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Répartition automatique de systémes réactifs pour réseaux de
processeurs asynchrones

Résumé : Cet article traite du probleme de la répartition automatique de systémes réactifs. Nous
montrons tout d’abord que les langages synchrones permettent de programmer naturellement de tels
systemes de facon parallele, et ce indépendamment de toutes contrainte d’exécution. Apres cela, la
répartition désirée peut étre facilement spécifiée et obtenue grace a ’algorithme présenté ici. Cette
méthode de répartition permet d’obtenir des programmes répartis avec la méme siireté et les mémes
possibilités de mise au point et de test que pour des programmes centralisés ordinaires. Enfin, la mise
en ceuvre de tels programmes répartis ne nécessite qu’un protocole de communication trés simple (des
files d’attente “first in first out”), ce qui réduit la taille de ’exécutif réparti.

Mots-clé : communications asynchrones, calcul réparti, systeémes réactifs, répartition automatique,
langages synchrones.
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1 Introduction

1.1 Reactive systems

Reactive systems are computer systems that react continuously to their environment, at a speed deter-
mined by the latter [18]. This class of systems contrasts, on one hand with transformational systems
(classical programs whose inputs are available at the beginning of their execution, and which deliver
their outputs when terminating: for instance compilers), and on the other hand with interactive sys-
tems (which react continuously to their environment, but at their own speed: for instance operating
systems). Among reactive systems are most of the industrial real-time systems (control, supervision,
and signal-processing systems), as well as man-machine interfaces. These systems have the main
following features:

e Parallelism: At least, the design must take into account the parallelism between the system
and its environment. Moreover, these systems are often implemented on parallel architectures,
whether for reasons of performance increase, fault tolerance or functionality (geographical distri-
bution). Finally, it is convenient and natural to design such systems as sets of parallel components
that cooperate to achieve the intended behavior.

e Determinism: These systems always react in the same way to the same inputs. This pro-
perty makes their design, analysis and debugging easier. Thus, it should be preserved by the
implementation.

e Temporal requirements: These requirements concern both the input rate and the in-
put/output response time. They are induced by the environment and must imperatively be
matched. Hence, they must be expressed in the specifications, they must be taken into account
during the design, and their satisfaction must be checked on the implementation.

e Reliability: This is perhaps their most important feature as these systems are often critical
ones. For instance, the consequences of a software error in an aircraft automatic pilot or in a
nuclear plant controller are disastrous. Therefore these systems require rigorous design methods
as well as formal verification of their behavior.

A programming language well suited to the design of reactive systems should therefore be parallel
and deterministic, and allow formal behavioral and temporal verification.

1.2 The synchronous approach

Synchronous languages have been introduced in the 80’s to make the programming of reactive systems
easier [4]. The purpose of these languages is to give the designer ideal time primitives, thus reducing
the chance of programming misconceptions. Instead of the interleaving paradigm, they are based on
the simultaneity principle: all parallel activities share the same discrete time scale. Concretely, this
means that a||b is viewed as the “package” ab where a and b are simultaneous. Each activity can then
be dated on the discrete time scale; this has the following advantages:
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e Time reasonings are made easier.

¢ Interleaving-based non-determinism disappears, which makes program debugging, testing, and
validating easier.

Concerning the implementation, the idea is to project this discrete time scale onto the physical
time. As the scale is discrete, nothing occurs between two consecutive instants: everything must
happen as if the processor running the program were infinitely fast. This is the synchrony hypothesis.

Of course, such an infinitely fast processor does not exist, but it suffices that any input be treated
before the next one. In order to verify this condition, one only needs to know the maximal input
frequency, and an upper bound on the execution time of the object program. For this purpose,
synchronous languages have deliberately restricted themselves to programs that can be compiled into
a finite deterministic interpreted automaton, a control structure whose transitions are deterministic
sequential programs operating on a finite memory. Each transition, whose execution time is statically
computable, corresponds to the system reaction to an input.

There are numerous languages based upon the synchrony hypothesis: ESTEREL [5], LUSTRE [15],
SIGNAL [20], STATECHARTS [17], SML [6], SYNCCHARTS [2], ARGOS [22], and SR [13]. Research on
synchronous languages compilation has led to the OC (“Object Code”) encoding format for automata.
It is the output format of the ESTEREL, LUSTRE and ARGOS compilers [23].

For a better understanding of the synchrony hypothesis, let us study some examples in ESTEREL.
ESTEREL is an imperative synchronous programming language. Besides variables, the language mani-
pulates signals: a signal can be valued or pure, and can be an input signal (its presence can be tested),
an output signal (it can be emitted), or a local signal (it can be emitted and its presence can be
tested). The communication mechanism is the synchronous broadcast: any signal emitted by someone
at a given instant is received by everybody at the same instant. Moreover, the temporal primitives of
ESTEREL are intuitive, which will make the following examples easy to understand:

e Since the control is passed instantly from a finishing statement to the next one, the statement
await 5 Second; await 5 Second is equivalent to await 10 Second!'.

e For the same reason, in the statement

every 60 MINUTE do
emit HOUR;
end every;

the signal HOUR is simultaneous with the 60" occurrence of the signal MINUTE.

e There is no notion of physical time inside a synchronous program, but rather an order relationship
between events (simultaneity and precedence). The physical time is thus an external signal, like
any other external signal. As a result, one can write either abort TRAIN when 10 METER or
abort TRAIN when 5 SECOND.

1The await N S statement waits for the Nt occurence of the signal S.

INRIA
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e In the statement

present A then
% something
end present;
[
present B then
% something else
end present;

each component of the parallel construct can react independently to its signal?. As a consequence,
the program reacts either to A alone, B alone, or A and B at the same time.

These small examples show that the synchrony hypothesis leads to very natural code, thus allowing
the designer to write as he thinks! Providing the designer with ideal temporal primitives greatly
reduces the number of programming errors. The drawback is that, once compiled, the execution time
of the program, must match the temporal specifications. But of course the same problem arises with
an asynchronous programming language like ADA.

Finally, it is important to note that the synchronous approach has been validated through several
real-life projects. Indeed, an industrial version of LUSTRE exists: it is the SAO+ CASE tool developed
by VERILOG. It is used by SCHNEIDER ELECTRIC for the control-command software of the nuclear
plants, by AEROSPATIALE for the flight control systems of the AIRBUS A340, as well as by 20 other
companies in the transport and control-command industry. An industrial version of ESTEREL is also
studied by DASSAULT AVIATION.

1.3 Distribution problems

Many reactive systems have to be distributed on several computing locations, for various reasons:
performance increase, location of sensors and actuators, fault tolerance. This is the case of the CO3N4
control system, developed at SCHNEIDER ELECTRIC for nuclear plants.

We consider here that distribution has to be specified by the system designer. There exist a priori
three ways to achieve such a distribution:

1. Compiling separately each piece of source program, i.e., independently from its context,
and making them communicate. This could be the ideal solution because it seems to be the
easiest one. Unfortunately, O. Maffeis has shown that, in general, compiling separately pieces of
programs into sequential deterministic programs is incorrect [21]. However, P. Raymond proposes
in [26] some criteria for determining whether or not a piece of LUSTRE program is separately
compilable. Also, ESTEREL gives criteria for compiling modules separately (“cascade” mode).
On the other hand, separate compiling into non sequential programs is always feasible: this is
the SYNDEX solution presented in [19].

2The statement present S then P else Q tests the presence of the signal S and has the same semantics as the
statement if E then P else Q.
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2. Globally compiling a source program into one sequential program for each location, so that
each program may communicate with the others. This is the “abstract graph method” used for
SIGNAL programs [21].

3. Compiling the source program into a single object program, and then distributing this
centralized program towards as many programs as locations, so that each location only has to
perform its own computations [§8]. Based upon the common format OC, this method can be
applied to any synchronous language.

The last two methods are complementary: the distribution of source programs avoids the problem
of code size explosion, while the distribution of object programs offers the advantage of optimizing the
centralized compiler and debugging the centralized object program before distributing it.

1.4 Distribution method

The algorithm we present in this paper is based on the object code distribution method outlined in
Figure 1.

synchronous parallel program

compiler

sequential object program

parallelizer

parallel object program

Figure 1: Parallelization scheme

Clearly, this approach raises the following question: why not take advantage of the parallel aspects
of the initial programs to directly synthesize communicating finite transition systems? We will not
discuss this in full details and just list some reasons that justify the proposed approach:

e Parallelism in the synchronous languages aims at an easier and modular description of the system,
and may not match the intended implementation parallelism.

e Compiling the program into a single transition system may be useful, in any case, for debugging
and verification purposes [24, 11].

e Synchronous parallelism is not well-behaved for separate compiling matters. Thus, if communi-
cating deterministic transition systems are desired, their direct synthesis may not be easier than
the proposed method.

INRIA
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Our algorithm (described in Section 3) first duplicates the centralized OC program to make one copy
for each location. It then removes in each copy the instructions not relevant to the current location,
according to the distribution specifications provided by the user. At this point, the program of each
location makes references to variables that are computed at a distant location. Our algorithm then adds
communication instructions to each program to solve these data dependencies (like in [8, 3]). Finally,
some problems like program resynchronization and redundant message elimination are addressed.

1.5 Paper overview

Section 2 describes the OC format, the distribution specifications, and discusses the chosen communi-
cation primitives. Section 3 presents in full details the distribution algorithm. A small example is used
to illustrate each steps. Also, for each step, the time and memory complexity are computed. Section 4
outlines the correctness proof of the distribution algorithm. Finally, Section 5 concludes and Section 6
shows some possible future research.

2 Preliminaries

Before describing the distribution algorithm, we present the OC format, the way for specifying a
distribution, and the communication primitives we use.

2.1 The OC format

A compiling method towards finite state automata has first been introduced for ESTEREL, and then
adapted to LUSTRE and ARGOS.

Basically, the idea is to take advantage of the language determinism. It allows the building, at
compile-time, of the tree of the program behaviors. This tree is indeed infinite, but it can be folded
into a finite automaton whose behavior is equivalent to the behavior of the program. This control
automaton is associated with a finite memory for performing operations over infinite types.

The success of this method is guaranteed, first by the language determinism, and second by the sta-
tic verifications performed beforehand. Finally, the language synchronism greatly reduces the explosion
of the number of states. The benefits are:

e In general, the automaton obtained is minimal.
e The equivalent program is purely sequential.
e The synchrony hypothesis can be easily checked.

e Several tools can be applied to the resulting automaton, for instance code generators, automaton
minimizers, formal verification tools, visualizing tools, interface generators and code distributors.

The automaton format used in compiling ESTEREL, LUSTRE and ARGOS is the OC format. An
OC program is a finite deterministic automaton with a finite memory for performing operations over
infinite types. Basically, a program is a list of states, each containing some purely sequential code,
represented by a DAG (Directed Acyclic Graph [1]). DAG actions are of two kinds:
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e Control actions:

— binary deterministic branchings: if (expression testing) and present (signal presence tes-
ting),
— state change: goto.

e Sequential actions:

— assignments to internal variables: x:=exp,
— signal emissions: output(s),

— external procedure calls: foo(x, y).

Moreover, an OC program is a procedure which executes, each time it is called, one transition of the
automaton. An interface is in charge of taking from the environment the inputs for the program, and
calling the OC automaton procedure. In this execution scheme, inputs are updated by the program
interface while outputs are emitted by the program itself.

2.2 Specifying a distribution

The distribution specifications must result in the localization of each action on a location. Of course this
localization must be unique and unambiguous. However, the problem of achieving the best localization
will not be addressed in this paper.

At the source program level, we may assign for instance a location to each input and output
variable of the main procedure. By propagation, a location can then be assigned to each variable of
the program.

At the OC level, we can directly assign a unique location to each variable of the program.

2.3 Choosing communication primitives

Finally, some form of communication and synchronization mechanism remains to be chosen. Shared
variables do not allow synchronization between parallel processes, unless some complex mechanism is
built on top of them. Moreover, they make formal verification harder. The other solution is message
passing. Message passing in distributed systems can be synchronous or asynchronous [12]:

e Asynchronous message passing never blocks the sender. This requires an unbounded buffer; in
practice, a bounded buffer is used and the sender will block when the buffer is full. Because
the sender never has to wait, a higher degree of parallelism can be achieved. Moreover, sending
statements can be moved backward while receiving statements can be moved forward, which
minimizes the waiting time induced by the communication network.

e Synchronous message passing uses no buffer, so both senders and receivers can block. In this
sense it leads to useless waiting times and reduces parallelism. The rendezvous used by classical
real-time languages (ADA, OCCAM, and so on) are a form of synchronous message passing.

INRIA
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We choose asynchronous message passing in the form of two FIFO queues for each pair of locations,
one in each direction. This is quite cheap in terms of execution environment. We define the two
following communication actions:

¢ a sending action: put(destination,value) where destination is the location towards which
the sending is done; puts are non blocking;

e and a receiving action: variable:=get (source) where source is the location from which the
receiving action is done; gets are blocking when the queue is empty.

We furthermore require that the network preserve the ordering and the integrity of messages. This
will ensure that values are not mixed up, provided that sending actions are inserted on one location
in the same order as the corresponding receiving actions in the other location. For instance, assume
that location 0 sends successively values 4 and 5 to location 1, and that location 1 must assign value
4 to variable x and value 5 to variable y. On location 0 we have the action put(1,4) followed later
by put(1,5). Inserting the actions x:=get (0) and y:=get (0) in that order on location 1 will ensure
that the values are transmitted correctly.

3 The distribution algorithm

In each state of the automaton, the code is purely sequential. For simplicity, our distribution algorithm
will operate at the state level. It consists of five steps which we present successively:

1. replication and localization,
2. insertion of sending statements (puts),
insertion of receiving statements (gets),

synchronization of distributed programs,

A S

elimination of redundant emissions.

3.1 Notations
In the sequel, we consider the following predicates:
e An action belongs to a location if this location must compute this action.

e A variable belongs to a location if this location locally computes this variable. Equivalently, we
say that the location owns the variable.

e A location needs a variable if this location must compute an action that uses this variable (as a
right-hand value of an assignment or in a branching).

RR n“ 3491
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3.2 Example

We illustrate the algorithm steps with the following OC program, for which we only give the code of
state 0:

state 0

if (x) then
y:i=X;
output (y) ;

else
xX:=true;
y:=x;
output (y);

endif

goto 1;

This program will be distributed onto two locations, according to the following specifications:

location 0 | location 1
y X

3.3 Replication and localization

The problem is to assign a location to each action of the program. Based upon the distribution
specifications, a unique location can be assigned to each variable of the program. The localization
algorithm consists then, for each action, in building the list of locations that have to compute it:

e a control action (if, present or goto): each location,
e 3 variable assignment: the location that owns the assigned variable,

e a signal emission: the location specified by the distribution.

As a consequence, the control is replicated on each location, i.e., each piece of program resulting
from the distribution will have the same control structure. For our example, we have the following
replication:

location | state O

(0,1) if (x) then

(0) yi=x;

(0) output (y) ;
(0,1) else

(1) X:=true;
(0) yi=x;

(0) output (y) ;
(0,1) endif

(0,1) goto 1;

INRIA
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For each action, we have indicated the list of locations that must perform it, i.e., the list of locations
that own this action.

3.4 Insertion of sending statements (puts)

We perform the put insertion separately on each state of the automaton. In each state, we have a DAG
whose nodes are the actions, and whose leaves are the gotos. The algorithm consists in associating
with each location s, a set Needg of all the variables that location s will certainly need, provided that
their value has not previously been sent by their owning location. The computation of the Need; sets
allows the insertion of puts so that any location that needs a variable for a given action will receive it
before the concerned action.

We propose the two following strategies:

e The when needed strategy where each variable is sent at the very moment when the destination
location needs it. This will minimize the number of messages exchanged between two locations.

e The as soon as possible strategy where each variable is sent just after its computation on its
owning location. This will increase the delay between the time when a value is sent and the
time when it is needed by the destination location, and therefore shorten the waiting time on
the destination location (remember that the get is blocking when the queue is empty).

A more precise comparison of the two strategies will be given in Section 3.6.

3.4.1 The when needed strategy
For each location s, the algorithm consists in placing an empty set Needs at each leaf of the DAG, and

then propagating these sets backward to the root of the DAG in the following way:

e When reaching an action belonging to location s, if for this action, location s needs a variable x
that belongs to another location, then add x to Need; (note that branchings also need variables).

e When reaching an assignment x:=exp, for each location s such that x € Needg, insert the
statement put (s,x) just after this assignment. Then remove x from each concerned set Needs.

e When reaching a branching closure, duplicate the sets Needs, and proceed in each branch then
and else.

¢ When reaching a branching if or present, for each location s:

— build the intersection of sets Need®™® and Need®!*® from branches then and else;
S S

— in each branch, insert an action put(s,x) for each variable x of the set Needs — (Need®*® N
Need®'¢); in other words, a variable is sent when the target location needs it instead of
when it is computed;

— proceed with the intersection Need®® N Need2'se.

RR n“ 3491
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e When reaching the root of the DAG, for each location s, insert at the beginning of the DAG a
statement put (s,x) for each variable x of the set Needs.

For our example, we obtain the following put placement:

location | state O Need | Need;

(1) put(0,x); ) " | ®
(0,1) if (x) then {x} 0

1 ) put (0,x) ; 0 @
(0) ¥:i=K; {x} 0

(0) output (y) ; 0

(0,1) else

(1) X:=true; 0 0

(1) put(0,x); 0 0 D)
(0) yi=x; {x} 0

(0) output (y); 0 0

(0,1) endif 0 0

(0,1) goto 1; 0 1}

The algorithm has inserted three puts:
e the put (0,x) number @ because x € Needy and x is modified by location 1;
e the put (0,x) number @) because x € Need§"™® — (Need§"™ N Need§'*®);

e the put(0,x) number @) because x € Needy and the root of the DAG has been reached.

3.4.2 The as soon as possible strategy

The goal here is to insert each puts just after the last computation of the transmitted variable. The
algorithm is the same as before, except when reaching a branching if or present: we must then
proceed with the union of sets Need®™°® and Need's® instead of the intersection. Besides, there are no
puts to be inserted after a branching action any more.

For our example, we obtain the following put placement:

location | state O Need | Need;

(1) put(0,x); 1] 0 ®
(0,1) if (x) then {x} 0

(0) yi=x; {x} 0

(0) output (y); 0 0

(0,1) else

(1) X:=true; 0 0

(1) put(0,x); 0 0 ®
) yiox; =0

(0) output (y); 0 0

(0,1) endif 0 0

0,1) goto 1; 0 0

INRIA
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The algorithm has inserted two puts:

e the put(0,x) number @ because x € Needy and x is modified by location 1;

e the put (0,x) number @) because x € Need, and the root of the DAG has been reached.

3.4.3 Complexity

For the time and memory requirements, we adopt the following notations:

e For any procedure p, T (p) and M(p) denote respectively its time and memory requirements.

® nbioe, Nbyer and nb,.s are respectively the number of locations, of variables and of actions of the
distributed program.

® AV, is the average number of variables belonging to a given location.

We assume that the implementation allows any set operation to be performed in O(avyq,) (for
instance with bit-streams). Hence, the time requirement for put insertion is O(avy,r) times the cost
of the action graph traversal. Thus:

T (put insertion) = O(nbact X aVyar)
The memory requirement is the cost of the Need sets. Thus:

M(put insertion) = O(nbygr X nbioc)

3.5 Insertion of receiving statements (gets)

As for the sendings, we perform the get placement successively on each state. Receivings remain to be
inserted, so that the actions x:=get (s) appear in the program of location t in the same order as the
actions put (t,x) in the program of location s. The hypothesis on the network (Section 2.3) ensures
that the values exchanged between two locations by means of a put/get will always correspond to the
same variable on each side.

The algorithm consists in simulating at any time the content of the waiting queues. We define for
each pair of locations (t,s) a queue Fifoy,s containing the variables belonging to location t that have
been sent to location s and not yet received by it. Those variables will be placed in the queue in their
sending order.

For each pair of locations (t,s), the algorithm consists in placing an empty queue Fifoyg,s at the
root of the DAG, and then propagating those queues forward to the leaves of the DAG in the following
way:

e When reaching an action put(s,x) on location t, add x at the tail of the queue Fifoyys.

RR n“ 3491
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e When reaching an action that belongs to location s, if for this action location s needs a variable
x that belongs to another location t, then necessarily x € Fifog,s. S0, extract the head h of the
queue Fifoyss and insert the statement h:=get(t) on location s. Repeat until x is extracted.
This ensures that variables are extracted from the queue exactly in the same order they were

put in.

e When reaching a branching if or present, duplicate queues Fifoy,s, and proceed in each branch

then and else.

e When reaching a branching closure, for each pair of locations (t,s):

then

— build the largest common suffix Suffi.s of queues Fifof?® and Fifofls® from branches
then and else; this common suffix contains the variables, sent by location t to location s,
that are located at the tail of both queues, and thus that have been sent the most recently:
remember that the aim is to insert the get as late as possible, in order to minimize the
waiting time induced by the network;

— build the queue Re

then

W = Fifolheh — Suffy,, (resp. else);

— in the then branch (resp. else), empty Rem{" (resp. else), and for each variable h

extracted at the head of the queue, insert the statement h:=get(t) on location s;

— proceed with Suffyys.

e When reaching a leaf, for each pair of locations (t,s), empty the queue Fifoy,s, and for each
variable h extracted at the head of the queue, insert the statement h:=get (t) on location s.

3.5.1 The when needed strategy

With our example where puts have been inserted with the when needed strategy, we obtain the following

get placement:

location | state 0 Fifoisg | Fifogs1
(1) put(0,x); - x] -]
(0) x:=get (1); -ee] |
(0,1) if (x) then 2] 2]
(1) put (0,x); - x |
(0) x:=get(1); -] 2]
(0) y:=x; 2] -]
(0) output (y) ; o] 2]
(0,1) else

(1) x:=true; -] e
(1) put(o,x); z :l
(0) x:=get(1); o] -]
(0) yi=x; o] -]
(0) output (y) ; -] o]
(0,1) endif -] e
(0,1) goto 1; -] -]

INRIA
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The algorithm has inserted three gets:

e the x:=get (1) number @ because x € Fifo;,q and location 0 needs x to compute the branching
if (x);

e the x:=get (1) number ) because x € Fifoj,o and location 0 needs x to compute the assignment

yi=x;

o the x:=get (1) number @) because x € Fifo1,o and location 0 needs x to compute the assignment
y:i=X.

The final distributed program is shown in figure 2.

location 0

location 1

|
|
x:=get(1); : put(0,x);
if (x) | if (x)
— 1 —
then else : then else
x:=get(1); x:=get(1); i put(0,x); x:=true;
y:i=X; y:i=X; : put(0,x);
output (y) ; output (y) ; : T~
T i endif
endif | goto 1;
goto 1;

Figure 2: OC program distributed on two locations

3.5.2 The as soon as possible strategy

With our example where puts have been inserted with the as soon as possible strategy, we obtain the
following get placement:
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location | state 0 Fifoisg | Fifogs1
) put (0,x);

) x:=get(1);

1) if (x) then
y:i=x;
output (y) ;

)

)

,1) else

) x:=true;

) put (0,x);
) x:=get(1);
) yi=x;

) output (y) ;
,1) endif

,1) goto 1;

HEULEYE DL
BELLEEE DL

(1

(0
(0
(0
(0
(0
(1
(1
0
(0
(0
(0
(0

The algorithm has inserted two gets:

e the x:=get (1) number @) because x € Fifo;,o and location 0 needs x to compute the branching
if (x);

e the x:=get (1) number ) because x € Fifo;,¢ and location 0 needs x to compute the assignment
V=X

The final distributed program is shown in Figure 3.

location O

|
|
x:=get(1);
if (%) |
o T :
then else
yi=Xx; x:=get(1); i
output (y); y:i=X%; |
output (y); :
|
T |
endif
goto 1;

location 1

put(0,x);
if (x)
/\
then else
x:=true;
put(0,x);
\/
endif
goto 1;

Figure 3: OC program distributed on two locations
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3.5.3 Complexity

We assume that the implementation allows the suffix computation to be performed in O(awvy,,) (for
instance with linked lists). Hence, the time requirement for get insertion is O(avy,,) times the cost
of the action graph traversal. Thus:

T (get insertion) = O(nbaet X aVyar)
The memory requirement is the cost of the Fifo queues. Thus:

M(get insertion) = O(nbyar X nbioe)

3.6 Comparison of the when needed and as soon as possible strategies

The as soon as possible strategy minimizes the waiting time on the receiving location. Indeed, for a
given variable, the put is inserted just after the variable is computed, i.e., as soon as possible, while
the get is inserted before the variable is used, i.e., as late as possible. However, when a variable is
needed only in one branch of a test, then there will be a useless communication in the other branch. On
the contrary, the when needed strategy minimizes the number of messages but leads to longer waiting
times, since the get statement is blocking when the queue is empty.

Let us consider the following OC program:

state 0
y:=10;
if (c) then
X:=Y;
else
y:=y-1;
endif
goto 1;

We decide to distribute it on two locations, with the following specifications: y belongs to location 0,
and x and c belong to location 1. After the localization, replication, and insertion of put and get, we
have:
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when needed as soon as possible
location | state O location | state 0
(1) put(0,c); (1) put(0,c);
(0) y:=10; (0) y:=10;
(0) c:=get(1); (0) put(1,y);
(0,1) if (c) then (0) c:=get(1);
(0) put(1,y); (0,1) if (c) then
(1) yi=get(0); || (1) y:=get (0);
(1) x:i=y; (1) x:=y;
(0,1) else (0,1) else
(0) yi=y-1; (0) y=y-1;
(0,1) endif (1) y:=get (0);
(0,1) goto 1; (0,1) endif

(0,1) goto 1;

The value of c is exchanged in the same way whatever be the chosen strategy. The put is made
as soon as possible, i.e., just after the updating of c, which is performed implicitly at the beginning of
the state because it is an input. The get is performed as late as possible, i.e., just before c is used, in
the branching if (c).

Concerning the value of y, it depends on the chosen strategy:

e The when needed strategy: the value of y is only exchanged in the then branch.

e The as soon as possible strategy: the value of y is exchanged in both branches, even though it
is not needed in the else branch; the put statement is performed as soon as possible, i.e., just
after the computation of y; the gets are performed as late as possible, i.e., just before y is used
in the then branch, and just before the branching closure in the else branch; moreover, this
useless message cannot be suppressed because the put is performed before the branching, and,
as a consequence, a get must be performed in each branch.

Finally, when a variable value is sent before a branching, and then modified by its owner in one of
the branches while its value is needed in both branches, then the when needed strategy inserts a useless
communication in the branch where the variable is not computed. So it seems that, with this strategy,
the number of messages is not minimal either. Yet the difference with the as soon as possible is that the
useless messages are redundant (i.e., the value exchanged is already known by the receiving location)
and can be removed using classical static analysis techniques. This will be shown in Section 3.8.

3.7 Synchronization of distributed programs

Now it results from our distribution algorithm that some locations can behave as value producers while
others behave as value consumers. In our program example (Figures 2 and 3), location 0 is purely a
consumer while location 1 is purely a producer. Thus, the program of location 1 may run faster than
the program of location 0. This may lead to the loss of the centralized program temporal semantics
and, since the put is never blocking, to unbounded queues at execution. We propose several solutions
to achieve the re-synchronization of distributed programs:
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1. Use only bounded queues: a put will be blocking when the considered queue is full.

2. Add dummy communications so that there are no pure producers anymore.

The first method is easy, yet expensive, as it needs to check the status of the queue at each emission.
Therefore we choose the second method.

To achieve it, we introduce two dummy communication primitives (i.e., communications carrying
no value): put_void(destination) and get_void(source). This method must be applied on DAGs
where only emissions have been inserted. It consists in adding dummy emissions. Then, gets and
get_voids will be inserted at the same time directly on synchronized DAGs.

We have two options:

e Strong synchronization: Allow no cycle overlap between any two locations (Figure 4a). Thus,
no process may start its n + 15 reaction before all the others have terminated their n'? reaction.
To ensure this, we can add (n — 1) synchronization messages (each message is one put and one
get) at the end of each location program, for a total of m x (n — 1) synchronization messages.
Another possibility consists in making a token circulate twice (the first time to make sure that
everybody has completed its cycle, and the second time to permit each process to start its new
cycle), which requires to add 2 x n synchronization messages. The circulating token involves
fewer messages but more execution overhead.

e Weak synchronization: Do not allow more than one cycle of overlap between any two locations
(Figure 4b). Thus, no process may start its n+ 2" reaction before all the others have terminated
their n*" reaction. This is much less expensive because the normal communications participate in
the synchronization. To ensure weak synchronization, there must be at least one communication
in each direction between any pair of locations.

cycle 1 2 3 1 2 3
location
0

computing /A /& waiting computing /\ /k waiting

(a) (b)

Figure 4: Strong and weak synchronization
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Adding messages for the strong synchronization is straightforward. On the other hand, the weak
synchronization requires some flow analysis on the DAG of each state. To achieve that, we compute in
each state and for each location s, the sets Louts of locations towards which s has made no emissions.
For each location s, the algorithm consists in placing a full set Louts at each leaf of the DAG, and then
propagating these sets backward to the root of the DAG in the following way:

e When reaching a put (t,x) on location s, remove t from the set Louts.

e When reaching a branching closure, duplicate sets Louts, and proceed in each branch then and
else.

o When reaching a branching if or present :

— insert in branch then (resp. else) a statement put_void(t) for each location t belonging

to Lout® ™ — Lout2'®® (resp. Loute!®® — Loutthe®);

— remove each location t for which we have inserted a put_void(t) statement in branch then
(resp. else) from set Lout®® (resp. Lout?!se);

— at this point, Lout®*® and Lout®'*® are identical, so we proceed with Lout®"® or equivalently
with Loutglse,

e When reaching the root of the DAG, insert a statement put_void (t) for each location t belonging
to Louts.

The time and memory requirement are similar to those of the put insertion:
T (weak synchronization) = O(nbser X nbioe)

M (weak synchronization) = O(nb},.)

For our program example, we obtain:

location | state 0 Loutq || Lout;
(0) put_void(1); 0 0 ®
(1) put (0,x); {1} 0
(0,1) if (x) then {1} 0
(1) put(0,x); {1} 0
(0) yi=x; {1} {0}
(0) output (y); || {1} {0}
(0,1) else

(1) X:=true; {1} 0
(1) put(0,x); {1} 0
(0) yi=x; {1} {0}
(0) output (y); || {1} {0}
(0,1) endif {1} {0}
(0,1) goto 1; {1} {0}
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The algorithm has inserted one put_void:

e the put_void (1) number @) on location 0 because 1 € Louty.

After inserting the gets (Section 3.5) we obtain the final program of Figure 5.

3.8 Elimination of redundant emissions

location 0

put_void(1);

x:=get(1);
if (x)
/\
then else
x:=get(1); x:=get(1);
y:i=x; y:i=x;
output (y); output (y);
—
endif
goto 1;

location 1

put(0,x);
if (x)
/\
then else
put (0,x); X:=true;
put(0,x);
—_—
endif

get_void(0);

goto 1;

Figure 5: OC program distributed on two locations and well synchronized

Now the put placement procedure sometimes causes redundant value emission (see Section 3.6). This
occurs when a variable value is sent before a branching, and then is modified by its owner in one of the
branches while its value is needed in both branches: then the when needed strategy inserts a redundant
communication in the branch where the variable was not computed. In our example program, it is the
case of the put/get in the then branch, as shown in Figure 6.
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location 0 location 1

|
|
put_void(1); : put(0,x);
|
x:=get(1); [ if (%)
|
. /\
if (x) !
o T I then else
|
then else : put (0,x); x:=true;
x:=get(1); x:=get(1); | put(0,x);
yi=x%; yi=x; : T
| dif
output (y) ; output (y) ; | en
—_ : get_void(0);
|
endif : goto 1;
goto 1; :

Figure 6: OC program distributed on two locations with a redundant message

However, since such communications are redundant, they can be eliminated using classical static
analysis techniques. We show briefly how this can be achieved (the complete algorithm can be found
in [14]).

We compute, for each location s and in each state of the automaton, the set Knowng of variables
known at the beginning of the state, i.e., whose values have been previously sent to s and which have
not been modified by their owning location since then. Then, for each location and in each state, we
propagate forward these sets:

e When reaching an emission put(s,x), if x € Knowns, then withdraw this put (s,x), else add x
to Knownsg.

e When reaching an assignment x:=exp, remove x from sets Knowng for each location s that does
not own x.

e When reaching a branching if or present, duplicate sets Knowng, and proceed in each branch
then and else.

else
s .

e When reaching a branching closure, for each location s, proceed with Knownt***N Known
The time and memory requirement are similar to those of the put insertion:
T (put elimination) = O(nbgct X aVyqar)

M(put elimination) = O(nbygr X nbioe)

We apply this algorithm on DAGs where only emissions have been inserted. Thus, gets will be
inserted directly on minimized DAGs. For our program example, we obtain:
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location | state 0 Knowng || Known;
(0) put_void(1); [} {void}
(1) put(0,x); {x} {void}
(0,1) if (x) then {x} {void}
(1) put(0,x); {x} {void} | ©®
(0) yi=x; {x} {void}
(0) output (y) ; {x} {void}
(0,1) else

(1) X:=true; 0 {void}
(1) put(0,x); {x} {void}
(0) y:i=x; {x} {void}
(0) output (y) ; {x} {void}
(0,1) endif {x} {void}
(0,1) goto 1; {x} {void}

The algorithm has removed one put:

e the put (0,x) number @) because x € Knowny.

After inserting the gets (Section 3.5) we obtain the final program of Figure 7.

location O

put_void(1);

x:=get(1);
if (x)
/\
then else
y:i=x; x:=get(1);
output (y); y:i=x;
output (y) ;
\/
endif
goto 1;

location 1

put (0,x) ;
if (x)
then else
X:=true;
put(0,x);
\/
endif

get_void(0);
goto 1;

Figure 7: OC program distributed on two locations with no redundant emissions
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3.9 Algorithm steps
Finally, the algorithm steps take place as follow:
1. replication and localization,
2. insertion of sending statements (puts),
3. synchronization of distributed programs (put_voids),
4. elimination of redundant emissions,
5. insertion of receiving statements (gets and get_voids).

Therefore, receiving statements are inserted only once, on an already synchronized and optimized
distributed program.
Now since these steps are sequential, the global time and memory requirements are:

‘T(distribution algorithm) = O(nbget X aVyar)

‘M(distribution algorithm) = O(nbyar X nbioc)

4 Correctness proof

We have established in [7] the correctness proof of our distribution algorithm. We only outline the
proof here. In order to prove that our distribution algorithm is sound, we have to prove that the
behavior of the initial centralized program is equivalent to the behavior of the final parallel program.

We first model the initial centralized program by a finite deterministic automaton labeled with
actions. Its behavior is the language of this automaton, i.e., the set of finite and infinite traces of
actions it generates (trace semantics). The distribution specifications are given as a partition of the
set of actions into n subsets, n being the number of intended computing locations.

We then define a commutation relation between actions according to the data dependencies. This
commutation relation induces a rewriting relation over traces of actions. The set of all possible rewri-
tings is the set of all admissible behaviors of the centralized program, with respect to the commutation
relation. The problem is that this set cannot, in general, be recognized by a finite deterministic au-
tomaton. The intuition behind our proof is that this set is identical to the set of linear extensions of
some partial order. For this reason we introduce a new model based on partial orders.

o First, we build a centralized order automaton by turning each action labeling the initial automa-
ton into a partial order capturing the data dependencies between this action and the remaining
ones. The language of our order automaton is the set of finite and infinite traces of partial orders
it generates (trace semantics). By defining a concatenation relation between partial orders, each
trace is then itself a partial order. Thus the language of our order automaton is a set of finite
and infinite partial orders. Our key result is that the set of linear extensions of all these partial
orders is identical to the set of all admissible behaviors of the centralized program, with respect
to the commutation relation.
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e Second, we show that our order automaton can be transformed into a set of parallel automata, by
turning the data dependencies between actions belonging to distinct locations into communication
actions, and by projecting the resulting automaton onto each computing location. We prove that
these transformations preserve the behavior of our order automaton.

This formally establishes that the behavior of the initial centralized program is equivalent to the
behavior of the final parallel program. There remains to prove that safety properties satisfied by the
centralized program are also satisfied by the parallel program. Such properties express the fact that
something will never happen, or that a given statement will always hold; they are expressed as temporal
formulee linking input and output signals of the program. In the case of a synchronous program, the
temporal evolution of a signal is represented by its values at different cycles [25, 16]. Indeed, according
to the synchrony hypothesis, any two signals that are emitted at the same cycle are simultaneous.
Therefore, to insure that safety properties are preserved, it is necessary to strongly synchronize the
parallel program, as shown in Section 3.7. Indeed, strong synchronization will preserve the global
cycle of the program: output signals that are emitted at the same cycle by the centralized program
will still be emitted at the same global cycle by the parallel program, even though they belong to
distinct locations and are not linked by data dependencies. This key property cannot be achieved by
weak synchronization.

5 Conclusion

Synchronous languages allow reactive systems to be programmed while preserving their natural paral-
lelism. The algorithm we have presented automatically produces a distributed sequential code from
a centralized synchronous program. As the program is first compiled, debugged and tested on a cen-
tralized processor, this method allows the production of a distributed code with the same safety as
a centralized code. Finally, the distributed programs we obtain only need a very simple protocol in
order to communicate (FIFO queues).

This algorithm has been implemented in the OCREP tool. It provides the user with various options
for the put insertion, the synchronization and the put elimination steps. The set manipulations
are implemented by bit-set operations for efficiency purposes. The OCREP tool is available online at
http://www.inrialpes.fr/bip/people/girault/Ocrep. It has been tested on various synchronous
programs obtained from reactive and robotic systems. The overhead due to synchronization and
message passing between the different locations of the distributed program is low. For instance, a
tennis game has been automatically distributed onto two locations: the average load goes from 80%
on a single SPARC station for the centralized version to 50% on two SPARC stations for the distributed
one.

We have stated that an OC program needs an interface to react to its environment. Distributing
the program implies that its interface must also be distributed. An interface distribution method can
be found in [10].

Finally, the formal proof of the distribution algorithm has been established. It rests on the modeling
of the initial centralized program by a finite deterministic automaton labeled with actions, and on the
abstraction of its admissible behaviors by a commutation relation (see Section 4 and reference [7]).
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6 Future research

Up to now, all the processes obtained share the same control structure, which is the same as the initial
program. A more complex algorithm based on observational equivalence and “on the fly” bisimula-
tion can be found in [9], which allows local minimization of each distributed process by suppressing
branchings (if and present) whose branches have the same observable behavior. This technique,
which remains to be studied and proven, allows a controlled form of desynchronization of synchronous
programs:

e a long duration task scheduled on a slow clock can be inserted inside a synchronous program;

e to distribute this program, the distribution specifications have to partition the set of in-
puts/outputs in two subsets: one containing only the slow variables, and one containing all
the remaining variables (hence, this is a clock driven distribution);

e then the minimization algorithm produces for the slow location a desynchronized program that
actually runs at the slow clock speed; provided that the pace of the slow clock is compatible with
the duration of the long duration task, this leaves it enough time to complete;

e at last, the synchronization algorithm described in Section 3.7 can be applied to ensure that the
distributed program remains loosely synchronized.

Secondly, distributed real-time executives are expected to provide important fault-tolerance facili-
ties, such as recovery data storage, error detection and masking, backward and forward recovery, and
dynamic system reconfiguration. In most cases, these functions are carefully isolated from application
programs, and a lot of research is still to be done in order to apply the techniques presented in this
paper to this kind of problems.

Thirdly, when only physical data are involved (i.e., there are no discrete events), it is possible to
conceive a parallel application by just programming separate tasks that run at their own speed and
communicate through a dedicated network. When conceiving one task, the outputs of the other tasks
are viewed as inputs to the current one. The network implements shared memories which are updated
separately by each task. This form of communication does not allow synchronization between tasks
because values can be lost without noticing. However, if only physical data are exchanged, such loss
of data seems to be acceptable. Actually, a loss means that a fresher data has been updated by the
emitting task and read by the receiving task. However, when discrete events are involved, this approach
still needs to be formally studied. In particular, it is unclear at what speed the tasks and the network
need to be run. Indeed, from these speeds depends the correct communication of data between the
tasks.
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