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2 T. LEWINSKI and J. SOKOLOWSKI

Abstract: The subject of the paper is the analysis of sensitivity of a thin
elastic spherical shell to the change of its shape associated with forming a
small circular opening, far from the loading applied. The analysis concerns
the elastic potential of the shell. The sensitivity of this functional is mea-
sured as a topological derivative, introduced for the plane elasticity problem
by Sokolowski and Zochowski (1997) and extended here to the case of a spher-
ical shell. A proof is given that : i) the first derivative of the functional with
respect to the radius of the opening vanishes, and : ii) the second derivative
does not blow up. A partially constructive formula for the second derivative
or for the topological derivative is put forward. The theoretical considerations
are confirmed by the analysis of a special case of a shell loaded rotationally
symmetric, weakened by an opening at its north-pole. The whole treatment
is based on the Niordson-Koiter theory of spherical shells, belonging to the
family of correct first order shell models of Love.

Key-words: shape optimization, shape derivative, topological derivative,
asymptotic expansion, inverse problem
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Coques optimales formés sur une sphere. La
méthode de la dérivée topologique.

Résumé : Le sujet de cet article est ’analyse de la sensibilité d’une coque
mince, élastique et sphérique vis-a-vis de la modification de sa forme causée
par la création d’une petite ouverture circulaire, loin de la charge appliquée.
L’analyse concerne le potentiel élastique de la coque. La sensibilité de cette
fonctionnelle est mesurée comme une dérivée topologique, notion introduite
pour le probleme de ’élasticité plane par Sokolowski et Zochowski (1997) et
étendu ici au cas d’une coque sphérique. On démontre les résultats suivantes:
i) la dérivée premiere de la fonctionnelle par rapport au rayon de l'ouverture
s’annule, et : ii) la dérivée seconde n’explose pas.

On propose une formule partiellement constructive pour la dérivée seconde
ou la dérivée topologique. Les considérations théorique sont confirmées par
I’analyse d’un cas spécial de coque chargée suivant une symétrie de révolution
et fragilisée par une ouverture a son pole nord. Tout ce travail est basé sur la
théorie de Niordson-Koiter des coques sphérique, appartenant a la famille des
modeles de coques exactes du premier ordre de Love.

Mots-clé : optimisation de formes, dérivée topologique, coque mince
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Optimal shells formed on a sphere. The topological derivative method. 5

Notation used in the paper

1. Spaces

C*(O) : the space of functions given on O C R? continuous up to their s th
derivatives ; O is a domain, open and bounded

H™(O), HJ*(O) : Sobolev spaces

Vo : kinematically admissible space for a clamped shell, see (2.26)

Vi ¢ kinematically admissible space for a partly clamped shell, see (2.31)
Vi, : see Sec. 4.2

R, R : the classes of rigid motions of the Koiter and Koiter-Niordson shells,
respectively

2. Sets and domains
O : as above
S : middle surface of a shell

I' = 95 : the boundary line of S, parametrized by s ; I', : the loaded part ;
I, : the clamped part

3. Parametrizations
{z'},1=1,2,3 : Cartesian coordinate system

(€', €%) : curvilinear coordinates on S

RR n" 3495



6 T. LEWINSKI and J. SOKOLOWSKI

£ =(&,¢€* : point on S

® : O — S : the mapping identified with z*(¢)e;
{e;} : Cartesian basis of {z'}

{a;} : basis on §

£ = 0, €2 = ¢ : spherical coordinates : meridional and circumferential,
respectively

6 = 0 : the north-pole of a sphere

6 €[0,7/2], ¢ €[0,2n] : a hemisphere

4. Operations, conventions

The small Greek indices a, 3, A, g, 0,7 ... run over {1,2} ; the summation
convention is used for indices at different levels.

{d;;} : Kronecker delta

a x b : vector product of a and b (vectors)

a® b : tensor product of a and b

() =0/0¢

()|a @ covariant derivative on S, see (2.8) ; for a scalar f we have f|, = f,
Aw : the Laplace-Beltrami operator on S, see (2.9) ; w is a scalar here
T7, T;s ¢ physical components of (75,) and (74p)

n = n%a, : vector normal to I' and tangent to S

t = t"a, : vector tangent to I' and S

INRIA



Optimal shells formed on a sphere. The topological derivative method. 7

af

a = f|ana = fvana

on

af o g o : :

s = flat® : directional derivatives with respect to vectors n and t, respecti-
s

vely

() = dfdoy

5. Geometrical objects on S

(aqp) @ covariant components of the metric tensor on
(aaﬁ) : contravariant components of this tensor

a = det(a,g) ; €7, €45 : components of Ricci tensor
(bag) @ curvature tensor of S

(F%w) : Christoffel symbols on S

(Rapyo) @ the mixed curvature tensor of S

6. Deformation measures and displacements

u = (uy,uz,w) : displacement vector of points of S, with components referred
to (a')

u = (u,v,w) : physical components of this vector

v = (v1,vs,v) : vector of trial displacements of points of S, with components
referred to the basis (a’)

v = (@, 7,w) : physical components of v

ull) ) displacements associated with isometric deformations, see (3.37)

RR n" 3495



8 T. LEWINSKI and J. SOKOLOWSKI

ug, = (ugy, vgy, Wy, ) : displacements of the shell of Fig. 3.3 and Fig. 4.2
Wy, : non-dimensional deflection (wg, )

u, = u.n, v, = v.n : displacements along n of I'

uy = u.t, v; = v.t : displacements along t of '

: membrane deformations (2.20)

)
eqap(u) : its physical components (3.47)
)
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vy : translation vector

)y : vector of infinitesimal rotation

7. Loading, stress and couple resultants
(NV°?) . membrane forces or stress resultants within Koiter’s theory

(ﬁaﬁ) : membrane forces or stress resultants in a spherical shell ; Koiter-
Niordson theory

(M“?) : bending and torsional moments or couple resultants. The same nota-
tion is used for physical components

(N°P) : physical components of (ﬁaﬁ)

(N;)ﬁ), (Mgoﬁ) : quantities referring to a shell with opening r = Rsinfg, see
Fig. 4.2

(T%) : the effective membrane edge forces at v (Koiter’s theory) see (2.38)

INRIA



Optimal shells formed on a sphere. The topological derivative method. 9

@ : the effective tansverse force at I', see (2.38)
Mp : the effective bending moment at I, (2.38)

N = ﬁaﬁnang : the effective membrane edge force along n

S = ﬁaﬁnatg : the effective membrane edge force along t
(both : Koiter-Niordson theory of spherical shells)

(T*) : the applied loading tangent to S along T', referred to a,
N = fo‘na : its component along n
S = ffata : its component along t

Q) : the applied loading transverse to S along I’

Mg bending moment applied to I'

]\73>0:ifitcausesa—w>0
on

p= (pl) : density of surface loading

8. Material constants and tensors of elastic moduli
E : Young’s modulus

v : Poisson’s ratio

h : thickness of the shell

R : radius of a spherical shell

h/R : ratio of thinness

(CoPM) : tensor of the reduced elastic moduli according to the plane-stress
assumption

RR n" 3495



10 T. LEWINSKI and J. SOKOLOWSKI

(A“P2) : membrane stiffnesses, (2.23)
(D>P*#) : bending stiffnesses, (2.23)

p, p : auxiliary parameters, see (3.40)
(, w : see (3.103) ; complex parameters

a, B see (3.103)

o = a+1b: a complex number, def. by (3.61)
2

k=R

. see (3.32)

9. Functionals, bilinear forms

ai(.,.) : the bilinear form of the Koiter shell model

as(.,.) : the bilinear form of the Koiter-Niordson model of spherical shells
fi(.) : the linear form associated with surfacial loading

f2(.) : the linear form associated with edge loading

J(u) : potential energy

J(u) : non-dimensional counterpart of .J(u)

J(0o) : see (4.7)

ag,(.,.) : the bilinear form for a spherical shell of Fig. 3.3

10. Functions

P (z) : associated Legendre function of degree o and order m

INRIA
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11

R™(6), S™(0) : real and imaginary parts of P;™(cos#), see (3.66)
= : auxiliary function given by (3.36)

@ : stress function, see (3.28)

® = EhR®

ha(0), he(bo)

92(00), gs(bo) : see (3.102)

an,(0), an,(0), ag.(0) : see (3.79)-(3.86)

an,(0), ag,(0) : see (5.5)

Aimy, X;, Z; : integration constants

RR n" 3495
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1. Introduction

A range of applicability of the classical methods of optimization of shapes of
shells, with using the non-linear programming methods, is well presented in
the paper by Bletzinger and Ramm (1993). The coordinates of nodes of the
grid constructed on a shell are the desing variables. Within this approach the
topological characteristics of the shell domain do not undergo any changes.
One can indicate two methods of further steps of optimization which change
the shell domain :

i) the regularization technique of admitting the composite regions,

ii) the bubble method.

Both the methods have been applied mainly to plate optimization problems.
The method (i) consists in admitting new composite regions in which the
voids appear at a microscale. Its theoretical foundations are given in Kohn
and Strang (1986). The optimal bending plates have been found in Gibianskii
and Cherkaev (1984). The in-plane problem is discussed in Allaire and Kohn
(1993), cf. the book by Bendsge (1995).

The effective characteristics of composite domains are given by the homoge-
nization formulae. For thin bending plates such formulae have been found by
Duvaut and Metellus (1976). Their counterparts for thin Koiter’s shells can be
read off from Lewinski and Telega (1988). A justification of these formulae has
been published only recently, cf. Telega and Lewinski (1998). These homo-
genization results have not up till now been used for solving the optimization
problems.

The method (ii) has been originated in Eschenauer et al. (1993, 1994), cf.
Schumacher (1995) and there applied to various optimization problems for
plates in bending as well as subjected to the in-plane loadings. However, a
crucial definition of so-called characteristic function has only been given for
the minimum compliance problem, cf. Eq. (25) in Eschenauer et al. (1994).
The method (ii) has not been applied to shells.

Recently Sokolowski and Zochowski (1997) have introduced the notion of a
topological derivative of shape functionals. One can show with ease that in the
case of the compliance minimization the topological derivative differs in a factor
from the relevant characteristic function of Eschenauer et al. (1994). Indeed,
in the minimum compliance problem the expression (37) from Sokolowski and

INRIA



Optimal shells formed on a sphere. The topological derivative method. 13

Zochowski (1997) reduces to

T0) = ={(o+ ou)? + 2o — o))
since hereu = v, p = 1 and s95 = 1/E ; E represents the Young modulus, while
o1, op are principal stresses. This expression differs in the factor (1/47) from
the function (25) of Eschenauer et al. (1994). In particular, the method of
topological derivative provides a rigorous technique of finding the characteristic
functions of the bubble method.
If applied to shape optimization problems the method (i) introduces voids at a
microscale or in the cells of composites which are used to find the regularized
solutions. This leads frequently to appearing voids in the finite element mesh,
which is called a checkerboard pattern. Special methods of filtering have to
be used to suppress this parasitic numerical effect. They are still under study,
see Bendsge (1995).
In the method (ii) the infinitesimal voids (or bubbles) grow to form large
openings. How to change and update their geometry is also still under study.
The present paper is aimed at deriving an analytical formula for a topological
derivative of the compliance functional for a thin elastic spherical shell. Its
specific geometry makes it possible to simplify the Koiter shell equations (see
Bernadou (1995)). The Koiter equations are recalled in Sec. 2. Their specific
version, called Koiter-Niordson equations for spherical shells, is put forward in
Sec. 3, mainly after Niordson (1985).
Thanks of introducing the stress function (3.29) the whole problem can be
reduced to two coupled equations for two scalar functions, and then, to one
equation (3.36). A complete solution is represented by (3.71)-(3.74). The
form of this solution determines distribution of membrane forces and moments
around the openings, especially when their dimensions are smaller and smaller.
A detailed analysis of these singularities of the general solution has made it
possible to note that the first derivative of the compliance functional (with
respect to the opening dimension) vanishes. This remark is also justified by
the study of a special case of rotational symmetry.
The expression for the second derivative of the compliance functional (also with
respect to the opening dimension) is equivalent to the topological derivative.
This expression is composed of two terms, see (4.29). The first term depends on

RR n" 3495



14 T. LEWINSKI and J. SOKOLOWSKI

the invariants of the stress and couple resultant tensors concerning the problem
of a shell without opening at the point. We conjecture that the second term
of (4.29) vanishes, since for the plane cases (R — oo) this holds. The proof of
this conjecture is still unknown.

2. Recapitulation of KOITER’s shell theory

Let O be a bounded domain of the plane and let ® be a mapping : O — S C R
of class C*(Q). Here S represents a surface in R determined by the functions
zt = z'(§), € = (£4,€?) € O. We have ® = z'(¢)e;, where e; are versors of the
Cartesian system {z'};e;.e; = d;;. The vectors tangent to the lines £* on S
are given by

0P
= 2.1
a aga ’ ( )
Let "
a a
a; = AN (2.2)
|a1 X a2|

be a vector of unit length normal to S.
Let us define the components of the metric tensor

Uop = A4.95 (2.3)
and of the curvature tensor
boap = —@,.235 = A3.245. (2.4)
The Christoffel symbols are defined by
8y = a™ ' Tagyy Tapy = %(aaﬁw + Gay,p — Ggya) (2.5)
where a™a,5 = 03, a* = a®?a,. Then
aa,5 = [7 38, + bapas (2.6)

which is called the Gauss formula. Let us recall the formula of Weingarten

as, = —bla,. (2.7)

INRIA
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The surfacial covariant derivative of a vector (7,) will be defined by
Toip = Tap — Doy (2.8)

Note that 7, = w|, defines a vector if w is a scalar. The Laplace operator
assumes the form

Aw = wl,ga®? (2.9a)
or
Aw =w| > =wl|, . (2.9b)
Specifically
Aw = (w5 — F‘;ﬁ'wﬂ)aaﬁ. (2.10)

The surfacial covariant derivative has the following property
Tator = Tapp = Raapy T, (2.11)
with the so-called mixed curvature tensor given by
Ryapy = baybpy — bagbisy. (2.12)
We say that the system (£*) is orthogonal, if
az = 0. (2.13)

Then the vectors a, and a* are co-linear and the so-called physical components
of vectors and tensors are defined uniquely.
For instance, if T = T,a® + Tsa®, then

T =1T7a] + Tya; + Tyas, (2.14)
with
a’ =a,/|la,|, a3 =a’ (2.15)
and
* TOA * 3 ‘
Tn=—— Ty=T5=T (3.16)
aola

(do not sum over a).

RR n" 3495



16 T. LEWINSKI and J. SOKOLOWSKI

If T="T,5a*®a", then
T = Tral © a) + T5a) @ a5 + 523 @ &) + a3 @ a; (2.17)

and 7
T, = (2.18)

P fAaar/T55
The physical components are referred to unit vectors a, and that is why they
have correct units.
The state of displacement of the shell is determined by the vector field

u = u,a” + wa’ (2.19)

which fixes the deformed configuration of the middle surface S.
The in-plane deformations of the shell are defined by

1
Yap(u) = §(ua|ﬁ + Ugla) — bapw, (2.20)

while the changes of curvature of the shell middle surface are determined by
Pap() = w|as — bAbygw + béwu,\ + byung + it (2.21)

Note‘that YaB = Vo ald pos = pga, since bé\lﬁ = bgla by the Codazzi-Mainardi
relations.
Let us recall the tensor of reduced plane-stress moduli for an isotropic body

E 1 —
CobM — = P 4 5 V(a“aﬁﬂ + aa”am) ; (2.22)

1 -2
here E represents Young’s modulus and v is the Poisson ratio.
Let the shell thickness be constant and equal A. The membrane and bending
stiffnesses are defined by
h

3
DM = — b, (2.23)

AaﬁA;L — hoaﬁ/\ﬂ
’ 12

The membrane forces N*? and moments MP are interrelated with strains
(2.20)-(2.21) by the first-order constitutive relations of Love

NoP = A7, (), MPP = DV, (), (2.24)

INRIA
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Note that N = AP MP = MPe,
Assume that the shell is clamped along 95 = I'. Then

9
u=0 and 22 =0 on I, (2.25)

n

where n represents a vector of unit length normal to I' and tangent to S. Thus
any

u €V = (HYO))? x H0) (2.26)

satisfies the conditions (2.25).
Assume that a clamped shell is subject to a surface loading p = (p*, p*). The
variational equilibrium equation has the form

/O[Na%ﬁ(v) + M ps(v)]ade = /Opivi\/adf VeV, o (2.27)

where v = (vy,vy,v), a = det(ang), d€ = d¢HdE>.

Let us define the bilinear form
aifu,v) = [ A5 (v) + Do p(u)pr(VIVads  (2.28)
and the linear form |
) = [ pon/ads. (2.29)
Then the problem of equilibrium of a clamped shell is formuled as follows

(Pl){ find u € V5 such that (2.30)

ai(u,v) = fi(v) Vvel.

This problem is uniquely solvable, see Bernadou (1995).
Assume that a segment I', C I is loaded and T, is clamped. Then the space
of admissible displacements is given by

ov _

Vi ={v e (H(0) x H*0)|v=0, e»

0 on I',}. (2.31)
The equilibrium equation (2.27) assumes the form

/O[Naﬁ%ﬁ(v) + M pos(V)Vade = fi(v) + f2(v) Vv EW (2.32)

RR n" 3495



18 T. LEWINSKI and J. SOKOLOWSKI

with p
Tio, A, AT _U 5 9«

fa(v) = /o' (T vy + Qv + MB@n)dS’ (2.33)
where fa, @, Mg are given along I',. They are certain averages of the boun-
dary loading, the averages taken along the thickness. For their definitions, see
Niordson (1985). It is assumed here only that these quantities are known along
I,.
The boundary value problem (P;) should be replaced with (P3) with f; re-
placed by f; + f, and V; replaced by V;. This new problem is also uniquely
solvable, provided that meas (I',) > 0.
In the case of I' = I', the problem (P5) is still well-posed, if

(fi+ f)(v)=0 VYveR (2.34)
where
R ={ve(H(0))? x H(O)| ar(v,v) = 0}. (2.35)
According to the theorem of Bernadou and Ciarlet (see Bernadou (1995)) the
set R is composed of translations and infinitesimal rotations

R ={v|3Q and vy such that v =vg+ Qy x ®({)}. (2.36)

Here v, Qg are vectors in B3, The condition (2.34) means that the loading
applied is self-equilibrated : the resultant force vector and moment vector
should vanish. The solution u is determined up to the fields from R, i.e. up
to rigid translations and rigid infinitesimal rotations.

The equilibrium equation (2.32) implies the local equilibrium equations (which
will not be recalled) and the subsidiary conditions along I,

T =1 Q=0Q, Mg= Mg on I, (2.37)

where
Ta = (Nﬁa —|— ngMﬁw)ng,
Q = —M“5|an5 — %(Maﬁnatﬁ), (238)
MB = MOABTLOZTLQ,
where n = n,a®, t = t,a*, nt =0, [t| = |n| = 1 ; 9/0s = (9/OE)t* ; s
parametrizes [',. We have

n® = e*Ptg, 17 = *n,, (2.39)

INRIA



Optimal shells formed on a sphere. The topological derivative method. 19

where (¢*”) are components of the Ricci tensor on the surface S.

3. KOITER-NIORDSON theory of a thin elastic spherical shell

An approximate character of the constitutive relations (2.24) enables one to
modify them by

i) adding to A'*? the terms of order O(M*°/R),

ii) adding to p,, the terms of order O(v,5/R), where R = min(R,), R, are
radii of principal curvatures of S.

This statement has been justified by Koiter (1960) and used by Koiter (1963)
and Niordson (1985, Chapter 13) to introduce a new simplified theory of thin
spherical shells. This new theory is nevertheless not less accurate than the
theory recalled in Sec. 2.

The aim of this section is to report this specific theory, applicable only to
spherical shells.

3.1. General equations

The setting below is mainly based on the Chapter 13 of the book by Niordson
(1985).

Let the centre of the shell be in the point (0, 0,0) of the global Cartesian system
{z'}. The position vector ® of points on the middle surface of a spherical shell
is determined by

& =r'e;, 1=123 (3.1)

and
r' = Rsinfcos ¢, r* = Rsinfsing, r° = Rcosf ;

here R represents the radius of the shell and ¢! = 6, {2 = ¢ are spherical
coordinates on the surface |®| = R = const, cf. Fig. 3.1
Let us find the local basis a; by (2.1) :

a; = R[cos 0 cos ¢, cos 0 sin ¢, — sin 0],

a; = R[—sin#sin ¢, sin § cos ¢, 0], (3.2)

az = [sin @ cos ¢, sin O sin ¢, cos 4.

RR n" 3495



20 T. LEWINSKI and J. SOKOLOWSKI

Figure 1: Fig. 3.1. Parametrization of the middle surface of a spherical shell

Hence the components of the metric tensor (a,g5) are

— — P2 — —
aj;] = ap.a; = R , Q12 = aj.ay = 0,

ay; = ag.ay = R?sin?é (3-3)
and the components of the curvature tensor
bap = az.a,p (3.4)
are given by
bii = —R, by =0, by =—Rsin?6. (3.5)

The minus signs above are the consequence of directing the vector a3 along ®,
see Fig. 3.1. By comparing (3.3) with (3.5) we conclude that

1
baﬁ = —Eaaﬁ. (36)
By using (2.5) one can check that
%, =T3 =ctgh, I'), = —sinfcosd (3.7)

INRIA
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and other components of I' vanish. The Laplace-Beltrami operator is defined
by (2.9). In the spherical coordinate system this operator assumes the form

0*w Jw 1 0w
Aw = —(—=—= +ctg—+ ————). 3.8
w = g7 (g +cte 89+sin298¢2) (3:8)
The surfacial covariant derivative (2.8) has the property (2.11). Here
1 .
Rrapy = 77 (day@px — dapaxy). (3.9)

For T, = w, = w|, we have T,j53 = Tjja, but w|yga # w|yas. We have, in
particular

1 .
ﬁ'w,a (3.10)
which follows from (2.11). This formula will be helpful in finding the operator
defining the effective shear force () on the boundary of the shell.

By (3.6) we have got now

‘w|ow7 = (Aw)|@ —I_

Yap(W) = 5(tals + Upla) + Fasw, .
1 1 (3.11)
Pap() = W|ap — 5(Ugla + Ualp) — FzlapW,

which makes it possible to rearrange the energy density

Na5(v) + M pos(v) (3.12)
to the form N
NPye5(v) + M pos(v) (3.13)
with 5
NP = NoB _ EMW, No# = NP (3.14)
. 1 . N .
Pap(v) = v]ag + Tz0asVs Pop = Ppa: (3.15)

Note that v = (v, v2,v) and p depends only on v.
The effective forces along I',, see (2.38), assume the form

T° = N*Fng (3.16)
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and the formulae for () and Mp remain unchanged.
According to the remarks (i), (ii) at the beginning of this section the consti-
tutive relations (2.24) may be replaced with

N = Ay (), MO = DG () (3.17)

and this is the crucial point of the Koiter-Niordson modelling of thin elastic
spherical shells.
Let us define the bilinear form

wf,v) = [ 1A% (0) + D pos(ulpra(v)Vade.  (318)
Note that the space
R ={ve (H(0))? x H (O | ay(v,v) =0} (3.19)

is equal to R defined by (2.35) and hence is given by (2.36). This property is
due to the relationship

pasl0) = pas(¥) + s V), (3.20)

by which we see that
Yap(V) = 0 A pap(v) =0
if and only if
Yap(V) = 0 A pag(v) = 0.
One can prove also that the form ay(.,.) is Vi-elliptic and continuous. Thus
the problem

~ { find u € V| such that (3.21)

P) o, v) = (fi + fo)(v) Vv e Vi

is uniquely solvable.
By using the relations

Vg = UnNg + Uity, U, = U407, U = 0,17,
N = N“ﬁnang, S = Naﬁnatﬁ, (322)
N = T"‘na, S = Tatoz
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one can rearrange f»(v) to the form

— ~ ~ —~ Jv
fa(v) = /Fo' (N’Un + Sv; + Qu + MBa_n)dS (3.23)
and the conditions (2.37) are replaced with
N=N, S=5, Q=0Q, Mg= Mg. (3.24)

The variational equation of equilibrium :

[ (Vo 50s(0) 4 MgV )Wade = L)+ H(v) WeVi  (3.29)
implies the local equilibrium equations of the form

Naﬁ|g +p*=0
’ — 3.26
Mg + g M2, + 5N =1 (3.26)

and the subsidiary boundary conditions (3.24) on I',.
One can check that the strain measures y,5(u) and png(w) satisfy the following
three compatibility relations

/ o a B ~ 0 __
Q‘A + %N)Vcr - 7-ﬁ|a- - %pm - 07 (327)
Ppvla = Panjp = 0.

3.2. Reducing of the problem to two equations involving two scalar
unknowns

Assume that N°# are represented by

~OZ oo T aaﬁ x ¢

Nﬁ:eﬁwm+ﬁ@. (3.28)
One can prove that if &)(f) is sufficiently regular, then the equations N“ﬂg =0
are satisfied identically. Let F°® be particular integral for (3.26);. Let us put
® = FhR® to make the units of ® and w the same. It is seen that the local
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equations (3.26) reduce to one equation (3.26); since the two first equations
are identically satisfied if we put

= 1
N°# = ERR|e* |, , + ﬁaa% + FoF, (3.29)

Let us substitute (2.22) into (3.17), remembering that (2.23); holds. We find
M2 = DI(1 — 1)5*(w) + va®5, ()], (3.30)

where D = ER?/(12(1 —v?)) represents the bending stiffness of the shell. Thus
by (3.15) and (2.9) we have

(o4 o3 o3 2 o o«
M & = D[(l — I/) (w| s —|— ﬁa ﬁ'w) —|— z/a (A —|— ﬁ) :| (331)
Substitution of (3.31) and (3.29) into (3.26) gives
2 14+v 1 —v? Irs 1., o
2+ %) [<A+ 70t T (D] - B[p N EF'“] ’ (3.32)

where k = h*/12R*.
Let us proceed now to express the compatibility equation (3.27); in terms of
N®. We invert the constitutive relation (3.17),

1 —_
~*P = =1+ V)N — pa®P N2 (3.33)

and insert it into (3.27);. On using the representation (3.29) one finds

1l—v w
(At ) [(a+ D) -] =0 (3.34)
Thus we have arrived at two scalar equations (3.32) and (3.34) for two scalar
unknowns.
Niordson proved that the solution to the system (3.32), (3.34) in the case of
p' = 0 is given by

W=~ 4 ul)

b= (A )z, (3.35)
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where = satisfies

_ 4,2
(o = R e ERT S CED

and w fulfills the equations :

2
(A + ﬁ) (1) _ 0’ F)/ozﬁ(u(ll)a ugl)7 w(l)) = 0. (337)

2
It turns out later that the conditions v,5(u*) = 0 imply <A + ﬁ)w(l) =0,

hence the first equation of (3.37) may be omitted as redundant.
Let us rewrite (3.36) in the form

(A+ ﬁ){y + % + o [1 1232 — (1) - 1/2] }E =0 (3.38)

and factorize it to the form

1+ 2ip* 1—2i,52:_ o
(A—I—ﬁ) (A+ o (A + o J==0 (3.39)
with 92 2
2p% = [ 3 (1—-v%) — VQ] (3.40a)

since (R/h)* > 1 and v € (—1,1/2), but practically v € (0,1/2), one can
replace p? with

R

p* = 1/3(1 — I/Q)E. (3.40b)

A general solution of (3.39) can be represented as a sum
Z=IZ;+ I+ =3, (3.41)

where
A 2 = 3.42
(a4 2)m =0 12
1+ 2ip* _ o e

(a+ T )Zi=0, (3.43)
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and
EQ = 36(54), Eg = [m(E4)

The boundary conditions (3.24) may be expressed in terms of w and ®. It is
sufficient to substitute (3.29) and (3.31) into the expressions for N, S, @) and
Mp given by (3.22) and (2.38) and make use of (2.39). Thus we find

N = Fo‘ﬁnanﬁ + EhR[tatﬁq)|ga + %(I)],
S = —Ethanﬁ®|ﬁa,
Mg = D[(l — ) nPw|.p + vAw + 1;—;"w],

Q=-D|n((a+F)w)l, + (1 =)l

(3.44)

To express u; and us in terms of w and ® one should integrate the equations
(3.11). Then new integration constants appear.

3.3. Construction of the solution to the system (3.32)-(3.34)

Let us introduce the physical components of u, w according to the rules (2.16).

We define

231 U2

e
R’ Rsinf’
where u = u] and v = uj, cf. Fig. 3.2. The physical components of the trial

field v = (v, v2,v) are defined by

(3.45a)

U =

U1 U2

According to the rules (2.18) we define the physical components of (vag5)

and find
€11 = %(2—3 —I—w),
Eog = Rsliné’ (3—; + cosf u +sinb 'w), (3.47)
2e19 = Rslin6 (3—; + sin@% — cos 6 ‘U).
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x3

xl

Figure 2: Fig. 3.2. Directions of positive displacements :

According to (3.37) we must solve the system : ec,5 = 0. We predict the

solution in the form

Hence we find the Legendre equation

(d—2+ g0 o ™
20> T8V g sin? 0

Juwm(6) =0

or

(A + %) (w(0) cosmep) =0

and its solution has the form
a)m=0

wol) = AL 0) + B 0),

where

0
'wél)((?) = cosf, 'w(()Q)(H) = cosfIn |ctg 5‘ — 1.
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b)m=1
wi(0) = AVuiV(6) + By ui(6),
where 9
'w?)(ﬂ) = sin#, w@(@) =sinfln ‘tg 5‘ — ctgd. (3.52)
c)m >2
O\m Oy\m
W, (0) = A, (m + cos 0)(tg 5) + B (m — cos 0)(ctg 5) (3.53)

and A£0)7 Agl), A, BZ»(O), BZ»(l), B, are constants.
(2) (2)

One can show that the solutions wy”’ and w;”’ cannot satisfy the conditions
€ap = 0, hence are not admissible. The fields u,,, v, associated with other
solutions are

Uy, = | — Am(tg g)m + Bm(ctg g)m sin 6,

Uy = | — Am(tg g) — Bm(ctg g) sin 6,
m = 0,1,2,... We note that both the conditions (3.37) are fulfilled if (u, v, w)
are of the form (3.53), (3.54) for m > 0. In particular, the condition (3.50)

turned out to be a consequence of 7,5 =0, o, 3 € {1,2}.
Concluding, the solution of (3.37) has the form

wt) = f: [, (0) cos mep + W, (0) sin m] (3.55)

m=0
with w,,(0) given by (3.53) for m > 0 and @,,(f) given by a similar formula
with new constants A,,, B,,.

Let us turn now to solving the system (3.42) and (3.43). Solution to the
problem (3.42) has the form :

L= 3 [C0(6) cos mo + D (8) sinmel (3.56)

m=0

[1]

with C(V(8), DI (8) satisfying (3.49) and (3.50).
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() (2

Now, there is no argument to neglect the solution of type wy”, w;”, see

(3.51).
The function C{M(#) assumes the form :
a)m=20
C§(0) = Asoy cos 0 + Az T(9), _
P (3.57)
T(0) = cosfln ‘ctg 5‘ — 1.
b)m=1
( ) = A3 sin 6 + A7( )[X’(@), (3.58)
[x(@) = 1n91n ‘tg 5‘ — ctgb.
c)m >2

0 m 0 m
cM(o) = As(m)(m + cos 9)(tg E) + Az(m)(m — cos (9)<ctg E) (3.59)

and the formulae for D(l) are similar.

Finding solutions to (3.43) is a much more difficult task. Assume that =4(6, ¢) =
Ym(0) cos m¢ and change the variable 6 into = cosf. Then equation (3.43)
assumes the form

d*y dy m?
2 m . m . .
(1—:(:)dx2 —2$d$—|— U(U+1)_1—$2 Ym = 0 (3.60)
with
olo+1)=1+2ip. (3.61)
The quantity o is a complex number
o =a+1b, (3.62)

both a and b being nonzero. The solution of (3.60) is spanned over the functions
of Legendre type
P ™(cosf) and P;™(—cosf) , (3.63)

because o ¢ N, see Niordson (1985) or Wang and Guo (1989). The negative
sign at m in (3.63) is taken for future convenience. In fact, P*(z) and P, ()
differ in a factor.
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Thus the solution of (3.43) is taken as linear combinations of real and imaginary
parts of P ™ (+£ cosf). We represent =5 + =3 by
24+ =5 = Z (EE 9 cos mo + = 2 sinma) (3.64)

m>0
with

=(0) _

) = Ay R (0) + sy S7(0) + Asgny B2 (= 0) + Asgny S22 (7 — ) (3.65)
and EEQ) is given by a similar formula. Here R7*(#) and SI*(6) are real and
imaginary parts of P, (cos#0)

P ™ (cos @) = R'(0) + 15" (0). (3.66)

Note that P, ™(—cos8) = R (m—0)+1S2 (7 —0) and that is why the functions
R (m — 6) and S7*(m — 0) enter (3.65).

The functions RJ*(6) and S7*(#) are singular at § = m, while the functions
R™(m — ) and S7(m — ) are singular at § = 0. The functions involved in
(3.65) cannot be easy expressed by known special functions. Their properties
are reported in the Appendix.

By using (3.41), (3.56)-(3.59) and (3.64)-(3.65) one arrives at the final form of

—
—

(o)

2(0,6)= > ( =) ) cos me¢ + ngl)(ﬂ) sin ma). (3.67)
m=0
The indices “c¢” and “s” will below be omitted.

The functions =,,(6) assume three forms

a)m=20

Zo0(0) = Avo)Ro(0) + Ag0)So(0) + AsoyRo(m — 0)+

3.68
+ A6(0)Sg(7r - 9) + Ag(o) cos B + A7(0)T(0) ( )
Here R,(0) = R%(0), 5,(0) = S°(0).
b)m=1
El(g) = Al(l)R}T(e) —I_ A?( )S (0) —I_ A5(1)R (71' - 0)+ (3 69)

+ A6(1)S;(7T — 9) + A3( )SmH + A7( )[X (9)
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c)m>2

Zn(68) = Ay BT (8) + Aguy ST (6) + As(r) BT (7 — )+

+ Agm) ST (1 — 0) + Az, (m—l—cos@)(tg g) (3.70)
+ Az(m)(m — cos 9)(ctg 2) )

Remark 3.1. The case m = 0 means that the deformation is rotationally
symmetric. The case m = 1 refers to the asymmetric loadings, causing essential
reactions at supports. The cases m > 2 refer to higher harmonics describing
self-equilibrated states of the loading. Thus all three cases refer to different
states of the shell and it is reflected in the different forms of the solution =.

Let us proceed now to finding the main scalar unknowns : w and ®. They are
determined by (3.35), (3.55) and (3.67). If we confine analysis to the terms

with cos m¢ we find

‘w(ev ¢) = EmZO wm(e) COS mqbv (3 71)
(0, 0) = >0 P (0) cos ma, '
where
a)m=20
wo(6) = — 7 { A1) R (0) + Az0)S,(0) + Aso)Ro(m — 0)+ (3.72a)
+ AG(O)SJ(TF — 9) + A4 0) COS 0} '
(I)o( ) = RQ{( ) 3(0) cos § + (I/ — 1)A7( )T(@)-I-
4 (vd1(0) — 207 Ay R (8) + (vAycy + 20 A1) S5 (0) (3.72b)
+ (vAs(0) — 2p* Ag(0)) R (1 — 0) + (v As(0) + 2,0 A5 ))Ss(m —0)}.
b)m=1
wl(ﬁ) {Al ) (9) —|— A2 )S;(G) —|— A5(1)R<17(7T — 9)—|— (3 73&)
—I—AG( )S ( (9)—|—A 1)sm(9} '
(I)l( ) = RQ{( ) 3(1 )Slng + (l/ — 1)147( )]X”(Q)—I—
+ (A1) — 202 g} B (0) + (A + 20° Ay SH0) (3.73b)
—I—(I/A( — 2p? Ag(1 )R (m— )—I—(VA6( —I—Z,o A5 )S (m—0)}.
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c)m >2
W, —1= {A1 ) + Ag(uyST(0) + Asmy R (7 — 0)+
+ A6 m)S;”(Tr —0)+ A4(m)(m + cos 0)( g)m + Ag(my(m — cos 9)(Ctg g)m},
(3.74a)
B, (0) = { (v — 1) Asgy (m + cos 0) (tg £) "+
+ (v — 1)A7 ( - COSG)((:tg g)w
+ (VA ) — 20 Ay ) BT (0) + (v Az(m) + 297 As(m) ) S5 (6)
+ (VAs(m) — 20> Ag(m)) B2 (7 — 0) + (v Ag) + 20* A5y S7 (7 — 0) }.
(3.74b)

Remark 3.2. The expression (13.74); for @ in Niordson (1985) involves incor-
rect signs at p?. Moreover, both the expressions (17.74) in Niordson (1985)are
valid only for m > 2, which was not mentioned. Correct representations can

be found in Czmoch and Nagérski (1979).

3.4. Solution in the case of a rotationally symmetric loading along
one edge

Consider a segment of the spherical shell for
6 € [0o,7/2], ¢ €][0,27]. (3.75)

Assume that the boundary § = /2 is loaded by Q = P. Thus the boundary
conditions to be fulfilled are

Ms(00) =0, (1) Mgs(n/2) =0, (4)
N(bo) =0, (2) N(z/2)=0, (5) (3.76)
Q(0) =0, (3) Q(m/2) =P, (6)

see Fig. 3.3

To find the set of equations for the integration constants one should substitute
expressions for wy(#) and ®o(f) into the formulae (3.44).

Along § = /2 we have n = a; and t = a,, see Fig. 3.1. Using (3.7) one finds

w|ga = —= . (377)
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Figure 3: Fig. 3.3. A hemisphere with an opening, loaded along the lower edge

Appropriate differentiation of wy(#) can be performed with the help of the
formulae summarized in the Appendix. We find eventually

MB(H) = —— Z AZCLMZ(Q), (378)

i=1,2,4,5,6
where A; = A;g) and

(0) = —(1 —v)ctg 0R;'(0) + 2p* S, (0) + v R (0),

(0) = —(1 —v)ctg 05,1(0) — 2p° R, (0) + vS,(0),

ana(0) =0, (3.79)
(0) = (1 — v)ctg R, (7 — 0) + 2p*S, (7 — 0) + vR, (7 — 0),

(0) = (1 —v)ctg 05" (m — ) = 2p* Ry (m — 0) + vS, (7 — ).

Let us proceed to finding the expression for N(8). By (3.7) we have

1 1 0% 0o

tP®| 50 = (12)2® |4y = —[—— t 9—]. 3.80
|ﬁ ( ) |22 RQ Sin2 9 a¢2 + clg 89 ( )

Thus we have Ehr 1 6% 9%
N=—|—— tgd— + O]. 3.81
R sin296¢2+cg 09+ ] (3:81)

Since ® = ®4(0) we find

Eh ddg 2 of
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Substitution of (3.72b) and using some formulae for functions R7*, S gives

Eh
i ias 67
where
an1(0) = v(R,(0) + ctg OR:(0)) + 2/) (S,(0) + ctg6S;1(9)),
an2(0) = v(S,(0) + ctg 851 (0)) — 2p*(R,(0) + ctg 6 R (0)),
CLN3(9) = 0,
ans(0) = v[R,(m — 8) — ctg OR (m — 0)] + 2p*[S,(m — 0) — ctg S, (7 — 6)],
ane(8) = v[Sy(m — 0) — ctg S (m — 0)] — 2p*[Ry(m — 0) — ctg OR (7 — 6)],
CLN7(9) = S}I?de
(3.84)
To find the expression for () we use (3.44)4 and note that
ap _ LOf _
n“flo = YL (3.85)
since n' = 1/R and n* = 0. Moreover
nPtw| gy = n't*(w g — T3 wly) = 0,
since w = wo(f). We find
D d 2 _
Q =~ (Awo + 2wy (3.86)
and hence
Z A CI,QZ (387)
i=1,2,5,6
with A; = A;g) and
aqi(0) = R71(0) +2p*S7(0),
ag2(0) = S71(0) — 2p” R, (0),
ao(0) = — B (m— 0) — 2057 (x — 0), (3.55)
doo(0) = S\ (x — ) + 29 B (r — 0),
CZQ4(0) = 0.
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Now we are ready to express (3.76) in terms of the unknown constants A; =
Aj0). We normalize them by introducing X; = EhA;/PR®. Note that ap(7/2) =
ani(m/2) for i = 1,2,5,6. Thus the equations N(7/2) =0 and Mp(7/2) =0
differ in a term (1 — v)X7, which implies that X7 = 0. Thus we have five
equations : Mpg(6y) = 0, N(6y) =0, Q(0y) = 0, Mp(w/2) =0, Q(7/2) = P
and four unknowns : X;, X3, X5, X¢. However, it is easy to note that the
matrix is of rank 4, as should be. In fact, one should take into account the
identities :

CLMZ'(GO) — CLNZ'(GO) = — Ctg HOCZQZ'(QO), (389)
for 1 =1,2,5,6. Thus if we subtract the equations : Mp(6y) = 0 and N(6p) =
0, now independent of X; which is zero, we find the equation Q(7/2) = 0
multiplied by (—ctgfy). Since 8y # n/2 and 6y # 0 we conclude that the
first, second and third equations of (3.76) are linearly dependent. Therefore
we arrive at four equations for the four unknowns : X, X,, X5, X5

A(0)X =Q, Q=1[0,0,0,1]", X =[X;, Xy, X5, X¢]" (3.90)
with
GM1(90) GM2(90) GM5(90) GM6(90)
A(f) = agi(fo)  ag2(fo)  ags(o) aqgs(to) (3.91)

apmi(m/2) am2(m/2)  am(m/2)  ana(m/2) ’
agi(m/2) aqa(m/2) —aqgi(m/2) —aga(m/2)

where ap;(60o), agi(6o) are given by (3.79), (3.88) and

ar(m/2) = 2p25,(7/2) + vR,(7/2),
ara2(m/2) = vS,(7/2) — 2p* R, (7/2)

aor(m/2) = 202571 (/2) + R (m/2), (3.92)
agy(m)2) = S; N /2) — 2p* R (n)2).
The displacement wy, at 0 = 7/2 is expressed by
wao(m/2) = le)%g'w"o(”/ 2) (3.93)
where
e, (7)2) = —[(X1 + X5)Ro(7/2) + (X2 + X6) S, (7/2)]. (3.9
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The index 6, indicates that this quantity depends on 4. Note that according
to (3.23)
falug,) = / Quwds = 21 RPwg, (7 /2) (3.95)
Fs
and by (3.21) fa(ug,) = az(ug,, ug, ). The elastic potential reads
1
J(v) = §a2(V>V) — f2(v)

and its value on v = uy, equals

T (ug,) = —%f2(ueo)- (3.96)

Thus i
T(ug,) = = D g, (7/2) (3.97)
T (ug,) = WPDR J (ug,) (3.98)

and the non-dimensional potential equals

J(ug,) = By (7m/2)(X1(00) + X5(6o)) + So(7/2)(X2(60) + X6(00)).  (3.99)

The function J(ug,) = —bg, (7/2) can be found explicitly and the rest of this
section is devoted to this derivation.
Let us introduce new (complex) unknowns

Zy = %(X1 +1X,), Zy, = 7 .
o = 3.100
Zs = %(X5 +1iXg), Zs = Zs. ( )
The system (3.90) can be written in the form
ho(00) Zy + he(bo) Ze = 1Dy,
92(90)Z2 - 96(90)26 = iDQ? (3 101)

B(Zy+ Zs) = 1Ds,
Oé(ZQ — Z6) = % + LD4
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where D; € R are arbitrary constants,

ha(0y) = wP,(cos By) — (1 — v) ctg O P} (cos b)),
he(6p) = wP,(—cosbg) + (1 — v) ctg g PL(— cos by), (3.102)
g2(00) = (P} (cos by), :
g6(0o) = (PL(— cosby),
and : , ;
=1—-12p", w=v—1i2p7, 2 10
a=(PH0), f=wP(0). (3.103)
Note that }
T (ug,) = 2Re{P,(0)(Z2 + Zs)} (3.104)
and by (3.101)3
J(ug,) = 2R {iD:”
= € _—
86 »
or . L
i _ 4y
J(ug,) = ZRe(V — 2W)Dg _WDB
and finally
. 42
I (ug,) = —ﬁlm(ﬁ(% + Zg)). (3.105)

To find D3 one should solve the whole system (3.101). Let us re-write this
system in the form

B(00)Z = Q, Z =%y, 72, %, Zé]" (3.106)
e ha(80) ha(00) he(6o)  he(fo)
_ 92(90) 92(90) —96(90) —96(90) .
B(Go) = 3 ? 3 B_ (3.107)

The plan of the work is now the following. From the first and third equation
of (3.107) we express Z; and Zg in terms of 75 and Zg. Then we substitute
these results into the second and fourth equation of (3.107). We find a 2 x 2
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algebraic system for Z, and Zg. We solve it and add Z, + Zg. After heavy

algebra we arrive at the following result

8+ 20) = 18P 330 (3.108)

where |3|* = |w|?| P, (0)|* and

L (h2 —he)(g2 + gs) — (ha — he)(92 + g6);

= af(gs — g2)(h2 — he) + (g6 + g2)(h2 + he)],
‘|‘5%3[(96 — g2)(h2 — he) + (96 + 92)(h2 + he)
—2a(g2he + geh2) — 2a8(g2he + geh2),

(3.109)

the arguments 6y being omitted for the sake of brevity.
Note that Re(L) =0 and Im(M) = 0. By substituting the result (3.108) into
(3.105) one finds

Flugy) = —@|4ﬂ3%%— (3.110)
T (ug,) = —4p?| P, (0)]* F(6o) (3.111)
with
F(6o) Im{(hs — he)(g2 + gs)}

~ Re{aB[(hs + he)(g2 F 96) — (hz — ho)(g2 — go)] — 2a3(g2he + goha)}
(3.112)

the argument 6y being suppressed for the sake of brevity.
The behaviour of J(ug,) in the vicinity of 85 = 0 will be studied in Sec. 5.
Having found the constants Z;, Zg we can determine X;, 1 = 1,2,5,6, or A;q).

To find the stress resultants N and moments M>? one should use the for-
mulae (3.28) and (3.31). The constants A4y and As(y will disappear and will

not affect the formulae for N*# and M*?. To find the state of displacements
(not only w, but also u and v) one should take into account the boundary
conditions of kinematic type.

4. Topological derivative of the total compliance of a spherical shell
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4.1. The notion of topological derivative

The topological derivative has been introduced in the paper by Sokolowski and
Zochowski (1997). Let us recall its definition for a functional defined on S.
Functionals defined by a mapping

J:S\K =R (4.1)

for any compact set K C S are called shape functionals. Let us consider a
family of neighbourhoods B,(A), A € S, p > 0 determined by equidistance
contours on S. Assume that the following limit exists

L IE\BA) - I5)
FA=T sy

(4.2)

The function F(A), A € S is called a topological derivative of J(5).
For the case of a spherical shell the neighbourhoods B, have circular boundaries
of radii p = Rsin 0y, see Fig. 4.1

Figure 4: Fig. 4.1. Opening in a spherical shell

The area of B, equals
|B,| = 2(1 — cos )7 R? (4.3)
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or

0
|B,| = 4sin? 5%32. (4.4)

Let us define the function

Ji(p) = T(S\ B,(4)) (4.5)

for p > 0. The main conjecture of the paper is that J1(p) can be expanded as
follows

Tup) = T(S) + 502 T1(0,) + ol?) (4.6)

and |J{"(04)] < 4+o0. Since p = Rsinf it will be more convenient to consider
the functlon J(0o) = Ji(Rsinfp) and look for the expansion

J(0o) = T (5) + %(90)2 "(04) + o(60)°). (4.7)

Here ()" = d/dfy. Before proceeding further we have to rearrange the problem
(P) of Sec. 3 such that it involves physical components of all mechanical
entities.

4.2. Setting of the problem (f’) in physical components

In the tensorial notation, see e.g. Eq. (3.18), the variables § and ¢ are concea-
led, which is highly inconvenient in solving the optimization problems. We
have to use a standard notation, namely u,v,w are displacements (see Sec.
3.3), the membrane deformations are given by (3.46)-(3.47).

Now we introduce the physical components of the change of curvature tensor

(Pas) R
Kap = ——20 (4.8)

V@aar/A55

Hence we find

K11 = Rlz <8—w + w)
K22 = 73 Slin2€<d¢2 + sin 8 cos Haw + sin?¥d w) (4.9)
K12 = Rz iine(jez;:s ctg0 )
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Physical components of N8 are denoted by N°# and physical components of
M%8 are denoted by the same letter M, or M*P.
The constitutive relations (3.17) assume the form

N = C(e11 + vea), N? = C(ea2 + ven),
N12 = N21 = C(l —I/)Elg :

M'" = D(k11 + vka2), M* = D(kas + vEn),
M12 = M21 = D(l — I/)lilg

(4.10)

and C' = Eh(1 —v?)71. Consider a spherical shell, free of surface loading p',
parametrized by &' = 0, £2 = ¢, of two edges :

6 = 0y (the upper edge I'p)

and

6 =0,(¢) the lower edge I'y)
and ¢ € [0, 27], see Fig. 4.2

Figure 5: Fig. 4.2. Opening located at a north-pole

The equations of the edges are
® = R[sin 0;(¢) cos ¢,sin b1(¢) sin ¢, cos 1(¢)]

- the lower edge and
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® = RJsin Oy cos ¢, sin Oy sin ¢, cos O]
-the upper edge.

Assume that the lower edge is subjected to a self-equilibrated system of boun-
dary forces N, S, () and Mp and the linear form f; reads

fz(ﬂ,ﬁ,m:/r (an+5*U7,L+Qw+sza )ds (4.11)

on

where v = (u, 7, w) is the vector of trial displacements and v, = v.n, v; = v.t.
The density of the form asy(.,.) reads

e(u,v,w;u,v,w) = Clenr(u, w)en (w, w)+
+ 1/[511( w)egn (U, U, W) + e22(u, v, w)er (U, w)|+
+ eaa(u, v, w)eqn(u, v, @)+

+2(1 — I/)Elg(u v)e1a(u, )]+ (4.12)
+ D[k (w)k1 (@) +

+ v[R11(w)K22(W) + Koa(w)kr11(W)]+

+ ligg(u’)/ﬁ?gg(w) + 2(1 — V)Kilg(’w)lilg(w)].

Now we define the bilinear forms as(.,.) = ag,(.,.) in terms of physical compo-
nents

27 91
ag,(u, v, w; U, T, W) / /0 e(u,v,w;
0

The variational formulation of the equilibrium problem is as follows

, 0, W) R? sin 0d0d¢. (4.13)

:I

P, ) find (ug,,ve,, wy,) € Vg, such that
%7 ag,(ugy, ey, wa, T, 0, W) = fo(u,v,w) V(u,v,w) € Vg,

where Vy, = (H'(04,))? x H*(O4,), the domain Oy, refers to the shell of Fig.
4.2 and f(.) satisfies

The variational equilibrium equation reads

o [Néff £ag(T,0,70) + MSP k()] R2 sin 0d0d)
v

® aow) W@ e Vi (4.14)
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where Ng;ﬁ and Mg;ﬁ are physical components of the stress and couple resul-
tants. The index 6y indicates that the solution depends on this quantity. The
middle surface of the shell is denoted by Sg,.

4.3. Computing the topological derivative of the total compliance

Let us define the shape functional

T (S8,) = T (ug, ) (4.15)
and let j(6o) = J(ug,), where ug, = (ug,, vg,, wy, ) and J is defined by (3.96),

i.e. it is a total compliance of the shell, taken with the negative sign. Our aim
is to find its first and second derivatives with respect to #y. By the principle
of minimum of potential energy

. .ol
I (ug,) = min J (@) = min {5% (@) — f2()}. (4.16)
One can prove that
dy (6 1
jd(HOO) = §a/€0 (u507u90)7 (417)
L Ban(s) I ,
and ap (.,.) = T is the partial derivative with respect to #;. We compute
0
/ 9 2 (61(9) , /
b, (g, 1g,) = —— / / e(ug, , ug, ) R? sin 0d0dg (4.18)
890 0 90
and find ,
alﬁo (1190,1190) = _RQ sin 90/0 e(u907u90)(007¢)d¢' (419)

The integrand e(ug,, ug, )(6o, ¢) represents the elastic energy measured along
the I'g edge. But the variational equation of equilibrium (4.14) implies

N =0, N2=0, M'=0 (4.20)

which means that e(ug,,ug,)(fo,¢) can be expressed in terms of Nz?, Mg?,
M;OQ, solely, by using the constitutive relations inverse to (4.10). From the
literature on special solutions of shells with openings (see e.g. Grigoliuk and
Filshtinskii (1970)) we know that the stress and couple resultants mentioned
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above are of the same order as the loading applied to the lower edge I'y. One
can say that the loading at I'y is transmitted into the circumference of the
opening in the form of so-called hoop stresses, but they do not grow if the
dimension of the opening tends to zero. This means that aj (ug,,ug,) tends
to zero. We conclude that the first derivative of j(fp) vanishes.

Remark 4.1. In the case of an infinite plate with an opening, loaded in the
infinity by in-plane loadings, the hoop stresses are completely independent of
the dimensions of the openings. This must be the case since the plane-stress
(or membrane) theory is free from any internal length scales, hence one cannot
distinguish between small and large openings if the plate is unbounded and is
weakened by only one opening.

The same remark concerns the Kirchhoff theory of bending. The thin shell
theory used here couples both the membrane and bending effects weakly, since
the constitutive relations (4.10) are uncoupled. Along the openings no new
effects should occur. []

Let us proceed to deriving a formula for the second derivative of the function

7(6o).
By (4.17) and (4.19) we find

2 2m

e(u907 Ug, )(007 ¢)d¢_232 sin fg /0 6(1190, ulé’o )(007 ¢)d¢7
(4.21)

where j"(0y) = d*j(60)/d(6o)*. Thus j"(6o) depends on a new field uj, . Diffe-

rentiation of the both sides of the equation of the (Pg,) problem gives

27"(0p) = —R* cos 90/0

(P ) find uf, = (up,,vg,,wy,) € Vg, such that
60 a90 (ule()?V) = _aleo (ue())V) \V/V E ‘/00

where v = (u,7, @) and

2
dl (g, v) = —R?sin / e(ugy, V) (0o, &)dd (4.22)
0

or, by (4.10) we have

2

b (ug,,v) = —R?sin /0 NG eop(,,) + Mg k()] (00, ) dp. (4.23a)
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Taking into account the boundary conditions (4.20) one can reduce the expres-
sion above to the form

ap, (g, v) = —R%sin b [37[N?e20(W, v, W)+ (1.23b)
‘I’ MgOQFQQQ(E) —|— 2M /4312( )](00, )d¢ )
Upon substitution of (3.47); and (4.9) one finds
a’go(u@o,v) = —R?sinf, [;” [Rsi1n€0 Ngf(g—g + cos g U + sin by ﬁ)—l—
+ R2 sin 6o M€102 (aa;azs — ctg Oo g_z) + R2 Silnz % M€202 X (424)

X (W + sin g cos Hog—g + sin? 6, E) (o, qb)] deo.

The next step requires imposing further continuity restrictions on N9202, Mé?f
and 0w/00 along I'y : Nj* € C*(Ty), My?> € CH(To), Mg? € C*(Ty), 0w/0b €
C(I'p). Using the identities

207 _ 8 ONG?
v o 9 o 0=
N, 26 — ¢(N v) B Ua
12 82w _ ( M2 dw) eo ow
6o 9084 — B\ bo 90 8¢ 20
oM}2
120w _ 12—y Mgy
M90 56 = (M w) 5% 0
M2 (M228w dMé?m) + 82M92§w
o 92 o 3¢ EP) 242

and noting that the integrals of the underscored terms vanish one rearranges
the expression (4.24) to the form

8N
azo<ueo,v>=—fro{<zv33 ctig o)(0o, &) + (- 52 ) (00, 6)+

oM}? 92M, )
+ (N302 + ]%sclonsfgo ER) st R511112 fo a¢2 <+ Meo )'w(00,¢)+ (4.25)
aM,
+ ( o 51r12€0 8¢) —I_ Ctg HOM% ) n 007 )}dS,

where ds = Rsinfyd¢.

Now we are ready to find the strong formulation of (Pj ). The local equilibrium
equations are homogeneous ; they have the form (3.26) if one neglects p* and
express them in terms of physical components. The boundary conditions on
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I'y are also homogeneous ; this boundary is unloaded. The boundary Ty is
loaded and there the boundary conditions are of the form

N(uj, ) = ctg (90N90 ,

dN22
(ueo) = sm@o 8.;!) ?
aM12 52 M22 (4.26)
(u ): M + 2 cosfy 69 4+ 1 60
fo sin2 Ao 8(}5 Rsin?268g 942
M2
/ L)
Mg(u 9)—Ctg00M smeo 79

and here N = N1, § = N2 Mg = M,

We note that () has higher singularity than N, S and Mpg. This is due to
the fact that the transverse shear forces are, roughly speaking, derivatives of
moments. Thus the (sin 6y)~? singularity in () has the same effect as (sinfy)~!
singularity of Mp.

The singularities of N, .S, ) and Mp given along I'y transmit into the generali-
zed hoop stresses N**(uy ), M**(uj ), M (uy ). Now we are ready to estimate
the second term of (4.21). The expression e(ug,, uy, ) can be rearranged to the
form of a sum of the product of the quantities N3?, Mz?, M?, associated with
ug,, and the quantities N**(uj ), M**(uj ), M**(uj ). The former ones are
of order of the loading applied to T'y. The latter ones are of order (sinfy)~*

The result is that this singularity is cancelled with the factor (sin#fy) and we
conclude that both the terms of (4.21 are of the same order.

Let us analyse now the quantity

o00) = [ elua ) 60, 01 (1.27)

Due to the opening I'q being unloaded we have (4.20). The integrand of (4.27)
depends on (Nz?)?, (Mj?)?, (My?)* at (0o, ¢) points. If g N\, 0 these quantities
can be expressed in terms of the principal values of NS‘B and Mgﬁ, associa-
ted with the problem of a shell without the opening I'y. For the plane stress
problem (M*? = 0) such formulae are reported in Sokolowski and Zochowski
(1997) and for the pure bending problem (N’ = 0) case are given by Schu-
macher (1996). Thus we anticipate here that similar formulae hold in the shell
case. Since the reciprocal terms (coupling N and M) are absent in (4.27) we
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should get

| 1 I
Jim 9(685) = 27 | (0 (trNo)? + 9t (No)?) + (61 (rMo)? + tr (Mo)?)|
(4.28)

with v4, d, being constants depending on the Poisson ratio v. This yields

¢ 2
27"(86) = ~ 2 {3 (3 (trNo) -t (No)? i (51 (1Mo 465t (Mo)) } -
(4.29)
where .
A =2R? lim e(ug, , sin Oy, ) (0o, ¢)de. (4.30)

6o™\0 /0

The first term in (4.29) is constructive, since the coefficients v,, d, can be found
by analysing special cases of loading. Let us stress once again that they are
material constants. In contrary, the formula for A is less constructive. In the
case of plane-stress (M*? = 0) A = 0, which has been proved by Sokolowski
and Zochowski (1997). In the pure bending case (N*® = 0) this formula is
absent in the paper by Schumacher (1996). These facts suggest that A = 0
also for shells, but the proof is unknown.

5. Particular case : finding the topological derivative of the com-
pliance functional at the north-pole of a hemisphere subjected to a
constant circumferential transverse loading

5.1. The aim of the present section is to analyse the behaviour of the functional
J (ug,) given by (3.99) for small values of 6 for the spherical shell considered
in Sec. 3.4. First we show that

(X1(6o), X2(00)) — (X1(0), X2(0)) and (X5(6o), X6(6o)) — (0,0)

if 6y \ 0, where X;(0), X3(0) correspond to the case of a hemispherical shell
closed at a north-pole. To prove it we analyse the solution of the algebraic
system (3.90) with the matrix A(6y) given by (3.91). According to the remarks
in the Appendix the coefficients anrs(60), anme(bo), ags(bo) and age(fy) are
singular at 8y = 0. Thus we have to regularize this system before analysing
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the behaviour of X;(fp) in the neighbourhood of 8y = 0. To get rid of the
singularities in the two first equations we multiply the first one by sin? f; and
the second one by sinfy. Then the terms ctgfyR;*(6o), ctgboS;*(6y) and
ctg Oo RN (m — b)), ctg0pS; (m — 6y) will be replaced with

SingoR;I(eo), sin@osa_l(@o) (51)

and with
sinOg R (m — 0), sin 05, (m — 6p), (5.2)

respectively. This new algebraic system has the form

A(00)X(6o) = Q, (5.3)

where the matrix K(@o) is formed from the matrix A(6y) by multiplying its
two first raws by sin® §, and sin 8y, respectively :

EfMl((go)) CEMQ((gO)) CEM&;((go)) EfMG((gO))
A= | s (5/2) aanlm2) awn(r/2)  aya(r/2) (54)
agi(m/2) aqa(m/2) —agi(m/2) —agqa(m/2),
with

CNLMZ(HO) = Sin2 HOCLMZ'(HO), CNLQZ(GO) = sin GOCLQZ'(HO), 1 € {1,2,5,6} (55)

Since the expressions (5.1) tend to zero and the limits of the expressions (5.2)
are finite (see A.10) the system (5.3) degenerates to

0 0 C1 Co Xl(O) 0
0 0 C3 Cq XQ(O) . 0 (5 6)
ami(m/2) ama(m/2)  amn(7m/2)  ana(n/2) Xs50) | |0 '
agi(m/2) aga(m/2) —aqi(m/2) —aga(m/2) ] | Xe(0) 1
where
Ccp = hmgo\‘o (sin2 90&M5(00)),
Co = hmgo\‘o (sin2 90&M6(00)), (5 7)
C3 = hmgo\‘o (sin 90&@5(90)), )
Cq = hmgo\o (Sin 00&@6(90)).
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Let us prove that the matrix

asg = l a @ ] (5.8)

C3 C4

is nonsingular. We compute these numbers with using (A.10) and the

definitions (3.79) and (3.88) :

¢; = —2(1 — v)sin(ma) cosh(rb),
¢; = —2(1 — v) cos(ma) sinh(7b), 59
c3 = 2[sin(ma) cosh(md) + 2p* cos(ma) sinh(7b)], (5-9)
¢4 = Z[cos(ma) sinh(wb) — 2p* sin(ra) cosh(mb)],
where a + 1b = o, see (3.62). After some algebra we find
det Ass = 2p*|sin(mo)|* > 0 (5.10)

if o ¢ N. But o is always a complex number. Thus det Asg # 0.
Now we come back to the system (5.6) and conclude that the constants X;(0)
and X5(0) can be found by solving the system

precaiite] | B R

and
X5(0) = X6(0) =0 (5.12)

One can easy note that the system (5.11) corresponds to the problem of a
hemisphere (closed at the north-pole) subjected to () = P along the lower
edge, see Fig. 5.1. Indeed,

in this case the solution g (f) and &)0(9) is sought in the form

o~

®o(0) = 7z[(v — 1) Ag(0) cos 0 + (v Ay g) — 2p* Ago)) R (0)+ (5.13)
+ (VAQ( + 2p* A1 0) S.(0)]

to(0) = — 55 (A1) Ro (0) + Az(0)Ss(0) + Augo)cos 0] ,
)

and the conditions

Mgp(n/2) =0, Q(n/2) =P (5.14)
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A 4

Figure 6: Fig. 5.1. A hemispherical shell subjected to a transverse loading

give the system (5.11). The equation N(7/2) = 0 is identical with Mp(7/2) =
0. Thus the result (5.11), (5.12) discloses a correspondence between the so-
lution to the problem with an opening. Now we know that if 8, N\, 0 the
constants X, X3 tend to X1(0), X2(0) characterizing the solution for a shell
without an opening at the north-pole and the constants X5, X4 tend to zero.

5.2. Now we prove that

dj(u9o )
dby

and to this end we make use of the formula (3.110). Both the functions L and
M are multiplied by sin® § to suppress the singularities. We find

(0)=0 (5.15)

. L(6y)
J(ug,) = —4p*| P, (0)]*—= 5.16
() = <157, 0) (5.16)
with L and M depending on the functions
22(9) = sin*0 wP,(cos ) — 5% sin 20 P} (cos 0),
he(0) = sin* @ wP,(— cos 0) + (1 — v) cos O sin O P} (— cos ), (5.17)
2(0) = ( sin@P}(cos ), '
(0

according to (3.109).
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In the Appendix one can find the proofs of the following properties of these
functions

2(0) .é?( ) - 07 }ALQ(H) - 0(02)7 g (0) = 0(92)7
0(1) 4 0(021n6), §6(6) = 0(1) + 0(621n ), (5.18)
0 51 —ysin(on 3(0) - 3¢ sin(om),

and their derivatives

() G =000,
(i) G =0(0), (5.19)
(iii) % =0(071)+0(0) +0(6*1n0) + o(0),
(iv) %5 =0(60") + 0(0) + 0(6°In0) + o(0).
The derivative of (5.16) is proportional to
R(0) = (VI(0))*[T'(0) ¥ (0) — £(0)F7(0)) (5.20)
with () = d/df. Note first that
M(0) = aBL(0) + GBL(0) (5.21)
with 162
L(0)=iS, S= WZ (1 — v)|sin(om) (5.22)
Thus we have .
M(0) = —2dS, d#0, S#0, (5.23)
with d = Im(@f). The expression
F(0) =L'(0)M(0) — L(§)M'(6) (5.24)

involves many singular terms due to the properties (5.19) (iii, iv). We shall
prove below that all these singular terms cancel out and the rest of F/(6) tends
to zero.

With the help of (5.19) we compute the singular terms of both the terms of
F(0):
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and
LOYM'(0) = iS{aB(U —T) +apB(U — U)} + o(8).

Hence

=

(6)M'(0) = iS(aB — @B)(U — U) + o(6)

= 2d(1)*S(U — U) + o(6),
which confirms that F'(#) is nonsingular and vanish for  ~\, 0. The proof of
(5.15) is finished.

5.3. This section is aimed at proving that
‘de(ué’o)
d(6o)*

By (5.20) this property is equivalent to the condition |dj&’v’/d0 (0 =0)| < 4.
Let us compute

(0)] < +o0. (5.25)

K' = (M) [L"M® — 2L'M'M? + 2M(M')*L — M*M"L)]. (5.26)

Since L’ OLM z(O)M’(O) we reduce the expression above to the form
K "0)=(M(0))” F1(9) with

Fy(0) = L"(0)M(0) — M"(0)L(9). (5.27)

We shall prove that all singular terms of Fy(6) cancel out. For small § we have

Fy(0) = L"(0)(—2dS) — M"(6)(iS), (5.28)

see (5.22), (5.23), and

L"(0) = (hf — hid)(g2 + g6) + 2(hy — RE)(gh + gt) + (ha — he)(g} + g8)—
— (kg — hg)(g2 + g6) — 2(hY — he) (g5 + g6) — (ha — he)(95 + 98),
N (5.29)
M"(0) = 3[( ¢ — 95)(ha — he) + 2(gg — g5)(hy — h)+
+ (g6 — g2)(h% — h§) + (g6 + g5 ) (ha + he)+
+ 2(g + ) () gz)(h’ + hg) + (g6 + g2) (A + he)]+
+ aﬁ[(% — g3)(h2 — he) + 2(g6 — 93) (R — he) + (g6 — g2) (R — hg)+
+ (96 + 99)(ha + he) + 2(g5 + g5) (R + hg) + (g6 + g2) (R + hg)]—
- ZOzﬁ[g 'he + 2950 + g2hE 4 giha + 2g5hh + gehy]—
— 20B[gyhe + 2g5h + g2 + giha + 2g5hY + gehly],

(5.30)
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the hat “A” over ¢g; and h; being omitted for brevity. This sign will be omitted
up to the end of this section.
In the vicinity of § = 0 the functions g¢§, kg, g5, hY behave as follows

he(0) = 0(9_2)7 96(0) = 0(9_2)-
The properties (5.18), (5.19) and (5.31) determine the singular behaviour of

Fi(0) at § = 0. One can group the terms of (5.28) into three functions as
follows

Fi(0) = F{70) + FP(0) + FO(0), (5.32)
where
Ffb)< ) = 2a3(q0hs + ghl) + 2aB(g" ke + gehld),
FM(0) = —2aS([(Wgs + hogl) — (Reg + 1g2)]—
— iS(aB +ap)(g5he + Tehs + gsh + i), (5.33)
F(0) = —2dS[~higs — 2higl — hegl! + higs + 2hiygs + gihe)

— iS{afB[—gihe — 2g5hl — gehl + gihe + 2g5hy + Tohy)+
+ af[—g he—296h — Goh + gihe + 2g5h% + gehll]}.

Note that all terms of Fl(a) and Fl(b) are of order 0(6~') and the terms of Fl(c)

are of order 0(#~?). To prove that all singular terms of Fl(a)

sufficient to show that the function
Fil0) = g4(0)hs(6) + go(0)140) (5.34)

is non-singular at ¢ = 0.
The singular term of ¢ has the form

cancel out it is

cos? d

~2( P!(cos 0)

sin

and the non-vanishing for § = 0 term of hg reads
he ~ (1 — v) cos @sin O P} (— cos 0).
The singular term of A} reads

(1 —v)(6cos? @ —2)cos b
2 sin 8

Ry ~ — P!(cos ),
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while gg equal to
gs = (sinOP}(— cos 0)

is non-zero in = 0. Thus F3(f) and Fl(a)(ﬁ) are finite at 6 = 0.
Let us proceed now to proving that |F1(b)(0)| < 4o0o. Let

A(9) = g5(0)he(8) + h5(0)gs(0). (5.35)
Then
FP(0) = —2dS(A — A) — iS(aB + aB)(A + A).
Since aff + @B = 2¢, we have
FO(0) = —2dS(A — A) — iS.2¢(A + A),
FP(0) = —28[(d + ic) A + (ic — d)A].

One can prove that |A(0)| < +oc ; this proof is similar to that concerning the
function F3(0). Hence Fl(b) is non-singular at § = 0.
Let us prove that |F1(C)(O)| < +o0o. Let us define

B(0) = hg(0)gs(0) + 2h5(0)g5(0) + he(0)g5 (0). (5.36)
Note that
F9) = —2dS(B — B) — iS[aB(B — B) + a3(B — B)]

but o3 = c+1d, which gives Fl(c)(Q) = 0. Thus the property (5.25) holds good.

Appendix

The aim of this appendix is to report the basic properties of the functions
P(z), R7(6) and S7*(0) frequently used in the body of the present work.

Let us recall the Hobson formula(see Wang and Guo (1989), p. 256)

1l —2x

1 Jl—ay2Tl(c+m+1
( ) ( )

Fr(@) = (=1)" l+z/ T(c—m+1)

F(—J,U—I—l,l—l—m,

) (A1)

m!

INRIA



Optimal shells formed on a sphere. The topological derivative method. 55

for || < 1 ; I represents the gamma function and £ is the hypergeometric
function. By using the relation

[(o—m+1)

P™(z)=(—-1)" P (3 A2

7o) = () e ) (A2)
we find the equation valid for |z| < 1

o 1 /1 —2\2 1 —=x _

P; (;g):m(lﬂ) F(—0,0+1,1+m, 5 ), (A.3)

used by Niordson (1985, Eq. (13.60)).

If we put @ = cos § the functions P, (cos#) become singular for § — 7 (then
& — —1). Let us recall how these functions behave at @ = —1. After Wang
and Guo (1989, p. 257) we report the formula

i 5 m—1 (=)o N
Py (@) = =222 — )I(152) " Ty Shesis () +
sinor ['(o4+m+41 m o o)y (o1t
+ m 2m%(g—m-}-)l) (1 - IQ) 2 Zk:o ( k'gzg—m)' I . (A4)

. (HTz)k{'¢(—a+m+k)—|—‘;/J(a—|—1+m+k)—'17/)(1—|-m+k)—
— (14 k) +In =}

valid for m =0,1,2,... and |z| < 1. Here

(z2)n=z2(z4+1)...(z4+n—=1) for n>1

. (A.5)

and t(.) represents the logarithmic derivative of I'. For m = 0 the finite sum
above does not appear.
Consider the case of m = 1. Then

—sinom -z 1/2 sinow ['(o o
Pria) = =snem (1) sl T,

Uoeltios (142) (o4 L4 k) 4o+ 24k)—  (AD
—Y(2+k)— (1 +k)+1n HTI}

One can find now that

)e
lim (1 — 22)"/2P(z) = - 270 (A7)

z——1 m

RR n" 3495



56 T. LEWINSKI and J. SOKOLOWSKI

or, see (3.66)

2sinom
. . 1 _ . . _1 . ’. _1 - _
él_r%sm OP,(—cosb) = %gré[sm (R, (m—0)+1S, (m—0))] = p— (A.8)
Since by (3.60) o = a + 1b, we find
sin(om) = sin(ma) cosh(mwb) + i cos(ma) sinh(mb) (A.9)
and
limg_o (sin@R; (7 —0)) = —% sin(ma) cosh(7b), (A.10)
limg_ (sin 851 (7 — 0)) = —% cos(ma) sinh(mb). o

Hence we find the results (5.18) and (5.9).
Let us proceed now to proving the results (5.19). The known formula(see

Niordson (1985), p. 306)

dpPrm
(1 - 2% dg = —(1 —2H)Y2pmtt e pr (A.11)
T
implies
dPr 0
% = Pt (cos ) + mctg O P7(cos 0), (A.12)
since de = —(1 — 2?)"/2d0, if = cos 6.
Substitution x = —cosf or § = 7 — 6§ gives
dP"(—cos b
dbs (= cosb) = Pt (—cos ) — mctg O P7*(— cosb). (A.13)

do

Now we can express the function gg(8), see (5.17), as follows

di
&6 (sin O P?(— cosf). (A.14)
do

The representation (A.4) gives us the information on the behaviour of this

function for small 6. This leads us to the property (iv) of (5.19). The proof of

(iii) of (5.19) is similar.

Similarly one finds

dis _

0= ([2 cos O P} (cos 0) + sin O P?(cos 0)]. (A.15)
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Taking into account that P)*(cos @) — 0 if 0 for m = 1,2 (see Wang and
Guo (1989), p. 256) we confirm (ii) of (5.19). Note that

d
@( sin? 0P, (cos 0)) = w[sin 20 P, (cos #) + sin® O P} (cos 0)] (A.16)

since dP,(cosf)/dfd = P}(cosf). Taking into account that lim P,(cosf) = 1
if 6\ 0 we conclude that the expression (A.16) vanishes if § N\, 0. Compute
now

%( sin 20 P} (cos 0)) = 2 cos 20 P} (cos ) + sin 20[ P?(cos #) + ctg O P} (cos §)].
(A.17)

By the same arguments this expression tends to zero if § \, 0. By (A.16) and

(A.17) the formula (i) of (5.19) follows.

Let us recall now the formulae which have made it possible to derive Egs.

(3.72)-(3.74), (3.79), (3.84) and (3.88).

The formulae (3.66) and (A.13) (valid for negative m’s) imply

d

By = Ry —mctg ORY, (A.18)
d m m—1 m
%SJ =S5 —mectgfST. (A.19)

Hence we find

THY — mleos bhm g1 (1 — 2m) ctg ORZ" + Rp,

djggm = :§+” ™ 4+ (1 2m) ctg HS™1 + Sm-2, (A.20)
Moreover
R7™2(0) = 2(m — 1) ctg ORT1(0) — (1 —m? + m)R™ + 2p2S™(0), .
ST=2(0) = 2(m — 1) ctg 6S™-1(8) — (1 — m? +m)S™ — 292Rm(6) (N2
since
(a+ - +]§p2)(32” +1.55") cos m¢ = 0. (A.22)
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Let us report now the power expansions of R7(#) and S7* (). Let us recall

Egs. (13.66) of Niordson (1985) :

R (0) = 2 (188)" [+ Dite (o)), = =cost,

. N (A.23)
S7(0) = 7 (tg 5) " ol ba(2)
where the sequences {d,}, {b,} are defined reccursively :
R 1l —=x ~ 1l —=x
do(r) = — =) gy (A.24)

2(1 +m)’ 2m+1

where o(c + 1) = £ + in, hence £ = 1 and n = 2p* in our case ; but the
parameters £, n will be used later ; for n > 1 :

~ _ n2+n_£ an—1(z)+ gn—l T

in(w) = gy = il — a), (A.25)
7 _ [(nP4n—8)by_1 (£)—ndn_1(z)](1—2 e
bu(z) = LEtn=thoms o) a1

Let us rewrite (A.23) in the form

Ry (0) = 4 (te g)m(l by, (—))

(A.26)
Sr0) = L (ted)" oo ba (=)
where {a,}, {b,} are defined reccursively. We start with
g = —i bo = i XO = “o (;L\:Z?)
m+1’ m+1’ bol’
define the matrices
_ |%n _ | & 7m p
0 P C R o
cn=n*4+n—¢, dy=(n+1)(n+m+1)
and we obtain the recurrence formula
1
XTL = —aan_l. (1“&.29)

dy,
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Its solution reads

X, = (kﬁl(dk)‘l) (a,a0_1 ... a1)Xo. (A.30)
- —

The matrix A, can be found explicitly.
To this end we decompose the matrix a; as below

ar = (¢ +1n)S1 + (¢, —1n)Ss (A.31)
with
111 —4 1 1 2 o
o[ 7] L] o

Note that S, are projections of usual properties
S1S1 =S1, S5, =955, S:5,=85,5; =0. (A.33)
Hence . .
(H ck—l—m)Sl—l—<H ck—m) (A.34)
k=1 k=1
and we find eventually

1 1
4 =~ Beltal¢ — in)l, by = ——Relta(+i€)] . (A35)

where

ﬁ (B*+k—¢41in) (A.36)
o B+ D(E4+1+m)
Algorithm for finding wg,(7/2)

Given : v, R/h.

Find - 2 2\11/2R
p* =B =L,

C=1-—1i2p% w=v—12p%
a=(PH0), B=wP,(0),

where (o + 1) = 1 +12p?.
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Define
ha(0) = wP,(cos @) — (1 — v) ctg O P}(cos 6),
he(0) = wP,(—cos ) + (1 — v) ctg O PL(— cos §),
0:(6) = (P (cos ),
gol0) = (P cos ),
k(0) = ha(0) — he(8), 1(0) = h2(0) + he(0),

M(0) = Re{aB[n(0)l(0) — m(0)k(0)] — 203(g2(0)he(0) + g6(0)h2(0)]},
W, (7/2) = 4,02|P0(0)|2]\L4((;0)) ; (non-dimensional result),
wé’o(ﬂ/Q) = Pgswé’o(ﬂ/2 ) [wé’o] =m
where o
D=snz0m
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