be length of the smallest cycle in a random permutation of size n. The estimate above
suggests that the expectation of S, satisfies

E[S,) =) PP™ = e 7logn(1+o(1)),

m>1

where the asymptotic estimate matches what is otherwise known about the distribution of S,.
However, an approximation of the form (7) cannot hold all the way up to m = n — 1 since

1
-1
(8) prl = >
corresponding to cyclic permutations. A natural way to reconcile (7) and (8) is to look for a version

that is of the form
(9) P[>m] ~ w(n/m)

n ~ )
m

where one should have w(1) =1 and w(+o00) = e~7. It turns out that an amended form of (9) does
hold true with w(u) in (9) being precisely the Buchstab function.
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3. The exp-log Class

The main theorem of the talk deals with the general exp-log case. We state it here in the case
of a multiplier @ = 1 where the standard Buchstab function appears. Also, we develop the main
ideas in the representative case of the cycle structure of permutations.

Theorem 1. For a random element of size n in an exp-log class F of multiplier a = 1, the
probability that the smallest component S, s of size greater than m satisfies

Pr{S, >m} = %w (E) +0 (% + 10gn> ;

m m nm

uniformly over the range {0,...,,n — 1}.

The proof starts from Cauchy’s coefficient formula

1 dz
E) >m P >m

C um

With the purpose of “capturing the singularity”, the integration contour is taken to be a circle of

radius close to 1, namely e1/™. Set
z=e ",

n

where ¢ ranges from 1 — nim to 1+nir. Then z~" normalizes to an exponential e’. The form (5) of

the gf P>™l(z) involves r,,,(z) that is none other than a Riemann sum relative to the exponential

integral,
+00 d
E(v) :=/ e
v w

Thus, everything rests on a uniform approximation of the Riemann sum r,,(z) by the exponential
integral. This is provided by the following key lemma of [6].

Lemma 1 (Gourdon). One has uniformly for R(h) > 0 and |3(h)| < T,

rm(e™) = E(mh) + O (e:h> .

(The proof of the lemma is based on the integral formula

1 [t 1
e *———ds,

Tm(eih) = 1 — e—8/m

m Jmh

and the decomposition

1 _ 1 1 4 1
l—e? \l—e>? 2z 2’
where the first term is analytic near z = 0.)
Using Lemma 1, one can justify replacing the remainder logarithm in the expression of

[z"](PP™(z) — 1)
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by an exponential integral. In this way, one establishes rigourously the chain of approximations

1 1+inm t/n
pPml = /1 (™ _ 1)etay

2imn 1 _inr
(11) o I G
20 )1 oo
1 l—I—iOO
~ (eP® — 1)et/rdt,

21Tm J1_ e

where p = m/n. (This is easier said than done!)

Now, the form (11) is an inverse Laplace integral evaluated at 1/p. It can be matched against the
Laplace transform of w(u), itself directly derived from the defining difference-differential equation.
Thus eventually, the Buchstab law arises from Cauchy’s coefficient integral upon using a contour
close to the singularity z = 1 with a “renormalization” that leads to the appearance of a Laplace
transform—the transform of Buchstab’s function.

The technique adapts gracefully to all exp-log structures with multiplier a = 1 since these behave
analytically very nearly like permutations. For other multipliers a # 1, a function w,(u) closely
related to the Buchstab function must be introduced (work in progress). Finally, like in Gourdon’s
treatment of largest components, other problems can be dealt with including: (¢) local and central
limit laws; (47) distribution estimates for the rth largest component for small fixed r.

4. Applications

The analysis sketched here follows closely a preprint by Panario and Richmond [9] and the
related works on largest components [6, 7]. It applies to all exp-log classes. In particular, it special-
izes to polynomials over finite fields and hence has consequences on the analysis of corresponding
algorithms. We may cite here:

1. The comparative analysis of several halting rules for the Distinct Degree Factorization phase
of univariate polynomial factorization in [3], which requires knowledge of the degrees of the
two largest irreducible factors.

2. The analysis of the trial-and-error construction of irreducible polynomials by Ben-Or’s al-
gorithms [9], where only partial factorisations are attempted and a candidate polynomial is
discarded as soon as its factor of smallest degree has been found.

More generally, the analogy between the prime decomposition of integers and exp-log structures is
a striking fact that constitutes a valuable addition to the abstract theory of combinatorial schemas
initiated by Soria [11]. (Other general approaches have been recently developed by a variety of
authors in a stochastic perspective; see [1, 2, 8].)
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1. Introduction

Tries are a general-purpose data structure of the dictionary type, that is supporting the three
main operations Insert, Delete and Query. To see how they are defined, let A = {aj}§:1 be an
alphabet and S be a set of strings defined over .A. The trie associated to S is recursively defined
by the rule

trie(S) = (trie(S\a1), trie(S\asa),. .., trie(S\a,))

where S\« refers to the contents of S consisting of strings that start with o and stripped of their
initial letter, and the recursion stops as soon as S contains one element.

Searching a trie T for a key w just requires tracing a path down the trie as follows: at depth
i, the ith digit of w is used to orientate the branching. (Insertions and deletions are handled in
the same way.) To complete the description, we need to specify which search structure is used to
choose the correct sub-trie within a node. The main possibilities are:

1. the “array-trie” which uses an array of pointers to sub-tries. This solution is relevant for small
alphabets only, otherwise too many empty pointers are created;

2. the “list-trie” that remedies the high-storage requirement of the “array-trie” by using a linked
list of sub-tries instead. The drawback is a higher cost for the traversal;

3. the “bst-trie” which uses binary-search trees (bst) as a trade-off between the time efficiency
of arrays and the space efficiency of lists.

In particular, the bst-trie can be represented as a ternary tree where the search on letters is
conducted like in a standard binary search tree, while the tree descent is performed by following
an escape pointer upon equality of letters. We shall refer to this data structure as a ternary search
trie or tst. An example trie with its basic representation and the equivalent ternary search trie
over the alphabet A = {a,b,c} is represented on fig. 1 and 2. As is well known, the performances
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FIGURE 1. Basic trie FIGURE 2. Its ternary search trie representation
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of tries depend upon the probabilistic properties of the strings processed. More precisely, we shall
work with two types of models:

— The models for the infinite strings inserted in the tries. These models depend upon the number
of strings inserted—either a fixed number n or the output of a Poisson random variable P(n)—
and also on the way the characters are emitted after one another—either independently or
with some memory scheme such as a Markov process or a continued fraction.

— The models for the finite keys inserted in the tst nodes. Examples of such models are the multi-
set model {a]",a5”,...,ar"}, the Poisson model P(n,p;) or the Bernoulli model B(n,p;). It
should be emphasized that since the infinite strings are drawn independently, their ith letters
are also independent, which is matched by the previous models.

The quantities we are interested in to capture the tries performances are defined as follows:

Definition 1. The comparison path length of a tst ¢ is defined as the sum of the distances from
the root to the external nodes, expressed in number of comparison pointers. Similarly, for a string
s, the search cost R(s,t) is defined as the number of comparison pointers followed when accessing
s in t. More precisely,

(1) L(t) = l(root(t)) + Z L(t;) and R(ajs,t) = ri(root(t)) + R(s,t;)

with /() the number of external nodes in the sub-tries pointed at by comparison pointers and 7;()
the cost of searching a; in the bst present at the root of ¢.

2. Tools Used to Perform the Analysis

2.1. Left-to-Right Maxima, Shufle Product and Formal Laplace Transform. Let w be
a word of A*. The ith letter of w denoted w; is called a left-to-right maximum if w; > w;,j =
1,...,72— 1. For example, the permutation asasaiasas has three left-to-right maxima, respectively
a3, az and as. If one builds a bst from a permutation, the left-to-right maxima are naturally in
bijection with the nodes located on the rightmost branch. For the analysis to be performed in
section 3.1, we therefore investigate left-to-right maxima.

Clearly, all the possible decompositions of words by sets of left-to-right maxima are encoded by

the regular expression
T

A* = H(s +aj(ar + -+ +aj)*).
i=1
Marking a; by the two variables zxz; together with w if it is a left-to-right maximum yields the
generating function
T

ZUT;
N, = 1 J
max (2, U, T1, T2, ) g];[l( + 1—2($1+"'+$j)>

whose coefficient [z"uFz]"...z""] is the number of words of length n that have & maxima and n;

occurrences of the letter a;. A similar formula holds for Nyi,, the generating function of minima.
Another tool we shall use is the shuffle product m from which a word can be decomposed into
words contained certain letters only:

(.A\{C\{})* = (CL1 + -+ aafl)*m(aa_H I ar)*_
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This product corresponds to the following operation on generating function

() (50) -2 (£ () rr) -

A nice way to handle it is through the formal Laplace transform defined by £ [Zn fn‘;—n,] =5 fnz™
In particular we have f(z)mg(z) = L [E_l[f(z)] . E_l[g(z)]] .

3. Main Results

3.1. Search Costs in Bst. We analyze the cost of searching a letter a, in the bst bst(w) built
from the letters of a word w from A*. More precisely: given a letter a, and a word w, the search
cost co(w) is defined as the number of edges on the branch corresponding to a, in the bst built
from the letters of w. In particular, we are interested in condensing the cost related informations
in the formal sum

(2) Cy = Z ube®) .y

weEA*
whose exponent of u refers to the search cost c,(w). To see how c,(w) can be evaluated, observe
that w = prefix(w) ao? suffix(w) where a,? means that the letter a, may be absent. The
interest of this decomposition is to show that the cost of searching a, in the bst built from w is
chargeable to prefix(w). And since prefix(w) can be expressed as the shuffle product on the sets of

letters aq,...,aq—1 With agqy1,...,a,, the formal sum (2) yields the value of Cy(z,u,z1,...,z):
2T
N, ZyUy X1y ey La—1 )M Nmin(2, U, Tat1,. .., & 1+ 2 .
( max( 1 « 1) mln( a+1 7‘))( 1—Z($1+---+£I;‘T)>

This form condenses all the information on costs. For example, the generating function of average
costs is obtained by differentiating with respect to v and setting u = 1. For example:

Theorem 1. The mean search cost of the letter a, in a bst built from the Poisson model is

BlCal= 3 (=), with Fug =3l
min(u,v)ﬁiﬁmax(u,v) .0 J
JjFa

3.2. Exact Analysis. In this section, we outline the analysis of the statistics introduced in def. 1.
The crux of this analysis consists in using quantities that are independent from the source model
the keys are generated by. To see how this works, consider the Poisson process of parameter z. The
number N}, of strings that have a given prefix h obeys a Poisson law of parameter pyz, with py the
source dependent probability for a random string to start with the prefix h. Then, the probabilistic
behavior of the tst that corresponds to the prefix A is described by a Poisson model of parameter
{zpn} with individual letter probabilities {p;,}, with p;, the conditional probability to have the
prefix A followed by the letter a;. Applying theorem 1 locally and unwinding the recurrences (1)
yield

Theorem 2. The comparison path length and the comparison cost of a random search in a ternary
search trie made of n keys have expectations given by

Elll,=2) 3 %[nmi,ﬂ — 1+ (1= Pufi, 1)),
heA* i<j ’

. PhiPhjro o N
E[R]n—th*; B~ (1= Palis "]
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array-trie (standard) list-trie  bst-trie (tst)

Pointers —n —n —n
Hs Hs Hs
*
Path length Hisnlogn IC_I—‘;n logn Z—anogn
C% s
Search Hs logn Hs logn Hs logn
TABLE 1.

with Py, [Z,]] = Z?{;:z Prh 0Nd Dh.o = PrPalh-

A noteworthy feature of this theorem is its independence from the source model since its deriva-
tion uses solely the independence of the digits processed. It can therefore be instantiated for the
three models mentioned in section 1.

3.3. Asymptotic Analysis. We aim at finding asymptotic equivalents to the quantities of theo-
rem 2. These quantities are harmonic sums amenable to a treatment with the Mellin transform [2].
The Mellin machinery applied to the formulae of theorem 2 requires evaluating the p;; proba-
bilities. This is done under two models: a memoryless (a.k.a. Bernoulli) source outputting infinite
strings where the letter a; has probability to appear independently of past history; and a Markov
one producing letters with an initial distribution and with transition probabilities p; ;. Singularity
analysis on the Mellin transforms (combined with the so-called Dirichlet depoissonization) yields

Theorem 3. The comparison external path length and random search cost for a ternary search tree
built on n keys produced by a source S, either memoryless (m) or Markovian (M ), have averages
that satisfy

C C
E[L], = —nlogn + O(n) and E[R], = ~5 logn + 0(1)
HS HS
where the entropy Hg and the quantity Cs are source-dependent constants.

3.4. Comparative Studies. Theorems 3 and 2 quantify precisely the access costs for tst. The
same analysis can be carried out for the list-trie variant, while the parameters describing standard
array-trie stem from Knuth’s books. The results are summarized in table 1—with C}, and C},
constants known in closed forms—and show that the three structures have logarithmic costs and
require linear space. In order to assess the relevance of these theoretical analyses, a simulation
campaign was undertaken on Herman Melville’s novel, Moby Dick. Its conclusions are [1]:

Ternary search tries are an efficient data structure from the information theoretic point
of view since a search costs typically about logn comparisons. List-tries require about 3
times as many comparisons. For an alphabet of cardinality 26, the storage cost of ternary
search tries is about 9 times smaller than standard array-tries.
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Pélya Urn Models in Random Trees
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1. Examples and previous results

Consider an urn that contains balls of k different colors 1,2,..., k. There is a set of evolution
rules: (i) a ball is chosen at random from the urn, where all balls are equally likely; (i) that ball’s
color or type is noted, and the ball is returned to the urn; (4i) if the ball had color ¢, a;; balls of
color j are added to the urn.

Question of interest. What is the composition of the urn after n draws?

The model is encoded in the addition matriz A = [oy;], 1 < 4,5 < k. The a;; may themselves
be random, but this talk is concerned exclusively with deterministic «;;, i.e., the case of a fixed
addition matrix A.

Pélya and Eggenberger (1923) investigated the two-color problem, with A = sI and s a positive
integer. Suppose the two colors are red and blue, and let R, and B, be the number of red and
blue balls after n picks.

Ezample. Set s = 2 and start with two red balls and one blue ball. One of eight possible length-3
runs is: Pick blue (probability 1/3), the composition of the urn is now R; = 2 and B; = 3; Pick
blue (probability 3/5), Ry = 2 and By = 5; Pick red (probability 2/7), R3 =4 and B3 = 7.

What is the typical behavior of R, and B,,? Bernard Friedman (1949) studied a more general

urn, the addition matrix now being A = [g Z] Freedman (1965) showed that

R, — EFR,
RANO1), B.2NO1), whee R = o Pl

" VIR

and B; is defined similarly.

2. The connection to random trees

Recall the random permutation model for binary trees, where n keys are inserted into a binary
tree such that the root of any subtree is larger than all left and less than all right descendants. We
have a uniform distribution on the n! possible key orderings and wish to compute tree statistics
associated to this model.

The Poblete-Munro (1985) heuristic suggests that we can obtain a more balanced tree with little
extra work: we require that all subtrees on the fringe and of size at most three be balanced. This
means that we rebalance size 3 subtrees on the fringe, if necessary. This process yields shorter
trees; in fact E[Dy] = (12/7)Inn (compare with 2Inn for standard RBSTs).

127
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2.1. Balanced trees. Work by Yao (1978) on 2-3 trees, Baeza-Yates, Gonnet and Ziviani on other
tree statistics S, shows that we can study E[S,]| by studying fringe configurations of RBSTs, to
obtain bounds of the type fi(n) < E[S,] < f2(n). Fringe analysis is based on exact counting of
all (sub)trees less than or equal to a given height. The results improve in accuracy as the height is
increased.

Mahmoud (1998) has used Pélya urn models to study the Poblete-Munro heuristic. We map
fringe configurations to colors. The growth of the tree is modeled by a 3 X 3 urn. Suppose an
incoming node is placed on one of the four leaves of a balanced subtree on three nodes. It is
inserted without rebalancing the tree. Its sibling is a leaf. Suppose the next node is placed at that
leaf. No rebalancing is required. Finally suppose that the next node is not placed at the sibling
leaf, but rather at a leaf of the previous node. The tree must be rebalanced. We distinguish these
three configurations by assigning different colors to the leaves concerned: color 1 to the leaves of
any terminal node whose sibling is not a leaf, color 3 to the leaves of any terminal node whose
sibling is a leaf, and color 2 to all such leaves. The leaves correspond to balls in a Pélya urn. The
complexity measure of an insertion is the number of rotations, call it R,. The addition matrix of
the Pélya urn becomes

-2 1 2
A=14 -1 =2
4 -1 =2

E.g., if we replace a leaf of color 1, we lose that leaf and recolor its sibling with color 2. The new
leaves have color 3. R, is therefore the number of picks of color 3. The row sums of the addition
matrix A form the vector S = [1,1,1]7, which reflects the fact that every BST on n nodes has n+1
leaves.

If an addition matrix A has the property that there exists an m such that all the entries of A™
are positive, we say that A is regular. In this particular example, A is not regular; nonetheless

Mahmoud (1998) shows that

R, —2/7
B —2/Tn Z N (0,66/637).
Jn

2.2. m-ary search trees. Under this model m—1 keys k1, ko, ..., k1 are placed at the root of the
tree. These keys partition the remaining keys into m intervals, (—oo, k1), (k1, k2), - .., (km—1, +00),
i.e., subtrees. The construction is recursive and the branch factor is m.

Ezample. Let m = 3 and consider the keys 9,16,4,23,11,10,... The first two keys are placed
at the root, the key 4 is placed to the left of 9 and starts a new subtree, 23 is placed to the
right of 16, also in a new subtree, and 11 and 10 fall between 9 and 16, starting a new subtree
with root intervals (9,10), (10,11) and (11,16). There are three types of nodes (or blocks in a
hardware-oriented setting): leaves, nodes that contain a single key, and nodes that contain two
keys.

More generally, we ask about S,,, the number of nodes after n insertions, where S,, = Zj X3

and X7, counts the number of nodes that contain j keys. We construct an urn model by mapping
gaps between keys at a node to balls whose color indicates the number of gaps at that node. We
can recover the number of nodes of each type from the number of gaps of the corresponding color.
For instance, consider a leaf that contains ¢ keys and hence 7 + 1 gaps. We map these gaps to balls
of color 7 4+ 1. Now suppose that 1 < m — 1 and we insert a key at this leaf. We lose ¢ + 1 gaps of
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color 2 +1 and gain ¢ + 2 gaps of color ¢ + 2. The addition matrix associated to this model has the
following shape:

s =T r+1
A: “ee e _(7-+1) 7-_'_2

Lm —1
The eigenvalues of the addition matriz A. Order the eigenvalues according to their real part,
letting A1 be the eigenvalue whose real part is the largest. Athreya and Nay (1972) showed that if
the real part of Ay is less than half the real part of A1, a condition guaranteed if A is regular, then
the colors have a normal N (0,1) distribution.

In the urn model associated to m-ary trees, this property holds for m < 27, even though the
associated urn is not regular. (This suggests that regularity is too strong a precondition for the
results of Athreya and Nay.) When m = 27, there are two conjugate eigenvalues whose real part is
larger than half the real part of A;. More precisely, Lew and Mahmoud (1994) showed that for any

sequence ci, Cg,...,Cg, Where c; is the cost of a node that contains j keys, the vector of random
variables X, = [XL, X2 ...  X*]T converges to a multivariate normal, i.e.,
X, —EX.] b

7 = MVN(0,A) for m=23,...,26.
2.3. Paged binary trees. In this model every external node stores at most b keys, while internal
nodes store a single key. Overflow on external nodes is processed by splitting the node according
to some splitting rule, say by selecting the median and adding two subtrees whose roots store b/2
keys. The corresponding counting problem leads to a differential equation in F(z,y), the super
exponential generating function of paged binary trees:

O F(z,y) _ (3F(m,y)>2'

Ozb—1 oz

PBSTs have been considered by Flajolet, Mahmoud and Martinez Parra. Results that are based
on Poélya urn models indicate that there is a phase transition at b = 118, when the real part of
the second eigenvalue of the addition matrix becomes larger than half the real part of the first
eigenvalue. Work in progress by Flajolet et al. seeks to construct an interpretation of this fact in
the context of generating functions.

3. Case study: plane-oriented recursive trees

This type of tree models a recruiting process where the recruiting probability of a recruiting officer
increases with the number of recruits attracted so far, or more generally, where the probability
of a node to receive a new node is proportional to its degree, a scenario that Mahmoud (1991)
calls “success breeds success.” We use plane-oriented recursive trees as the underlying model®,
as proposed by Bergeron, Flajolet and Salvy (1992). Every node has outdegree 2k + 1, for some
k > 0; k of its children are plane-embedded nodes, and k + 1 leaves are placed in the gaps between
adjacent nodes.

LIf we were using the terminology of combinatorial analysis, we would refer to these trees as increasing trees; more
precisely, as R-enriched increasing trees, where R is the list structure.
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Counsider a chain letter scheme where the acquisition price of a letter is 100F, and copies of the
letter are sold at 40F. Given that there are n participants in the scheme, we ask how many of them
have just broken even, i.e., sold three letters. Let blue represent insertion slots at nodes that have
bought, but not sold a single letter; red, nodes that bought and sold one copy of the letter, green,
two copies, and white, three, i.e., broken even, and let B,, R,, G, and W,, be the corresponding
RVs. (We start with a single participant, i.e., By = 1, Ry = Gy = Wy = 0.) Finally, assume that
the success probability of a participant is proportional to the number of letters sold (other models
are possible and even reasonable). The addition matrix is easily seen to be

0 2 0 0
1 -2 3 0
A= 1 0 -3 4
1 0 0 1

E.g., if a participant has sold two letters and sells another, the three green insertion slots at the
corresponding node are replaced by four white ones, and a new participant who has not sold any
copy of his letter yet must be accounted for. Note that A is not regular. It can be shown that B,
is the number of leaves in a random tree of size n + 1.

Mahmoud, Smythe and Szymanski (1993) show that

B, 1/3
E(R.|~[1/6 | 2n+1),
G, 1/10
and that the covariance matrix is
1/9 —8/45 -1/15
Cov(Bpn, Ryp,Gp) ~ | —8/45  23/45 —11/105 | n.

-1/15 —11/105 —179/350
We sketch the proof of this result. Introduce the indicator variables I,(LB),IT(LR),IT(LG), IT(LW) so that
L(LB) + I,(ZR) + L(ZG) + L(ZW) = 1. We now have e.g., R, = R,,—1 + ZL(LB) — ZL(LR), and hence
B[R] = E[Ry, 1] +2E[I?)] — 2B[1{™)].

The expectations of the indicator variables are obtained by conditioning on the n — 1 picks that
lead to a particular urn (call this o-field T;, 1), so that

B,_(T,_ E[B,
Bl | T, 4] = Bn-1(Tn-1) and E[IP)] = M
2n —1 2n —1
Substitute to get
FE|B,, E[R,
E[R,) =E[R,—1] +2 [Bn] -2 Lizd

2n—1 "2n—-1
Similar computations for E[B,], E[G,] and E[W,] yield a system of recurrences of the form
[B'rw R’na Gn; Wn]T = F(’I’L)[anl, Rnfla anla W’nfl]T

where F'(n) is a matrix that depends on n. This system may be solved asymptotically. (Note that
we have made critical use of the fact that the total number of balls in the urn is a function of n,
namely 2n + 1.)

The computation of the covariance is more involved. Start from R, = R, 1 + ZISLB) — 2I£R) as
before, square both sides and use simple properties of mutually exclusive indicator variables to get

R2=R}_, +4IP)R, | —4I®R, | +4I(B) 4 47(F),
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Binary cross products of the four RVs appear on taking expectations, i.e., we develop recurrences
for E[R2] = E[R,R,] and these recurrences involve terms like

BU Ry-1] = BB Ry 1| T

= el o] = 2|t | - H

2n —1 2n—1
The result is a system of recurrences in all binary cross products that yields the desired asymptotics.
Next consider the vector X; of centered RVs;

B B; 1/3
Xi= (R | =R | -i+1)[ 1/6
G: G, 1/10
Mahmoud, Smythe and Szymanski (1993) show that
< 1/9  -8/45  —1/15
L BLMVN (o, | —8/45 23/45  —11/105
vn ~1/15 —11/105 —179/350
The proof uses martingale techniques. Recall that a martingale is a sequence Y7,Y3,Y3,... of
random variables such that E[Y,, | T,,—1] = Y,,—1. E.g., consider a fair game (“win all or lose all

with equal probability, i.e., 1/2”), which gives

1 1
E[Yn | Tn—l] =0 Yn—l§ + 2an—li = Yn-1.

Note that E[Y,] = E[Y,—1] = --- = E[Y1] = 0 in this example; this is known as the martingale
difference property, because if Y1,Y5,Y3,... is a martingale, then E[Y,, =Y, 1 | T,, 1] = 0. We
can reconstruct the martingale from the sequence of first differences, i.e., via ) ;_; AYy = Y.
More generally, we can construct a martingale from any sequence of random variables that has the
martingale difference property; this was done e.g., by Régnier (1989) in the context of algorithms,
who showed that the cost of Quicksort has a limit distribution.

If E[AZ; | T;—1] = 0, then A, = )" | AZ; is a martingale, because

n
Z ANZ; | Trhy
=1

By linearity, E[AZ; | T;—1] = 0 implies E[b; AZ; | T;—_1] = 0 for any sequence of constants {b;} , and
hence Z?ﬂ b;\Z; is a martingale.
We return to the four-color urn of the chain letter scheme; consider the color blue.

E[A, | To4]=E —E

n—1 n—1
AZp+ Y DZi | Toy| =Y AZi= Ay 1.
=1 =1

1
BIB: | Ti] = B|Bioy + (1= I{P) | Tt | = Biy +1 = BUP) | Tii) = Bioy +1- 5—Biss

Further manipulation yields
E[B; —1/3(2i +1) | T;—1] = (Bi=1 — 1/3(2¢ — 1)) +1/3(2i — 1) — 1/3(2¢ + 1)
1 .
and hence E[B} | T;_1] = B} | — B} ;/(2¢ — 1). B} is not a martingale but

]' *

Bf — By + 5 — 1 i1
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is a martingale difference, because FE [AMZB | Tn_l] = 0, where we have set

1
B
AMZ = B,;k - B;‘—l + m ,Zk_l.
We can construct a martingale from AM? , sinced biAMZB is a martingale for any sequence {b;}.
The Cramér-Wold device can be used to prove convergence to a multivariate normal. Suppose
we seek [Xr(bl), Xy(?), XY(LB), ... ,X,(LJ)]T b, MVN(0, A). It suffices to prove that any linear combination

of the X,(Z') converges to a normal distribution, i.e.,
XV + aXP + -+ X9 B N (0,00,,..0,)

a1, Q,...,qa; arbitrary. Here j = 3 and we study W,, = a1 B}, + as R}, + a3G),. Centering the
remaining two variables, we have

* * 1 *
BB} — B | Ti1] = —5; —1Bi1

2
ElR; — R, | Timn] = +ﬁ(35—1 - Ri_y)

BlG —Gi | Tia] = +m( i1~ Gi1)-
Introduce the martingale differences
AMP = Bf — Bfy + 5By,
AMF = R} — Ri_y — (B, — RLy)
AME = G ~ Gy — 5o (R, — GiLy)

k
and set V,,; = Z (bmAMiB + cmAMZR + dmAMZG) for arbitrary {bin}, {cin},{din}. It remains to

=1
choose {bin},{cin} and {d;,}. Expand V,,, to get

1 1
Vnn:bnn<B;_B:1+2n_1 :1—1>++( :,1_B:,2+m :1—3>+

To obtain the particular linear combination ay B} + as R} + a3 G} we set b, = a1, so that the term
in B}, is preserved, and choose the remaining b, ; to cancel B} |, B _, etc. This technique can be
used to show that given a1, ay and a3, we may choose constants {b;,},{cin} and {d;,}, so that

Vnn = (OélB;; + OQR:; + agGZ) — 3/261n + 10/3d1n,
which by a martingale central limit theorem yields

B*
a1 b, + aglt, + asGy, ~ L hence n D oar (ojgal a) , R LA MVN(0, A).
Vn Vn Vi o G

n

Concluding remark

It should be obvious from the highly restricted class of addition matrices that have been con-

sidered that an abundance of combinatorial problems and possible addition matrices remain to be

analyzed; e.g., apparently simple instances such as [% 2] and H (1)] have so far resisted attack.
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Abstract

Fringe-balanced binary search trees are obtained by performing rotations only on subtrees of
size three. The parameter “number of rotations” has recently been studied by Mahmoud [3],
using a Pélya urn model. This talk, based on [5] proposes a top-down approach of the
problem, that leads to a differential equation. The solution is related to the Weierstrass’
p-function. This fact allows to derive the asymptotic normality of the parameter by means
of Hwang’s quasi-power theorem [2]. An alternative way of obtaining the exact expectation
and variance, which relies on operator calculus, is also presented.

It is well-known that in a random binary search tree constructed by insertion at the leaves, the
average depth of a node is logarithmic in the size of the tree, so that retrieval of the data stored
in the nodes can be done efficiently. One simple way to improve the speed of retrieval even more
is to compress the subtrees near the leaves by doing a fringe-balanced rotation: whenever a son is
appended to a node that itself is a single son (its “brother” is an external node), a rotation of the
three nodes is performed to place the median of the three elements as the root of the subtree and
the other two elements as sons. Therefore all subtrees of size 3 in the tree are complete.

The distribution of the number of rotations that are made when constructing such a fringe-
balanced binary tree under the random permutation model was recently analyzed by Mahmoud [3],
using a Pélya urn model, and a central limit theorem for urn models by Smythe [6]. Here is presented
an alternative way, based on analytic methods, of proving the Gaussian limiting distribution. This
presentation follows [5].

1. Top-Down Approach

The recursive top-down analysis (see [4] for various uses of this approach) begins with a recurrence
relation based on splitting probabilities. When constructing a fringe-balanced tree from a random
permutation, the first three elements of the permutation determine the root of the final tree, as
well as whether or not there is a rotation at the root (a rotation occurs in four cases out of six).

Hence the splitting probability =, , which is the probability that in a tree of size n the root is
the node k, is given by

(k—1)(n—k)
Tk =~ 7my
(5)
forn>3and 1<k <n,m =m92=1/2and m; = 1. And we also get a recurrence relation for
the probability Fj, ,,, that the number of rotations is m, when generating a fringe balanced tree of

size m, starting with an empty tree (the number of rotations to construct the root of the tree is 1
133
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with probability 2/3, and 0 with probability 1/3). Thus for n > 3 and 1 < m < n:

(1) = Zﬂ'nkZFk 1 Fnkm—t + 3 ZﬂnkZFk 1 Fn—km—1-1
3o

with initial values Fpo = 1, F1,0 =1, F,0=1and Fn,m =0 0therw1se.
Introducing the probability generating function F(z,v) = En,m>0 Fy mz"v™ this recurrence

leads to the differential equation %%F(z,v) = (3+2v) (%F(z,v))a with initial conditions
F(0,0) =1, ZF(z, v)| _o=1land g5F(z,v) = 2.
Substituting G(z,v) = %F(z, v) thls differential equation can be rewritten as

o2
(2) QG(Z’, v) = (24 40)G(z,v)?

with G(0,v) =1 and %G(Z’U)L:o = 9.

1.1. Moments. The moments of the distribution are obtained by differentiating equation (2) with
respect to v, and evaluating at v = 1. Let
Z’I’LM(Z) n— 1

v=1 n>0

Mi(z) = a—iG(z, v)

ZnM(l) nl and My(z) = —
v=1 n>0
where Mf(bl) and M7(L2) denote the first and second factorial moments of the number of rotations.
M;(z) and Mj(z) both satisfy an Euler differential equation. Extracting the coefficients of the
solutions Mj(z) and M>s(z) leads to exact values for the expectation M, = M" and the variance

Var,, = MT(LZ) + M,(Zl) — ( T(Ll)> :

Theorem 1. The expectation and the variance of the number of rotations when generating a fringe
balanced binary search tree of size n are given by

2 8 66 680
My=-n—— (n>6), Varn=-—on——r (n>12).
7"y (26 o = g3 "5y (M2 12)

1.2. Limiting Distribution. Equation (2) transforms into

4 8 d ?
5(1 + 20)G3(z,v) + 5(1 —v) = (aG(z,v)) ,

from which we get the implicitly given solution of G(z,v):
G(z,v)

z= da:/\/ 1+ 2v)x 8(1—1})

This form shows a close relation between G(z,v) and the Weierstrass’ p-function, which can be
characterized, within a simply connected domain of Co,, which contains no zeros of the denominator,

o0
by the integral ( = [ dz//423 — gox — g3. Constants gs and g3 are called the invariants of p.
©(C)
Indeed, making the substitution

1—|—2’u _ 1+2vz—sv,
=1/ z/# ) TV s e
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it is shown in [5] that W (t,v) = G(z(t),v) is a Weierstrass’ p-function with invariants g, = 0 and
g3 = —8(1—v)/(1+ 2v).

Since p(¢) has a double pole at { = 0, it follows that G(z,v) has a double pole at z = s(v),
where it admits the local expansion G(z,v) = H-% (z—s(v) 2+ 0O (2 — s(v)*.

Integrating term by term, we obtain the expansion of F(z,v):

1
#s(v) (1 - S(Z—v))

Singularity analysis leads immediately to the expansion of the coefficients:

3) (7] F(2,0) = %S(v)" + (1 +0 (%))

Performing a series expansion of the integrand, the integral s(v) can be expressed in terms of a
14+ 2v

hypergeometric function:
2(1 —v)
= oF -— .
3 “( 1+2v)

In (3), the probability generating function of the number of rotations is given in a form that satisfies
the hypothesis of Hwang’s quasi-power theorem [2], so that we finally get the central limit theorem:

F(z,v) = + 0 (z —s(v)’.

11
276

)
7
6

Theorem 2. The distribution X,, of the number of rotations, when generating a fringe balanced
binary search tree is asymptotically Gaussian:

X, — %n
/ 66
637"

2. Urn Model and Operator Calculus

Pr <z :cp(m)+o(i).

N

Insertions in fringe-balanced binary search trees can be translated into an urn model of Pdlya.
The urn contains balls of three different colors, corresponding to the leaves of the tree: binary
subtrees of size 3 (which are always complete) have four leaves of color 1; in subtrees of size 2,
the two deepest leaves are colored by 3, and the third one is colored by 2. We start with an urn
containing two balls of color 1, corresponding to a starting tree with one internal node. Inserting
at a leaf of color 1, i.e. picking a ball of color 1, results in replacing two leaves of color 1 by one
leaf of color 2 and two leaves of color 3. Inserting at a leaf of color 2 results in replacing this leaf
and its two associated leaves of color 3 by four leaves of color 1. In the same manner, inserting at
a leaf of color 3 results in replacing two leaves of color 3 and one leaf of color 2 by four leaves of
color 1. Thus the process of insertion translates into the ball addition matrix A, whose (i, j) entry
is the number of balls of type j to be added when a ball of color ¢ is picked:

-2 1 2
A=14 -1 -2
4 -1 =2

Working on the addition matrix, Mahmoud [3] obtains the exact averages and covariances for the
number of balls in the urn after n picks, as well as the exact average and variance of the number
of rotations after n random insertions in an empty fringe balanced tree.

These results can also be obtained by operator calculus [1]. Define the random variables ng)
to denote the number of balls of color k£ in the urn, when n + 1 elements are in the urn altogether
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(after n — 1 random picks). Only the values E{X(Z)} and V{X(Z)} must be calculated, since all
other values follow by the relations X( ) = X(z) and X(l) X(z) X(g) =n+ 1. We denote

by pn i the probability IP{X,(LZ) = k} and by P,(u) the generating function Zk>0 Dn, xuF. The urn
picking process leads to the recursion

3k 3
k—l o k+1 — .2 k

k>0 k>0

where D denotes the differential operator %. If evaluation at u = 1 is denoted by operator U, we
get then for n > 6:

E{X®)} =UDP,;1(u) = (U + (1 - %) UD) P(u) =1 + ]E{X(Z)}

with E{X(z)} = 1. This linear recursion is easily solved and we get E{X(z)} =1(n+1) forn >6.

A similar computation holds for the second factorial moment IE:{XT(Q1 (Xﬁ?l —1)} =UD?P,41(u),
from which the variance is obtained.

The average and variance of the number of rotations can also be treated in this way. Let the
random variable R,, denote the number of rotations made when constructing a fringe balanced tree
with n elements (or, in the urn model, the number of picks of elements with color 3 after n — 1
random picks). Introduce the bivariate generating functions Ry, (u,v) =), 1Pk lu v!, where Pnk,l
denotes the probability, that after n — 1 random picks £ balls in the urn are of color 2 and [ times
a ball of color 3 was chosen. Following the picking process, the recursion for R, is

_ 2k _ 3k
Rt (u, v) j{:Pnkl ( o lvl+'}f171uk L+l 4 (1__ n_+_1> uk+1vz)_

Denoting by D,, and D, the differential operator w.r.t. w resp. v and by U, and U, the evaluations
at u =1 resp. v =1, we get for the expectation E{R,, 11 (u,v)} = U,UyDy Ry 11(u,v)

2 2
]E{Rn—l—l (u7 'U)} = (n—_HUquDu + UquDv> Rn(uav) = ]E{Rn (u,’v)} + n—_H]E{XT(LZ) }

The average value of R, is obtained by solving this recursion, and similar computations lead to the
variance.
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This talk surveys some models of random trees underlying continuous partitioning processes:

1. One-dimensional random sequential packing;
2. Kakutani’s interval splitting;

3. The random sequential bisection model;

4. The continuous binary search tree.

1. One-Dimensional Random Sequential Packing

The first model was introduced in [5]. In this model we place a unit interval I; at a random
position in the interval [0,z]. We assume that the initial point &; of the interval I; is Uniform-
[0,z — 1]. The interval (£1,£1 + 1) is removed and whichever among the remaining intervals [0, &1]
and [ + 1, z] has length that permits further partitioning (i.e., greater than 1) is partitioned in
a recursive fashion. The process continues as follows—if the intervals Iy, I5,...,I; have already
been chosen, the next randomly chosen interval will be kept only if it does not intersect any of the
intervals Iy, I, ..., Ir. In this case this interval will be denoted by Ix4q. If it intersects any of the
intervals I, Is,..., Iy, we ignore it and choose a new interval. The procedure is continued until
none of the lengths of gaps generated by the intervals placed in [0, z] is greater than 1.

A parameter of interest is the number of intervals packed in [0, z] by this procedure. We denote
its mean value by M (x). We can now formulate a differential equation (with delay) for M (z). By
conditioning on the initial point of the first interval and invoking its uniform distribution we obtain:

2 T
M(m—i—l):;/ M(y)dy + 1;
0

for brevity many obvious boundary conditions are omitted in this overview of the talk. We can
obtain the limiting behavior of this mean value via the Laplace transform and the method of
undetermined coefficients. It then follows from a Tauberian theorem that, as x — oo,

M oo t 1—e
(=) —>/ exp (—2/ 7edu) dt
xZ 0 0 u

= 0.748.

Another parameter of interest is L(z), the minimal gap length generated by the random packing.
Again by conditioning on the position of the leftmost end of the first interval packed [2], we obtain
an integral equation

P(L(z +1) Zh):l/zP(L(y) > h) P (L(z—y) > h) dy.
ZJo 137
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A similar integral equation can be obtained for the maximal gap length.

2. A Unified Model for Kakutani’s Interval Splitting and Rényi’s Random Packing

Rényi’s partitioning process has an interpretation as a parking problem: One can park a car of
length 1, if there is a space of length at least 1.
In a more general setting, one may consider parking cars (or packing intervals) of length £, for a
space of length at least 1. The expected number of cars is then
1 T
Ma+) = [ O1)+ Mz - 9)+1) dy,
0

T

Rényi’s problem is the case £ = 1, whereas Kakutani considers the case £ = 0. For this variation
Komaki and Itoh [3] find the limiting behavior

0o tq1_ —tu
lim M(z) = / (141 —0)e D exp (—2/ 1oe” du) dt.
0 0 u

T—00 x

For the probability distribution of the minimum of gaps, giving f(z) for 0 < z < 1, you get the
functional form

fla+ 6 h) = /’fz—y,)(%Mdy

3. The Height of a Continuous-Type Binary Search Tree

Consider a random permutation of 1,2,...,n, with all n! permutations equiprobable. Insert the
elements of the permutation in a binary search tree. Let H(n) be the height of the tree so obtained.
This height satisfies the equation

P(H(n+1)<h)= ZP —m)<h—1)P(H(m)<h—1).

Note that the continuous analogue

P(H(z+1) <h)= l/zP(H(x—y) <h-1)P(H(y) <h—1)dy

xr

is of the type we obtained in the continuous models considered earlier. Robson [6], Flajolet and
Odlyzko [1], Mahmoud and Pittel [4] have considered heights of similar discrete-type random trees.

4. Random Sequential Bisection Model

Applying the idea for the analysis of random packing, a continuous model is studied as a random
sequential bisection model [7].

Among the possible 27 nodes at the d-th level, 1 < d, of the associated tree the proportions of
the expected number of the internal and external nodes are the Poisson-like expressions

1 i (log z)*
x k!

k=d

and
1 (logz)*!
x (d—1)!"

respectively.
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Let N;(z,d) and N¢(z,d) denote the numbers of the internal and external nodes at the d-th level
respectively. Let m;(z,d) and m¢(z,d) denote their expected values respectively. Then

1 xr
miCed) = 3 [ it = g.d = 1)+ milysd = 1) dy,
0
From this we have J .
2¢ & (log z)
. [ X o 7 <
m;(z, d) = kz_d X for 1<z,

ford=0,1,2,....
In any binary tree N;(z,d— 1) internal nodes have 2N;(x,d —1) son nodes, among which N;(z, d)
are internal, therefore N (z,d) = 2N;(z,d — 1) — N;(z,d), for d = 1,2,.... The expectation of this
equality shows that for d = 1,2,..., me(z,d) = 2m;(z,d — 1) — m;(z,d). As z and d increase to
infinity in such a way that d = clog =, we find
1

2T

mi(z,d) = e~ + 0(1/4),

S

ife>1. Ife< 1,
1

mi(z,d) =24 — ——e D) £ O(1/d),
wd

where v(c) = 1/c +log(c/2) — 1. It follows that

. . 0 for ¢ < ¢ < oc;
lim me(z,d) = lim m;(z,d) =< - L
T—00 T—00 00, for1<e<eg,
and, on the other hand,
0, for0 <c< g

lim me(z,d) = lim {2¢ — m;(z,d)} =

T—00 00, for¢<e<1,

where ¢ = 4.311 and ¢ = 0.3734 are the positive solutions of y(c) = 1/c¢ + log(c/2) — 1 = 0.
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Abstract

A search algorithm that adds a key to a sorted file can be represented by a deterministic tree
whose external nodes are equally likely targets for insertion. The collection of algorithms
that one uses throughout the stages of insertion sort is called a search strategy. Using the
concept of “tree-growing” strategy, we demonstrate that most practical algorithm have a
normal behavior. We present a sufficient condition for normality of tree-growing strategies.
The sufficient condition specifies a relationship between the overall variance and the rate of
growth in height of the sequence of trees that the search strategy “grows”.

Insertion sort is a well-known on-line sorting algorithm: at each stage of the sorting, the elements
obtained so far make up a sorted array; when reading a new element, the algorithm searches for
its proper position in the array and inserts it. The searching may be done by any method (linear,
binary, etc) and the methods may be different from one stage to another. At each stage, given a
searching strategy, the positions of probes (positions for comparisons between the new element to
be inserted and elements of the current array) is represented by a binary decision tree. The first
probe is the root of the decision tree, the two positions of the second probe, at most one on each
side of the first probe, become the children of the root and all internal nodes are constructed so
forth. The leaves of the tree correspond to the places where new elements are to be inserted. The
root-to-leaf paths of the tree thus represent the possible probe sequences of the searching algorithm.

1. Tree-growing and normal strategies

Let S; denote the searching algorithm at stage ¢, with corresponding decision tree T;; the collec-
tion of searching algorithms & = {S,}:2,, or equivalently the collection of corresponding decision
trees 7 = {T;};2,, will be called a search strategy. A search strategy is tree-growing if, for each
positive integer 4, the shape of T;; is obtained by replacing a leaf of T; by an internal node (with
two hanging leaves).

We analyse tree-growing search strategies under the assumption of uniform distribution of the
leaves at each stage. Let the random variable C,, be the total number of times S compares a new
element to a probe during the sorting of the first n elements. The class of normal search strategies
is composed of the strategies for which C,,, once normalized, converges in distribution to the normal
law, i.e.

C, — E[C,]
_—

NG p N(0,1).
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The following lemma gives a sufficient condition for a tree-growing strategy to be normal. This
condition relates the variance of C), to the height of the decision trees of the search strategy. We
denote by h,, the height of tree T},, and by s2 the variance of C,,.

Lemma 1. If h, = o(sy) then S is a normal strategy.

Proof. Cy, is the sum of n random variables (X;);=1,...n, where X; denotes the number of com-
parisons made by S;. Since each insertion is performed independently of all others, we assume
the X;’s to be independent random variables. The proof of Lemma 1 is a technical verification of
Lindeberg’s condition, which ensures normality:

1 n—1
Ve>0, lim —ZZ/ X} dFx, = 0.
n—oo §4 £ X
O | X;|>€sn

0

Practically for a given strategy, the difficulty lies in computing the variance of C,,, which is the
sum of the variances of the X;’s. The most commonly used strategies, linear search and binary
search, satisfy the condition of Lemma 1. When linear search is used at every stage, it is easy to
show that C,, has average value asymptotic to n?/4, and variance asymptotic to n3/36, whereas h,
equals n — 1. For binary repeated search strategies, one can easily show that h,, is asymptotic to
logn and the average value of C), is equivalent to nlogsn, but the computation of the variance is
more intricate and finally leads to s2 = nA(n) + O(logn), where A(n) is an oscillating function of
bounded magnitude.

There exists tree-growing search strategies which are not normal. In [2], the authors exhibit a
strategy that does not satisfy the condition of Lemma 1, and can be shown to be non normal by
Feller-Lindeberg condition (see [1, vol. 2, §XV.6]). To ensure normality, some further conditions,
which are presented in the next section, are required on the decision trees of the search strategy.

2. Normality of consistent strategies

This section identifies a subclass of tree-growing strategies, the consistent strategies, which are
proved to be normal.

Let T = {T;};2, be the collection of decision trees corresponding to a search strategy S. For
each T;, we denote by T, its left subtree (with size ng,) and Tk, its right subtree (with size ng,).
The size of the smaller subtree is noted by ¢(i) = min(nz,,ng;). A search strategy S is said to
be self-stmilar if for each decision tree, its left and right subtrees belong to 7, that is T}, = Ty,
and Tg, = TnRi (where trees are considered as equal if they have the same shape). And S is said
to be well-proportioned if the proportion of nodes belonging to the smaller subtree approaches a
limit as ¢ tends to infinity, that is lim; .o ¢(2)/7 exists. Finally we call consistent a strategy which
is tree-growing, self-similar and well proportioned. Many usual strategies, such as linear search
(9(7)/i — 0) or binary search (g(i)/i — 1/2), are consistent.

Theorem 1. All consistent strategies are normal.

The proof of this theorem relies on three properties of search strategies decision trees that ensure
the sufficient condition for normality stated in Lemma 1.

Property 1. For each positive integer ¢, the decision tree T; has at least one external node on each
unsaturated level.

Property 2. Let my, be the number of decision trees with height k, the sequence {my}pe is non-
decreasing in k.
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For consistent strategies, these two properties result from self-similarity and tree-growing of the
decision trees.

Property 3. The variance of C,, satisfies s2 = Q(n).

This property holds true for any decision tree, the intuition being that the tree with smallest
variance is the complete binary tree (all levels saturated, except possibly the last one), which is the
decision tree associated with binary search.

The proof of Theorem 1 considers two cases, g(i)/i — 1/2 and lim g(z)/i € [0,1/2). In the first
case the strategy is similar to binary search, h,, = o(s,) and the result follows from Property 3. In
the second case Properties 1 and 2 are used to show that h, = o(sy).

3. Relaxed conditions for normality

The sufficient condition for normality stated in Lemma 1 holds true for some families of tree-
growing search strategies that are not consistent. For example, Fibonaccian search, where Fibonacci
numbers are used to indicate the next probe, is not consistent since lim g(7)/7 does not exist; but it
can be shown to be normal with a proof similar to the one of Theorem 1, since liminf, ., g(n)/n
as well as limsup,,_, g(n)/n stand in (0,1/2).

More generally, one can exhibit different conditions on search strategies, that lead to normality
by showing that the heights of the decision trees grow at a steady rate. For example

Proposition 1. Any tree-growing search strategy S for which liminf, o g(n)/n belongs to (0,1/2)
18 normal.

Proposition 2. If my = Q(k'T¢) for some € > 0, and Var[X,,] = Q(1), then the corresponding
tree-growing search strategy is normal.
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1. Introduction

The analysis of the classical Euclidean algorithm has been performed by Heilbronn [4] and
Dixon [3], using different approaches. For a random pair of rational numbers, the average number
of divisions is

121og 2
n ~ 2
T

logn

Here, we will analyse the binary Euclidean algorithm, which uses only subtractions and right
binary shifts. This “binary GCD algorithm” takes as input a pair of odd integers (u,v) from the
set = {(u,v) odd,0 < u < v}. Then the GCD is recursively defined by

ged(u,v) = ged (2%11’2_%,1))
ged(u,v) = ged(v, )

where Valy(n) is the greatest integer b such 2 divides m, i.e., the dyadic valuation of n. The
corresponding binary GCD algorithm is as follows:
while u # v do
while u < v do

b := Valy(v — u);
v = (v —u)/2%
end;
exchange u and v;
end;
return u.

Ezample. If the input is (u,v) := (7,61) then b := Valy(61 — 7) = 1. Thus v := 54/2! = 27, and
the algorithm continues because u < v. Now b := Valy(27 — 7) = 2. Thus v := 20/22 = 5. Now the
algorithm restarts with (u,v) := (5,7). It leads to v := (7 — 5)/2! = 1 and therefore one restarts
with (u,v) := (1,5) which leads to v =1 = u so the algorithm stops and returns u, namely 1 (as
expected since 7 and 61 are coprime). One can write:

7 1
61 23
3+ o7
]_ -
+ 1422
145
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In general, for each “inner while loop”, one has
1

T = ——
a; + 2Kz
where z; := u/v (with (u,v) as in the beginning of the loop), z;y1 := u/v (with (u,v) as after the
exchange), where a; := 1420 4-201+b2 ... 4 9bit+bi1 and k; := by + -+ + b,y + by (the sum of
all the b’s obtained during the i-th inner while loop). The algorithm thus produces the following
binary continued fraction expansion

U 1
v 9k1
2kT—1

e

Three interesting parameters are:

— 7, the depth of the continued fraction or equivalently the number of outer loops performed;

— >0, v(a;), the number of subtractions (where v(w) is the number of 1’s in the binary expan-
sion of the integer w);

— >°0_, ki, number of rights shifts performed or equivalently inner loop executions.

Their average values on the set €, = {(u,v) 0odd,0 < u < v < n} are respectively noted E,, P,
and S,,. Note that F,, is also the average number of exchanges in the algorithm, and that P, is the
average number of operations that are necessary to obtain the expansion.

2. A Ruelle Operator for a Tauberian Theorem

In order to establish that these three parameters have averages that are asymptotic to logn, we
introduce the following Ruelle operator:

HOEDDY a+2k (a+12’“w>'

k>1 a odd
1<a<2

The average F, is easily expressed in term of V;, with the help of the following definitions:

P = (@ =V) (1), Gls) = (a-V) 2oV, )= 3 o= (15 ot
k odd

Proposition 1. E, is a ratio of partial sums of the two Dirichlet series 5(5)F(5) and é(s)G(s).

Proof. Let QU be the subset of Q for which the algorithm performs exactly ! exchanges. Then,

VW =g5 X 5i(5):
(u,v)eqll

Summing over all the possible heights (I > 0) yields:

(Id—wV,) Hf(1) = > w'VHf](1)

1>0

> (%)

(S) (u,v)el]

N

Differentiating with respect to w, and then choosing f =1 and w = 1 yields

Z | leolegn vl[cl]
-
1>0 leo Ekgn 'Ui[g]

nl
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The proof is completed by observing that

G(s) =

k>1 l>0

1 1
TP
k>1 >0

The key is now to prove that the following theorem may be used:
Theorem 1 (Tauberian theorem). If F(s) is a Dirichlet series with non-negative coefficients that
is convergent for R(s) > o > 0 and if

1. F is analytic on the line R(s) = o except at s = o;

2. F(s) = (sfg(;zﬂ + C(s) where A,C are analytic at o (with A(o) #0);

then one has, as n — oo,

Z ap = ﬁ 1)n 7log” n(1 + e(n)),

where e(n) — 0.
Proof. See Delange [2]. O
Lemma 1. The Tauberian theorem applies to F with o = 2 and v = 0.
Proof. Indeed
F(s) = (1d—Vy) (1) =1+ ——— 3 2=t =1 (M + 1) .
20(s) S oaa 2\ <)

The last member of the equality clearly satisfies the conditions of the Tauberian theorem, and the
same holds for (F with ¢ =2 and v = 0. O

Lemma 2. The Tauberian theorem applies to G with 0 =2 and v = 1.

Proof. Here lies the complex part of Brigitte Vallée’s proof. It is impossible to conclude as quickly
as in lemma 1, indeed, this time we need to find an appropriate functional space on which Vj is
a compact operator. A mixture of various functional analysis theorems (Fejer-Riesz’ inequality,
Gabriel’s inequality, Krasnoselsky’s theorem and other works by Shapiro and Grothendieck) show
that it is the case on the Hardy space H2(D), where D is an open disk containing ]0,1]. This
leads to the fact that for s > 3/2, V; has a unique positive dominant eigenvalue, equal to 1 when
s = 2. In addition V; has a spectral radius < 1 on R(s) > 2,5 # 2. Thus (Id —V;) ™! is regular
on the domain D and condition 1 of the Tauberian theorem is fulfilled. Condition 2 is proved by
means of perturbation theory applied to Vs = Ps + Ny (Ps is the projection of V on the dominant
eigensubspace), in a neighbourhood of s = 2. See [7] for a detailed proof. O

This implies the following fundamental result:
Theorem 2. The average number of exchanges of the binary Euclidean algorithm on ), is

E, ~ log n,

2
szb(l)
where fo 1s the fized point of the operator Vy that is normalised by fol fa(t)dt = 1.
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3. The Other Two Parameters

In order to study the other two parameters (total number of subtractions, total number of shifts)
one still uses the Tauberian theorem but with a more intricate Ruelle operator, see Vallée [7]. This
leads to the following two results.

Theorem 3. The average number of total iterations is

2 1 1
P, ~ Alogn with A:= ——— —Fy | -
g 72 fy(1) azm;d oka 2 (a>

where f2 is defined as above, Fa(x) := fow fa(t)dt, F5(1) =1 (where kq is the integer part of logy a).

Theorem 4. The average number of the sum of exponents of 2 used in the numerators of the
binary continued fraction erpamnsions, i.e., average total number of right shifts is

2 1 1
S’n ~ m (2 Z 2Ta,F2 (a)) logn

a odd
4. All Roads Lead to Rome
In Brent’s paper [1], one can find a different approach which suggests that
P, ~ % logn where M =log2 — %/01 log(1 — z)gs(x)dx
and where go is the fixed point (and normalised as f3) of

Balfl(@) =2, (1 +12"w>2f (1 +1sz> 2 (ﬁ)zf (ﬁ) '

b>1 b>1

Unfortunately, this approach is based on a heuristic hypothesis (exercise 36, section 4.5.2, rated
HM49 by Knuth in [5]). Brigitte Vallée explored this approach with a Brent operator By, without
heuristic arguments but providing a spectral conjecture holds, this leads to the following result:

4
P, ~ Blogn where B := ———.
The miracle holds and, after numerical experiments, A = % = B = 1.0185.... But nobody

has proved these equalities. We can also note that a similar method was used by Brigitte Vallée
and one of her students to analyse the Jacobi symbol algorithm [6]. Finally, the binary Euclidian
algorithm is only a slight variation on one of the oldest known algorithms but there is still some
unknown territories in its “complete” analysis!

Bibliography

[1] Brent (Richard P.). — Analysis of the binary Euclidean algorithm. In Algorithms and complezity, pp. 321-355. —
Academic Press, New York, 1976. Proceedings of a Symposium held at Carnegie-Mellon University, 1976.

[2] Delange (Hubert). — Généralisation du théoréme de Ikehara. Annales Scientifiques de I’Ecole Normale Supérieure,
vol. 71, n° 3, 1954, pp- 213-242.

[3] Dixon (John D.). — The number of steps in the Euclidean algorithm. Journal of Number Theory, vol. 2, 1g70.

[4] Heilbronn (H.). — On the average length of a class of finite continued fractions. In Number Theory and Analysis
(Papers in Honor of Edmund Landau), pp. 87-96. — Plenum, New York, 196g.

[6] Knuth (Donald E.). — The Art of Computer Programming. — Addison-Wesley, 1997, third edition, vol. 2.

[6] Lemée (Charlie) and Vallée (Brigitte). — Analyse des algorithmes du symbole de Jacobi. GREYC, 1998.

[7] Vallée (Brigitte). — The complete analysis of the binary Euclidean algorithm. In Proceedings ANTS’98. — 1998.



A Probabilistic Algorithm for Molecular Clustering

Frédéric Cazals

Algorithm Project, Inria
December 15, 1997

[summary by Bruno Salvy]

In order to design a drug curing a given pathology, an approach which is commonly used consists
in first selecting those that work best among molecules known to treat similar symptoms. In view of
the number of known molecules, an exhaustive approach is often impossible. Instead, it is a common
strategy to pick at random a number of molecules in a large database; and then concentrate on
those that are chemically close to the ones that performed well. It is therefore important to be
able to find those molecules in such a database. The aim of this work is to present a probabilistic
algorithm for this task.

1. Molecules and similarity

The database is represented as an array of n ~ 10,000 molecules, each molecule being charac-
terized by the presence or absence of d ~ 1,500 molecular fragments. Molecules are close when
they differ by few molecular fragments. More precisely, one defines the size s(m) of a molecule m
as the number of its fragments and the similarity sim(m, M) between two molecules as the number
of common fragments. Finally, two molecules m and M are called (a,()-similar for o € [0,1]
and 8 > 1 when

(1) sim(m, M) > amin(s(m), s(M)), max(s(m), s(M)) < Bmin(s(m), s(M)).

Note that this is not an equivalence relation. Other measures of similarity might also be of interest
in practice.

2. Algorithm

The aim of this work is to find efficiently as many («, 3)-similar pairs in the database as possible.
Obviously, an exhaustive search in n(n — 1)/2 operations is possible, but expensive. The idea
instead is to use a divide-and-conquer partitioning process. A fragment is selected at random and
the database is partitioned into two subsets according to the presence or absence of this fragment.
When such a subset has less than a fixed number K of elements an exhaustive search is performed;
otherwise, the same process is applied recursively.

This technique finds a proportion 7N of the number N of («, §)-similar pairs. Heuristically,
repeating the same process from scratch yields 7(1 — 7)*"1 N new pairs at the ith iteration. Thus
a few iterations of this idea yield a very large proportion of N.

3. Implementation

The parameter K plays an important part in the efficiency of the algorithm. When K is small
the search is faster but finds less pairs, so that the number of times it has to be repeated to obtain
149
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the same number of pairs can be larger than for higher values of K. The optimal value of K
also depends on the efficiency of the different stages of the algorithm. Any improvement on the
partitioning and exhaustive search part shift the optimum to larger values of K, while a good
data-structure for checking whether a pair has already been found shifts it in the other direction.
Here are implementation ideas that lead to an efficient program:

— The database is stored as an array of bits;

— the entries in the database are accessed by chunks (bytes or words), a constant array making
it fast to count the number of bits equal to 1 in a chunk;

— computing the similarity between to molecules is then performed by bitwise and;

— the sizes of the molecules are computed once at the beginning;

— the partitioning is done like in Quicksort, on an array of pointers to the molecules;

— the set of pairs is stored as an array of binary search trees (a hash table would also do).

In practice, with this implementation and K around 150, then 4 or 5 runs of the partitioning yield
more than 90% of the pairs in a matter of minutes. The exhaustive search would take several hours.

Conclusion

It would be nice to find the optimal value of K by a complexity analysis. However, the Bernoulli
distribution for the bits in the database does not give a good model. It is necessary to take
into account the fact that the database was arrived at by a historical process where many of the
molecules are variants of each other.
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Greedy Algorithms for the Shortest Common Superstring that are
Asymptotically Optimal

Wojciech Szpankowski

Purdue University

March 9, 1998

Abstract

There has recently been a resurgence of interest in the shortest common superstring problem
due to its important applications in molecular biology (e.g., recombination of DNA) and
data compression. The problem is NP-hard, but it has been known for some time that greedy
algorithms work well for this problem. More precisely, it was proved in a recent sequence
of papers that in the worst case a greedy algorithm produces a superstring that is at most
B times (2 < B < 4) worse than optimal. We analyze the problem in a probabilistic
framework, and consider the optimal total overlap and the overlap produced by various
greedy algorithms. These turn out to be asymptotically equivalent. We show that with high
probability the ratio of these overlaps tends to one as the number of strings goes to infinity.
Our results hold under a condition that the lengths of all strings are not too short.
The results presented in this talk were obtained jointly with A. Frieze.
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Two Not-That-Dull Functional Equations Arising in the Analysis of Algorithms

Wojciech Szpankowski

Purdue University
June 15, 1998

[summary by Philippe Jacquet]

1. Introduction

The talk addresses two functional equations arising in the analysis of algorithms, namely, in the
performance evaluation of the generalized digital search trees and the asymmetric leader election
algorithm. These functional equations deal with Poisson transforms of the general recurrence

n
n _
Tpyp = ap + cp Ty +u E (k)pk(l —p) k(xk + Zn k),
k=0

where u and c are constants, a,, is a given sequence, and b > 1 is a parameter. Together with suitable
initial condition, this recurrence describes both algorithms. It was extensively investigated either
for b =1 or ¢ = 0. The speaker presents asymptotic expansions of z,, up to O(1) term. Interestingly
enough, for both algorithms there appears a constant that must be evaluated numerically from the
original recurrence. Analytic techniques of (precise) analysis of algorithms are used to establish
these conclusions. In particular, the author uses analytic poissonization/depoissonization, Mellin
transform and singularity analysis.

The results presented in this talk were obtained jointly with S. Janson, G. Louchard and J. Tang.

2. The Generalized Digital Search Tree Algorithm

The basic Digital Search Tree (DST) is a tree-like data structure. Each node in the tree contains
one data. We assume that all data are encoded over a common finite alphabet of size, say V.
Each one of the edges pending from a node is in correspondence with one symbol of the alphabet.
Consequently the branching degree of each node cannot exceed V.

The insertion of a new data X in the DST proceeds as follows:

1. Scan the first characters of data X in order to create a path in the DST with the symbol-edge
correspondence;

2. use the character after the last scanned character of X to create a new edge in the DST
pending from the last node visited, and create a new node to store X.

The basic DST can be used to implement Lempel-Ziv compression algorithms. The successive
data inserted in the DST are phrases scanned on the text to be compressed. Therefore the original
text is divided into phrases, and since each phrase points to another phrase via a symbol-edge in
the DST structure, the compressed code replaces each phrase by a pair (pointer, symbol).

In the following we consider data generated from a Bernoulli binary source over a probability

vector (p, q).
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The average depth of insertion ED,, in the binary DST satisfies the following recursion valid for
n > 0:

(n+1)EDpi1=n+1Y (Z)pk(l —p)" *(kEDy + (n — k)ED,_4).
k=0
The probability generating function D,,(u) of the depth of insertion satisfies:

(n+ 1) D1 —1+u2() P (kDk(w) + (0 — K)Dy_4(w)).

The general case for data generated from Bernoulli source over V-ary alphabet (with probability
vector (p1,...,pv)):

(4 1)Dpir(w) =14+u 3 (kl“n'kv>p’1€1...p"“/V(lekl(u)—l—-..—|—kVDkV(u)).

The generalized DST assume a capacity b for each node of the DST, i.e., each can store up to b
data. The insertion algorithm is the same excepted that if the last visited node contains less than
b data, then data X is stored in this node and no new node is created.

The functional recursion of p.g.f. D,(u) is now the following:

(n+ D) D (0 —b+u2() V' (kDg(u) + (1 — £) Do_x(w).

The generating function of D(z) =) EDniL—!e_z satisfies the functional equation:

b i
2 <b> 5D(2) = 2+ D(p2) + Dlg).

The aim is to find an accurate asymptotic expansion of ED,,. Via depoissonization argument it
is equivalent to find an asymptotic expansion of D(n) = ED,, + O(logn). To this end one makes

use of the Mellin transform d(s fO s_ldw satisfies:
b .
> () (~Dd(s i) = (5 + ~*)ds).
=0

In other words (1 —p~* — ¢ *)d(s) is a linear combination of d(s — i), i varying from 1 to b:

b
1 b ;
d(s) = ————— ) (=D d(s — ).
9= g 2 () e
It comes that d(s) is defined for —b—1 < R(s) < —1. The inverse Mellin transform expresses D(z)
via an integration formula:

c+100
D) = — / d(s)T(s)z~"ds

27T Je—ioo

for ¢ € |-b — 1, —1[. The asymptotic expansion of D(z) when z — oo comes from the poles of d(s)
and I'(s) via application of the residue theorem. The poles of d(s) are the roots of 1 —p™° — ¢—*,
and the same roots repeat when translated on the right by integer values because of the identities
between d(s) and d(s — ¢). The main singularity is at s = —1 which doubles the pole of I'(s) and

will contribute in a zlog z term in D(z)’s expansion.
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Application of the residue theorem finally gives:
D(z) = %zlogz + (th; h

with o = —plogp — qlogq and hy = plog?p + qlog?q. Quantity Py(z) is periodic with small
amplitude when log p/log ¢ is rational (when the roots of 1 — p~° — ¢~* are regularly spaced on
the vertical axis R(s) = —1), and o(z) otherwise. Quantity f’(—1) denotes the derivative of
S (Y (~1)d(s — i) at s = —1.

The question remains on how to compute a numerical evaluation of constant f'(—1). To this
end one computes a numerically tractable expression of d(s) via the Mellin transform:

1 R z" _, ED,T'(s+n
d(8)=F(s)/() z 1E:EDnﬁe dz=z — %

n

+y - %) z + 2P (log z) + O(log 2),

Therefore

ED

d(s) =) n!ns(s—i— 1) (s+n—1).
n

Using this formula and truncating it up to certain rank N gives a numerical evaluation of f/(—1).

Unfortunately the error term can be proven to be of order O(log N/N). There are probably better

estimates which converge geometrically.

3. Leader Election

We don’t give details on the problem of leader election. Via successive Bernoulli splits over a
group of n people, one randomly selects a leader. We denote X, the average number of steps needed
to achieve this election over a population of n people. When the Bernoulli splits are all done over
the same probability vector (p, ), one obtains the recursion for n > 2:

Xo=14+¢"Xn+ ) (Z) PP Xy
k

which translates into a functional equation for the generating function L(z) =), X,e *2"/n!:
L(z)=1— 1+ z)e *+ L(pz) + L(qz)e P=.

Using again the Mellin approach, L*(s) the Mellin transform of L(z) satisfies the identity:
fr(s) = (A +5)0(s)
1—p—s
where f*(s) is the Mellin transform of f(z) = L(gz)e P*. Since L(0) = 0, L*(s) is defined for
—1 < R(s) < 0, and thanks to the exponential decrease of f(z), f*(s) is defined for all R(s) > —1.
There is a sequence of poles on the axis R(s) = 0 regularly spaced: sy = 2imk/log p, for k integer.
The poles are simple for k£ # 0, the pole is double at s = 0 due to the contribution of the pole
of I'(s). The double pole contributes in a —logz/logp term in the residue theorem applied to
reverse Mellin transform. The other poles contribute to a periodic function which depends on f(5)

at s = sg.
In summary for any M > 0:

logz 1 1—~—f*0) 1
L(z) = — -4+ ———= 4+ Pl O|—)-
(2) Tog p + 5 + log p + Py(log ) + s
P,(z) is a periodic function of period logp and small amplitude. Using again depoissonization

theorems one gets X,, = L(n) + O(1/n).

L*(s) =

bl
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As with the generalized DST, the numerical evaluation of constant f*(0) remains. In this case
we are luckier than with DST since f*(0) = >, X,¢"/n which converges exponentially.
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Birth-Death Processes, Lattice Path Combinatorics,
Continued Fractions, and Orthogonal Polynomials

Fabrice Guillemin
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[summary by Philippe Flajolet and Fabrice Guillemin]

Abstract

Classic works of Karlin-McGregor and Jones-Magnus have established a fully general cor-
respondence between birth-death processes and continued fractions of the Stieltjes-Jacobi
type together with their associated orthogonal polynomials. This fundamental correspon-
dence can be revisited in the light of the otherwise known combinatorial correspondence
between weighted lattice paths and continued fractions. For birth-death processes, this ap-
proach separates clearly the formal apparatus from the analytic-probabilistic machinery and
neatly delineates those parameters that are amenable to a treatment by means of continued
fractions and orthogonal polynomials.

1. Birth-Death Processes

Consider a particle initially in state 0 that, at any given time, may change to another state 1
(where it stays), with rate A. This means that the probability of a state change in an interval of
time of length dt is Adt. Then, the probability po(t) that the particle is still in state 0 at time ¢
satisfies

po(t + dt) — po(t) = —Apo(t)dt

or py(t) = —Apo(t), whose solution is an exponential distribution,

po(t) = e .
Similarly, a particle initially in state 0 that may change either to state 1 with rate A or to state —1
with rate p will satisfy (p;(t) is the probability of being in state j at time )

po®) = P, () = (1 -, () = S ),
The interpretation is obvious: the particle stays in state 0 for a random amount of time with an
exponential distribution of rate A + p and then changes to states —1,41 with probabilities equal
to to A/(A+ p) and p(A + w).

In a general birth-death process a particle can be in any state in {0,1,2,... } and when in state j,
it can only change to state j +1 at rate A; or to state j — 1 at rate p;. By analogy with the model
of an evolving population (whose size is represented by the state), the A; are called birth rates and
the p; death rates. The general problem is to understand the evolution of a process given values
(or properties) of its birth and death rates; see [12, Ch. 4] for an excellent introduction.
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Let p,(t) be the probability of being in state n at time ¢. An essential role is played by the
coeflicients

AoAL - A
Ty = ———— .
H1p2 == Pn

Indeed, a classical result asserts that the process is ergodic (the expected time to return from each
state to itself is finite) if and only if

an<oo, Z/\lﬂ = +o0.
ntn

n>1 n>0

(The first condition ensures the existence of an invariant measure for the embedded discrete-time
Markov chain; the second one guarantees that, in the continuous-time process, the particle is not
absorbed at infinity in finite time.) In that case, one has
. Tn,
= lim )= =——
Pn t_)oopn( ) Zn21 _
where these quantities represent the long run probability of being in state n.
More puzzling is the nonstationary behaviour of the process that is described by the infinite-
dimensional differential system

(1) Pi(t) = Ajm1pj—1(t) — (A + p)p;(1) + pjerpipa(®),  pi(0) = bj0.
Although finite-dimensional versions are “easy” and reduce to combinations of exponentials, it is
precisely the infinite-dimensional character of the system that renders its analysis interesting.

In a series of important papers, Karlin and McGregor [10, 11] have developed a general connection
between the fundamental system (1) and an associated family of orthogonal polynomials. Later,
Jones and Magnus constructed a direct continued fraction representation; see [8, 9].

This summary is an account of Guillemin’s lecture (see [5, 6]), as well as of later developments.
The point of view that is adopted here consists in relating the combinatorial theory of lattice paths
to birth-death processes in the following way: (i) trajectories of birth-death processes are precisely
lattice paths; (i7) lattice paths have generating functions expressed as continued fractions; (7i) the
Laplace transform expresses the main parameters of birth-death processes as weighted lattice paths
to which the combinatorial theory applies.

2. Lattice Paths and Continued Fractions

It is known that the formal theory of continued fraction expansions for power series is identical to
the combinatorial theory of weighted lattice paths; see [1, 2, 4]. Define a path v = (Uy, Uy,...,U,)
to be a sequence of points in the lattice N x N such that if U; = (z;,y;), then z; = j and
lyj+1 — yj| = 1. If successive points are connected by edges, then an edge can only be an ascent
(a: yj+1 —y; = +1), a descent (b: yj4+1 —y; = —1), or a level step (c: yj+1 —y; = 0). Thus a
path is always nonnegative and by a horizontal translation, one may always assume that zq = 0.
A path can be encoded by a word with a, b, c representing the three types of steps. What we call
the standard encoding is such a word in which each step a, b, ¢ is subscripted by the value of the
y-coordinate of its associated point. For instance,

w = apay a2b36262a263b2b1a001

encodes a path that connects the source Uy = (0,0) to the destination Uy = (12,1). We freely
identify a path v defined as a sequence of points, its word encoding w, and the corresponding
monomial.
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We consider various geometric conditions that may be imposed on paths: Hy; is the collection

[<h]

of all paths that connect a source at altitude k to a destination at altitude I, H denotes paths

of height (maximal altitude) at most h, etc.
Theorem 1. The collection Hoo of all paths has generating function

1
agby

aiby

ash
1—Cz—£

Proof. 1t suffices to observe that (1—f) ! = 1+ f+ f2+--- generates symbolically all the sequences
with components f. For instance, in Hg g, the expressions
1 1 1

1-— C()’ 1-— cy — aobl’ 1 a0b1
—co —

(2)

1-— (4]
generate successively paths composed from ¢y level steps only, paths of height at most 1 without ¢;

steps, all paths of height at most 1. The complete continued fraction representation is easily built
by stages in a similar fashion. O

In particular, the collection of all paths from level 0 to level 0 with height at most h is

h P
(3) Hi = Q—’;,

a rational fraction, whose numerators and denominators, Py, Q, each satisfy the recurrence

Y1 = (1 — cn)yn — an—1bryn—1,

with Q1 = Py =0, Qo = P; = 1. (Linear fractional transformations are 2 X 2 matrices in disguise!)
Well-known path decompositions, like those based on first or last time at which levels are reached,

can then be used provided they are combinatorially “unambiguous”. This and simple manipulations

on linear fractional transformations give access to many geometric constraints in addition to (2)

and (3). We cite here some representative identities from [1, 2],

(4) <kl _ G001 "%—17 Hoy = 1

Hyo— P
0,h—1 Qh ] bk: (Qk 0,0 k)a

b1b2 .en

Qk

ag---ap_1by--- b

(5) Hy, =

)

(QuHoo — P),

where the latter holds provided k£ < .
The forms (2), (3) (4), (5) can be converted into bona fide counting generating functions of paths
weighted multiplicatively by means of the combinatorial morphism,

x(ax) = oz, x(bx) = Bz, x(cx) = Yz

In that case, the continued fraction (2) becomes the general fraction of the J-type (for Jacobi);
see [7, 9, 13].
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3. The Connection

We illustrate here in its simplest form the many-faceted connection between birth-death processes
and continued fractions. It was apparently first stated explicitly by Jones and Magnus but it is
implicit in earlier works of Karlin and McGregor. The connection goes through the probabilities
pi j(t) of being in state j at time ¢ starting from state ¢ and the Laplace transforms,

o0
Ps) = [ pisie dt
0
Theorem 2. The Laplace transform of the probability of return to the origin satisfies
1

Pools) = Aot
)\0 + s —

A1p2

AL+ pr+s—

We offer here two proofs. A third proof that is based on “uniformization of time” can also be
given but is omitted in this note.

Proof 1. Take the Laplace transform of the fundamental system (1) (so that p;(t) = po ;(¢)) and use
the induced relations on the ratios Py /Py ,41. This proofis the most direct but the least illuminat-
ing from a structural standpoint. In particular, this proof does not provide an immediate grasp on
the question of deciding which parameters are amenable to continued fraction representations. [

Proof 2. Examine the times at which the (continuous time) birth-death process {A;} changes states.
This defines an embedded (discrete time) Markov chain {Y,,}. Then the set of trajectories of the
chain {Y,,} is exactly the family of lattice paths of Section 2. The method consists in splitting the
probabilities by conditioning according to all legal trajectories.

— The first observation is that, given a lattice path w = wjws - - - wy, the probability poo(t | w)
of being back to 0 at time ¢ having followed the path w is

Pr{At:O|'w}:PT{Sq1+Sq2+"'+Sqn§ta Sqp + Sgy + 0+ Sg + S >t},

where S, is the random variable that represents the sojourn time at the state ¢; determined
by wj -- - wj, while the right-hand side involves ¢, that ranges over all legal “continuations”
of w (in the case of Ho,0, one has wy 1 = ap and g1 = 0). As seen already, the sojourn
time at some state e is exponential with parameter (A, + pe) so that its Laplace transform is
(Ae + pe) /(s + pe + Ae).
— The second observation is that the probability of a path in the embedded chain is the product
of the individual transition probabilities, namely A;/(A; 4+ p;) and p;/(A; + p;).
The different sojourn times are independent by the nature of the process (the strong Markov
property satisfied by {A;}). Also, sums of independent random variables correspond to products
of Laplace transforms. Thus, the Laplace transform of the probability in the continuous model
of following a path w has a product form; for instance, to w = agaibsa;, there corresponds the
transform

( Ao A M2 A )( Ao + po AL+ Az + po AL+ )
Ao+ po AL+ p1 Az +pg A+ stXotpostAi+pms+ratpas+rii+p/)’
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Thus, the Laplace transform P o(s) is, apart from a fudge factor of 1/(s+ A¢), a sum over all paths
lattice from zero to zero weighted multiplicatively by the probabilistic morphism,

X

6 / N — J , / b.) = 'U’J ,
) @) = s V)= e
with x'(¢;j) = 0. In other words, one has Py (s) = X’(H(),O)ﬁ, and the statement follows. O

The same method applies to the computation of transition probabilities, the analysis of maximum
height, and so on. For instance, the probability of reaching state k has

1
Pyr(s) = —— (Ar(s)Pyo(s) — Bi(s)),
0,k(5) muz---uk( (s)Po,0(s) (s))
where Ay /By is the kth convergent of the continued fraction that represents Py, so that A, By
are simple variants of x'(Px), x'(Qk)-

Orthogonality. In the case of paths, the reciprocals of the @y, polynomials, Q,(z) = z"x(Q)(z 1)
are formally orthogonal with respect to a measure defined its moments,

(7) L[z"] = /z"du(z) = Hoon-

Formal aspects of paths and orthogonality are detailed in Godsil’s book [3].

A similar orthogonality property then holds for the probabilistic counterparts Ap, By of the
Pi, Qi polynomials. This provides alternative expressions of various probabilistic quantities in
terms of scalar products involving the measure p of (7). One can rederive in this way, via the
combinatorial theory, a number of formule originally discovered by Karlin and McGregor. For
instance, one has

Pran(t) = T / " e t6,,(2)0n(x) du(z),

where the 6 polynomials (closely related to the By and Qy) satisfy the recurrence A,0,41 + (z —
)\n - ,u"n.)en + /Lnenfl =0.

4. So What?

The original motivation for the talk comes from the need to elucidate the behaviour of certain
queueing systems in the context of telecommunication applications. For instance, the single server
queue (M/M/1) is modelled by A\; = p, p; = 1, while the infinite server queue (M /M /oo) cor-
responds to A\; = p, p; = j. (Models of population growth lead to considering different types of
weights, like A; = (j+1)p, pj = j.) More specifically, the problem is to quantify parameters of some
simple statistical multiplexing scheme that describe the quality of service on an ATM link. The
relevant model is that of the M/M /oo queue and parameters are to be analysed, like the duration
@ of an excursion above some level ¢, the volume V of lost information, or the number of bursts C
in a busy period.

Each parameter leads to a specific continued fraction representation. By Theorem 2, the basic
continued fraction of the M /M /oo process is

1
s+p— P

s+1+p——
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This is recognizable as an instance of Gaufl’s continued fraction associated to a quotient of con-
tiguous hypergeometric functions. The numerator and denominator polynomials are the Poisson-
Charlier polynomials that are orthogonal with respect to the Poisson measure.

The quantity V' (area) leads to challenging asymptotics questions both for the M/M /oo queue
and for the M/M/1 queue. A simple modification of the basic techniques of this note shows that
the bivariate Laplace transform with (s, u) “marking” (¢,V') is obtained by the modified morphism,

" _ )‘j Hep N Ky
x(ag)—s+ju+)\j+ﬂj, X(b])_s+ju+)\j+ﬂj'
In the case of area under the M/M/1 queue, quotients of continuous Bessel functions make an
appearance. Stripped of its probabilistic context, the corresponding problem of tail estimation
then admits a purely analytic formulation:

Problem. Let A(x) be a function whose Laplace transform is

_ Ty (22
A(s) = }J(:j((f))

v(s) = (14 p)/s,

S

with J, a Bessel function, and p > 0 a parameter. Show that, for some constants cy,ca,
one has

/ A(y)dy ~ ciz /e 2V®, (x — 400).

Under plausible analytic or probabilistic conjectures, precise (and useful!) quantitative conclusions
can be drawn. See the papers by Guillemin and Pinchon [5, 6] for full developments.
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Abstract

A random tree is defined as an elementary event w of a probability space (Q2,F, P). The
probability P depends on the random model of trees which is analyzed. The main results
concerning the Galton-Watson processes are recalled. If for n € N, Z, is the number of
individuals of the N-th generation and m the average number of children generated by an
individual, it is shown that the martingale (Z, /m™) plays an important role in the analysis
of such processes.

The Catalan trees are seen as a particular case of Galton-Watson process. The height
of a Catalan tree with n nodes is of the order C'y/n (Flajolet-Odlyzko) and the number of
external leaves has a limiting distribution (Kesten-Pittel).

The binary search trees are related to a branching random walk, hence to marked trees.
The analysis of their height involves large deviations results for this random walk; for a
binary search tree with n nodes, it is of the order C'logn (Devroye, Biggins).

1. Probabilistic Model

Definition 1. If Q@ = (¢;) is a probability distribution on N (¢; > 0 for ¢ > 0 and Zj—:og gi = 1),
a Galton-Watson process with generating distribution @ is a sequence of random variables (Z,,)

defined by
Z;
Zo=1,  Znj1=Y Gin,
=1

where the (Gjj), 7,7 € N are independent identically distributed random variables with distribu-
tion Q.

Forn € N, Z, is the number of individuals at the n-th generation. By convention the generation 0
contains only the ancestor (Zy = 1) and the i-th individual of the n-th generation has G, children.

The underlying tree structure of such a process is obvious. It is nevertheless convenient to
reformulate these processes within the framework of trees [9]. A tree w is a subset of

U={0tu N
n>1
with the following properties:

1. § € w, i.e. the ancestor is in the tree;
2. Ifu-v € w, then u € w, (u-v denotes the concatenation of strings);
165
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2111

FIGURE 1. Trees as subsets of U

3. If u € w then there exists N,(w) € N such that u-j € w if and only if 1 < j < Ny(w). The
variable Ny, (w) is the number of children of the node u. By convention Ny = N.

With this notation, the tree of the Figure 1 can be represented as
w=1{0,1,2,3,21,211,2111,2112, 22,221, 31,311} .
If u € U, |u| will denote the length of the string u, in particular
H(w) = supf{Jul,u € w},

is the height of the tree w and if z,(w) = {u € w,|u| = n}, then Z,(w) = Card(z,(w)) is the
number of individuals of generation n. Finally, if u € w, T, (w) will denote the subtree containing
the elements of w whose prefix is w. In the example of Figure 1,

T21(w) = {0, 1, 11, 12} .
Definition 2. A Galton-Watson tree with generating distribution @ is a probability distribution P
on the set of trees such that
1. P(N =k) = qi;
2. Conditionally on the event { N(w) = n}, the subtrees T} (w), Ty(w), ..., Tnh(w) are independent
with distribution P.

The first condition says that the number of children of the ancestor has distribution . The
other condition gives an homogeneity property (the subtree T;(w) and w have the same distribution
for i < n). The independence of the behavior of the individuals, corresponds to the independence
of the G;1, i =1,...,n in our first definition. From now on, (Z,) denotes a Galton-Watson process
associated to Q.

2. Limiting Behavior of Galton-Watson Trees

Notice that if gg = P(N = 0) > 0, then it is possible that an individual does not generate
children at all. Consequently, a complete extinction of the family of the ancestor is also possible.
The following proposition describes this phenomenon.

Proposition 1. If m = E(G1;) = Z?’ZO(? 1q; 18 the average number of children per individual, then
+oo
P (ZZ” < —l—oo) =g,
n=0

where q is the smallest solution s € [0,1] of the equation Y 1% ¢is' = s. If m < 1, the Galton-
Watson becomes extinct with probability 1, that is, g = 1; and if m > 1 then q < 1.

We can now state a classical theorem for Galton-Watson processes.

Theorem 1. The process (W,,) = (Z,/m™) is a positive martingale with expected value 1, further-
more the sequence (W,,) is almost surely converging to a finite random variable W .
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Refinements. The following theorems give more insight on the behavior on the sequence (Z,).
There are three theorems, one for each of the three cases m > 1, m =1 and m < 1.

Theorem 2 (Kesten-Stigum [7]). If m > 1, the following conditions are equivalent
1. (Z,/m™) converge to W in Li(P);
2. E(Nlog N) = Y 1% klog(k)qr, < +oo;
3. PW =0)=gq

The above result is mainly a strengthening of Theorem 1. It can be proved in an elegant way [8]
with the formalism we described in the introduction. This proof uses a change of probability and
the martingale (W,).

The following theorem is more informative from a qualitative point of view. It says that in the
critical case (m = 1) the variable Z,, grows linearly conditionally on {Z, > 0} (remember that in
this case, almost surely Z,, = 0 for n large enough).

Theorem 3. If m =1 and 0 = Var(N) < +oo, conditionally on the event {Z,, > 0}, the random
variable Z,/n converges in distribution to an exponential distribution with parameter o /2.

The same conditioning procedure as in the critical case does not lead to the same phenomenon
in the sub-critical case (m < 1). Basically the conditioned variable Z,, stays bounded.

Theorem 4 (Yaglom [10]). If 0 < m < 1, then conditionally on the event {Z,, > 0}, the random
variable converges in distribution to a finite random wvariable.

3. Catalan Trees, Dyck Paths and Galton-Watson Processes

Definition 3. 1. A Catalan tree with n nodes is a random tree for the uniform distribution,
that is, the probability of a tree w is P(w) = (n + 1)/(2:), if Card(w) = n and 0 otherwise.
2. A Dyck path of length 2n is a positive path with the jumps 1, —1 starting at 0 and finishing
at 0 for the 2n-th jump.
3. An excursion of the simple random walk is the trajectory of the walk until it reaches 0 for the
first time. A simple random walk is a walk which starts at 0 and whose jumps are 1 and —1
and equally likely.

Proposition 2. — The set of Catalan trees of size n and the set of Dyck paths with 2n steps
have the same cardinality.
— The Galton-Watson process with Q = (1/2%) and the excursions of the simple random walk
are 1somorphic, t.e. there s a byjection which maps a Galton- Watson process to an excursion
and preserves the distributions.

Proof. The picture below shows how an excursion is transformed into a Galton-Watson process.

O

311 312
O s e 1 a1

FIGURE 2. Equivalence between Galton-Watson processes and excursions
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Remark. If one draws a contour starting at the left of the root of the tree in Figure 2 and following
the vertices of the tree, when the contour arrives on the right of the root, its height will have
performed the path followed by the random walk of Figure 2 above 1.
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1. Framework

Let X (t) be an aperiodic and irreducible Markov chain on a finite set S, with transition proba-
bilities P = (p(,y))s,yes and equilibrium distribution (7 (z))zegs. It is often desirable to know how
far Pr(X(t) = z) is from 7(z), in particular when 7(z) has a nice closed form, but the transient
distribution is difficult to express. It is known (Doeblin) that there exists « € ]0,1[, such that

|P,(t)(z) — m(z)| < Cat, Vaz,y €S,
where P,(t) is the law of X (¢) when X (0) = y.

This talk is concerned with methods allowing to get more accurate estimates on this difference.
The distance that will be used in the following is the total variation distance between two probability
distributions P and @ on S, defined by

3(P,Q) = sup {IP(4) ~ A} = 3 3~ 1P} — QD
ACS ics
or, more precisely

d(t) = ilelg diy (Pz (t)a 71').

One particularly interesting property is the existence of a cutoff (see Diaconis [2]):
Definition 1. There is a cutoff if there exist ayp, b, — 00, by /an, — 0, such that
lim d(a, + tb,) = H(t),
with lim;,_ o H(t) =1 and lim;_, ;o H(t) = 0.
Two main methods can be used to evaluate d(t):
— Geometric (see Diaconis and Stroock [3]): when X is a reversible Markov chain, then
1 /1—7(x
o (Po(0),%) < 12T a1 )
2 ()
where —1 < B 1 < B2 < --- < B1 < Bo = 1 are the eigenvalues of P. The values of 3;
and B,—1 can be obtained from the Rayleigh-Ritz principle.
— Coupling (see Aldous [1]): let X and X be 2 versions of the Markov chain with transition

matrix P, such that X(0) = z and X(0) ~ . A coupling time is a finite random variable T
such that X (¢t) = X (¢), for all ¢ > T'. The following inequality holds for such T

dy(Po(t), ©) < Pr(T > t).
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Moreover, there exists a coupling T™ such that, for all z € S, dy,, (Py(t), 7) = Pr(T* > t).

2. Application to Erlang’s Model

As an example of these techniques, let Xy (%), t € Ry be the Markov process associated with a
M/M/N/N queue with arrival rate AN and service rate 1. This process, known as an Erlang loss
system with NV slots, has the transition rates

z—oz+1: ANlpgon

r—z—1: =z
and its equilibrium distribution is
(AN)”
AN

m(z) = Cn

z < N.

This process has three different regimes:

A > 1. The queue becomes full after a finite time and N — Xy (t/N) is a Markov process
whose generator tends as N — oo to the generator of a birth and death process.
A < 1. The queue is never full and the process (Xy(t) — AN)/V/N has a generator which
tends to the generator of an Ornstein-Ulenbeck process with parameter .
A = 1. The queue becomes full at infinity and the process (N — Xn(t))/v/N has a generator
which tends to the generator of the reflected Ornstein-Ulenbeck process on Ry.

The main result obtained in Fricker, Robert and Tibi [4] is the existence of a cutoff in the possible

regimes of Erlang’s model:

Proposition 1. In the case A > 1,

1 ift<log ¢
lim dy(t) = i <logx-r,
N—oo 0 if t > log x25.

In the case A > 1 the behaviour of dy is such that, for any sequence ¢(N) and for any a € R*,
log N 1 ' 0
BN | as(N)| = ifa <o,

0 if a > 0.

lim dy

N—o0

These results are obtained by coupling techniques and use as an auxiliary process the M/M /oo
queue Yy (t) with input rate AN, which is the unbounded version of Xy (¢). A central tool in the
proof is the process

(Et)) iz = ((1+ cel) ¥ Oem2Vee)

which turns out to be a martingale for any ¢ > 0.

>0’
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Abstract
We examine under which conditions the salient long range dependence feature of network
traffic must be taken into account in network performance evaluation. We show that “it is
all a matter of time scales”. Specifically, when studying the performance of a networking
system or an application, many time scales must be taken into account — the time scales in
the input traffic, but also the time scales of the system (they show up for example because
of finite buffer queues) and the time scales of the performance metric of interest.

1. Introduction

The talk is concerned with the behavior of a buffer of a node in a telecommunication network.
Messages are assumed to arrive randomly at this node where they wait in the buffer for transmission.
We denote by (X (t)) the stochastic process describing the number of messages arrived during the ¢-
th unit of time. The autocorrelation function is defined as

o - EXO)X() — EX(0)B(X(1)
E(X(0)%) — E(X(0))? ’

where E(Y') denotes the expected value of the random variable Y. The arrival process is said to
have mixing properties if X(0) and X (¢) are nearly independent when ¢ is large, r(t) is converging
to 0 as t goes to infinity. Usually this assumption is satisfied; notice however that the periodic
traffics are not mixing.

A simple characterization of the input traffic is provided by the rate at which r(¢) tends to 0.
Up to now, most of the models analyzed assumed an exponential convergence to 0. This is clearly
the case if the (X(¢)) are i.i.d. random variables, r(¢) = 0 for all ¢ > 0. In this case, if the buffer
size is infinite, it is known that at equilibrium the number L(¢) of messages at time ¢ waiting for
transmission has an exponential tail; that is, there exists v > 0 such that

lir_Il_l e"P(L(t) > z)=c€eR;.

This result has practical implications. Because the buffer sizes cannot be infinite, it implies that
it is not necessary to design a big buffer because large queues of messages are (exponentially) very
unlikely.

However a careful statistical analysis of data collected over a wide variety of networks [4] has
provided ample evidence that network traffic processes are not exponentially mixing. In this case
we shall say that the traffic exhibits a long range dependence (LRD) behavior. This is the case
if r(t) ~ C/tﬁ for some B > 0. A popular explanation of these LRD traffics is the following: an

ON/OFF traffic generated by a single source consists in random burst intervals during which the
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source sends many messages alternating with idle intervals. An LRD traffic can be obtained by the
superposition of an infinite number of ON/OFF traffics having larger and larger bursts (and idle)
intervals.

In some of the (few) models analyzed with this kind of input traffic, it has been shown that if
the buffer size is infinite then the number of messages at equilibrium has the following behavior:
there exists 6 > 0 such that

c

P(L(t)y > xz) ~ 5

Notice that for the design of buffer sizes, the situation has changed. It is not clear that a small
buffer will be sufficient because large queues of messages are not so unlikely.

Remark. It is possible to give a description of the occurrence of the “rare” events, when the number
of messages in the buffer is greater that K, K large. In the case of the exponential decay of
the autocorrelation function, it happens gradually, i.e., during some time interval the number of
messages increases steadily at rate « until it reaches K and then it decreases rapidly to 0. In the
LRD case, the number of messages is greater than K in one big jump [1, 2].

2. Results

The point of view of the talk is slightly different from the usual presentation of these problems
described above. It is stressed that these phenomena must be analyzed with finite buffer sizes,
instead of guessing the behavior of the finite case from the infinite case. Simulations and measure-
ments of various traffics over the Internet are used to carry out this analysis. The impact of the
long range dependence is analyzed through the loss rate of the node, i.e., the average number of
messages rejected because of the congestion of the node. The main conclusions of this approach
are the following:

— The dependence on the past is limited by the size of the buffer. In other words, it is not
necessary to consider a (very) long range dependent traffic to have a realistic traffic input;

— For a long range dependent traffic, increasing the buffer size has less impact than for a short
range dependent traffic.
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Abstract

We consider a system with IV servers and messages arriving according to a Poisson process.
The service time of a message is exponentially distributed. Two strategies to process the
messages are compared. In the first strategy, an arriving message is sent randomly to one of
the servers. In the second strategy, for each message two servers are selected randomly, and
the message is directed to the least busy one. The queue length distribution is investigated
as N tends to infinity.

1. Introduction

We assume that we have a set of N servers with IV queues, these servers process a stream of jobs
arriving to that system. Once an arriving job has been allocated to the queue of one of the servers,
it cannot switch to another queue. We assume that the arrivals are Poisson with rate AN and the
processing times are exponentially distributed with rate 1. Inside the queues, the service discipline
is First In First Out. We shall assume that A < 1, with this condition the system will not explode
with the service disciplines which we consider.

The simplest strategy, S;,q say, to allocate the jobs is to distribute them at random to the
servers. In this case the system is equivalent to a set of N independent queues with arrival rate
A and service rate 1. It is well known that, at equilibrium, in each queue the number of jobs has
geometric distribution with parameter A, in particular the probability that there is at least k jobs
in a queue is A*.

A more efficient strategy Ssp, consists in choosing the shortest queue at the arrival of the job.
Unfortunately, this kind of discipline is very difficult to analyze, in particular it would be desirable
to compare it quantitatively with our first discipline. The exact analysis has been carried out by
Flatto and Mac Kean [2] in the case N = 2, using uniformisation techniques. This approach does
not seem to extend to a higher dimension.

The object of this talk is to analyze an intermediate discipline, S;y,;, for which it is possible to
derive some quantitative results. An arriving job takes two servers at random and chooses the one
with the shortest queue. Notice that for Sy, there is a tight correlation between the queues, all of
them are considered to allocate an arriving job. Here, only two of them determine the destination
of the job. For a fixed N, a quantitative analysis remains difficult; however, as N goes to infinity, a

given queue depends weakly of any other queue. As we shall see, asymptotically the queues behave
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independently. This phenomenon allows to write down one-dimensional equations. This approach
is called the mean field method in statistical physics.

2. The Differential Equations

For this model, it is convenient to describe the queues in the following way: uj n(t) will denote
the fraction of the N queues which have at least k jobs at time ¢. Clearly

L=uon(t) > u,n(t) > ---upN(t) > upy1n(t) > ...,

and 0 < u n(t) < 1, the vector Un(t) = (ug n(t)) belongs to the state space S = [0,1]" which is
compact for the point-wise convergence. It is easily seen that (Uy(t)) is a Markov process since the
vector of the number of jobs in each queue is a Markov process and the order of the queues does
not matter. If F' is a measurable functional on S, then F'(Uy (t)) satisfies the stochastic differential
equation,

“+oo
(1) dFONE) =" N (t) = s (®) (FON ) - 55) = FON (D)) dt
k=1

+oo
+30 AN (0 —uEy (1) (FON () + ) = FUN) dt + dMx (@),
k=1

where ey, is the vector (14—} ). The first term in the right hand side is the contribution of departures,
N (uy(t) —ug41(t)) is the number of queues with & jobs hence the rate at which Uy (t) — Un(t) — %.
The second term concerns the arrivals, (ui_,(t) — uZ(t)) is the probability that two queues chosen
at random have a size > k. The last term My (t) is a martingale (which depends on F'), i.e. roughly
speaking, a stochastic perturbation; in particular E(Mp(t)) = E(My(0)) for all £ > 0. It is easily

seen using standard results concerning Poisson processes that

Kt

N’

this simply means that the stochastic perturbation is vanishing as N — +oo. Taking F(U) = uy,
this suggests that the equation (1) becomes a deterministic differential equation,

(2) du(;ct(t) = —(ug(t) — ugy1(t)) + )\(u%_l(t) — ui(t)), E>1.

If (u(0)) € Ly, that is 3.0 ug(0) < +oo, using a truncation procedure, it can be proved that
(2) has a unique solution. So, as N — +o0, the (u; n(t)) should converge to a solution of this
equation.

Rigorously, Doob’s inequality [1] tells us that

E(MR (1) <

Kt
P sup |[My(s)| >a) < ——,
(ogs2t| n(s)] ) ~ a?N

hence

3) P ( sup

0<s<t

uk7N(s) - Uk,N(O)+

/0 (@) — uga ¥ (7)) — N2y () — ud y (2))de

S < Kt
a .
~ a’N
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It is easy to check that if (ug,v(0)) converges to (ux(0)) as N — +oo, then the sequence of processes
(uk,n(5))o<s<t, NV €N
is relatively compact. The identity (3) gives that any limit (ux(s))o<s<¢ (in distribution) satisfies

the differential equation (2) with probability one. We deduce that if (u;(0)) € L; then (ug n(s))
converges in distribution to the unique solution of (2).

3. The Convergence of the Invariant Measures

Up to now, we have only looked at the transient behavior of the queues. That is, for a fixed ¢,
we proved that the state at time ¢ converges in distribution. For N € N, the model of size N has
an equilibrium distribution 7y; the (delicate) question is: as N — +oo does the sequence (7y)
converge to a stable point of (2) ?

If U(0) € Ly, then it is easily seen that ()\Zk) is the unique stable point of (2). Notice that
the mn are probability measures on a compact space, thus the sequence is relatively compact. If
one can show that every limit point is a stable point of (2) which belongs to L, then necessarily

the sequence converges to ()\zk). This is done using the following estimation: for any continuous
function f : Ly — R,
lim sup || E,(f(Un(1))) - fuu(®))]l = 0,
N—+tooyer,
where E, denotes the expectation with the initial condition Uy (0) = v and u, is the solution of
(2) with u(0) = v. This gives a kind of uniform convergence of the processes Uy.

4. Conclusion

For the strategy Sj,:, the queue length has a super exponential tail. We have seen that for S;,q,
the tail was only exponential. It is remarkable that with a little improvement of S;,4, the tail
distribution drops significantly. For the optimal discipline Sy, asymptotically, it is easy to see that
there will be an unbounded number of empty queues.
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