N

N
N

HAL

open science

SugarCubes Implementation of Causality

Frédéric Boussinot

» To cite this version:

Frédéric Boussinot. SugarCubes Implementation of Causality. RR-3487, INRIA. 1998. inria-

00073201

HAL 1d: inria-00073201
https://inria.hal.science/inria-00073201
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073201
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SugarCubes | mplementation of Causality

Frédéric Boussinot

N° 3487
Septembre 1998

THEME 1

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

SugarCubes Implementation of Causality

Frédeéric Boussinot

Théme 1 — Réseaux et systémes
Projets Meije

Rapport de recherche n’° 3487 — Septembre 1998 — 31 pages

Abstract: Causality problems appear in synchronous formalisms basically when one emits
an absent signal. Several strategies have been developed to reject programs with causality
problems. Strategies based on potential functions are studied, and several formal semantics
using these functions are defined for a fragment of the synchronous language Esterel. Im-
plementation in Java of these strategies is also presented. This implementation is based on
SugarCubes which is a set of Java classes for reactive programming.

Key-words: Parallelism, Reactive Synchronous Programming, Esterel, Java

With support from France Telecom-CNET

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Implémentation de la causalité en SugarCubes

Résumé : Les problémes de causalité apparaissent dans les formalismes synchrones lors
de ’émission d’un signal absent. Plusieurs stratégies ont été développées pour rejeter les
programmes ayant de tels problémes. Dans ce texte, on étudie les stratégies a base de
fonctions de potentiels et plusieurs sémantiques formelles utilisant ces fonctions sont définies
pour un fragment du langage synchrone Esterel. L’implémentation en Java de ces stratégies
est également présentée. Elle utilise les SugarCubes qui sont un ensemble de classes Java
pour la programmation réactive.

Mots-clés : Parallélisme, Programmation réactive synchrone, Esterel, Java,

SugarCubes Implementation of Causality 3

1 Introduction

Reactive systems maintain a permanent close interaction with their environment [HP].
Embedded systems, as those used in airplanes, cars or cellular phones, are examples of
such systems. Synchronous formalisms[Ha] have been designed for high level specifi-
cation and programming of reactive systems.

Amongst the synchronous formalisms, is the Esterel language[BG] which adopts an im-
perative style. In Esterel programs, parallel components all share a global logical clock
defining global instants and communicate using broadcast signals. Esterel is based on
two fundamental hypothesis:

» the perfect synchrony hypothesis states that signal emissions and testings are ins-
tantaneous;

» the determinism hypothesis states that the behaviour of a program depends only on
its inputs, and not on some internal choices.

As consequence of the perfect synchrony hypothesis is the existence of incoherent pro-
grams, in which there is no way to decide, while respecting the hypothesis, if a signal
is present or absent. Basically, incoherency occurs when a signal is emitted only if it is
absent.

In Esterel, incoherent or nondeterministic programs are said to have causality pro-
blems. Several solutions have been proposed to detect these programs at compile time
[BG,Be]. However, the basic cause of causality problems is the possibility of immediate
reaction to a signal absence. Without this possibility, causality problems do not exist
anymore [BDS].

The reactive approach based on the Reactive-C language[Bo] comes from the synchro-
nous approach with two main goals:

* to avoid causality problems by restricting the possible instantaneous program re-
actions (actually, by forbidding instantaneous reaction to absence; instantaneous
reaction to presence remains allowed);

e to allow programmers to dynamically create parallel components (which is forbid-
den in synchronous formalisms) in order to get a more natural approach for dealing
with systems which are basically dynamic.

Recently, a set of Java classes named SugarCubes[BS] has been designed for reactive
programming in Java[GJS]. Roughly speaking, SugarCubes is to Java what Reactive-C
is to C.

In this paper, one describes an experiment made with SugarCubes to deal with instanta-
neous reaction to absence, in order to get the synchronous and the reactive approaches
closer. The flexibility of the Java language appears as a good point for experimenting

RR n° 3487

Frédéric Boussinot

with various possible solutions.

Causality problems also appear in other synchronous formalisms (for example in
Lustre[HCRR], Signal[LBBG], or Statecharts[Har]); however, it is in the Esterel lan-
guage that these problems appear in the purest form. This is the reason why, in this
text, one chooses to put the focus on Esterel and to use its syntax.

The paper has the following structure: in section 2, causality problems and various
ways to reject them are presented. The formal semantics of a fragment of Esterel
which focus on causality is presented in section 3. Several solutions, based on poten-
tially emitted signals, to reject programs with causality problems are presented in
section 4. Comparison with Esterel is made in section 5. SugarCubes is presented in
section 6, and is extended in section 7 to implement instantaneous reaction to absence.

2 Causality Problems

The synchronous hypothesis implies that testing a signal does not take time. In particu-
lar, one can test for the absence of a signal and, as the test takes no time, react in the
same instant to this very absence. The basic Esterel statement to test for a signal pre-
sence has the form:

present S then
<immediate reaction to presence of S>
el se

<immediate reaction to absence of S>
end

2.1 Incoherency

An incoherent statement is a statement in which there is no possibility to determine a
signal presence status, while respecting the synchronous hypothesis. The following test
is an example of an incoherent statement (not hi ng is the statement that does nothing
and terminates immediately; emi t is signal emission):

present S then
not hi ng

el se
emt S

end

On one hand, signal S cannot be present as it is emitted only in case it is absent. On the
other hand, signal S cannot be absent as, then, it is emitted and thus present.

INRIA

SugarCubes Implementation of Causality 5

In incoherent statements, the symptom is always the same: immediate reaction to the
absence of a signal leads to negating this absence by emitting the signal.

Incoherency is related to parallelism as one can get an incoherent statement by putting
in parallel two coherent statements. The following parallel statement is an example of
an incoherent statement made of two coherent ones (absence of the t hen or of the el se
branch in a present statement simply means that this branch is not hi ng):

present S2 el se present Sl then
emt Sl [emt S2
end end

If S2 is absent, then S1 is emitted by the left parallel branch; as S1 is present, S2 is
emitted, which is contradictory with the absence of S2. Now, if S2 is present, then it
is emitted by the right branch; but, this implies that S1 is also present; this is not pos-
sible because, as S2 is present, there is no emission of S1.

2.2 Nondeterminism

A nondeterministic statement can behave differently, while respecting the synchronous
hypothesis. Consider the previous example, changing in the right parallel the t hen
branch by a el se branch:

present S2 el se present Sl el se
emt Sl N emt S2
end end

There are two possibilities: either S2 is absent and S1 present, or S1 is absent and S2
present, which lead to two different behaviours. An important point is that the two be-
haviours consist in an immediate reaction to a signal absence.

One now considers several general strategies proposed to reject statements with cau-
sality problems. The precise use of theses strategies by Esterel compilers is conside-
red in section 5.

2.3 Static Cycle Detection

In static cycle detection, the basic idea is to consider the graph of signal emissions and
tests; as any causality problem implies a cycle in this graph, rejecting statements with
cyclic graphs implies rejecting all programs with causality problems.

In the previous example, there is an arrow from S2 to S1 produced by the left parallel
branch, and conversely, there is an arrow from S1 to S2 produced by the right one.
Thus, there is a cycle and the statement is rejected.

This approach is very restrictive as it also rejects a very large class of programs free
from causality problem. Here is an example of a coherent rejected statement (pause is

RR n° 3487

Frédéric Boussinot

the Esterel statement to stop execution for the current instant):

present Sl else emt S2 end;
pause;
present S2 else enit Sl end

There is a cycle between S1 and S2 in the static graph constructed, despite the fact
that the two tests are not executed at the same instant.

As another example, consider:

present Sl then
present S2 else enit S2 end
end

It is rejected while, as no emission of S1 exist, the t hen branch of present S1 cannot
be run.

The static cycle detection is used in the Esterel v4 compiler (considered in section 5.3)
and in the Lustre compiler.

2.4 Possibly Emitted Signals

In approaches based on possibly emitted signals, the compiler can decide that a signal is
absent only when there is no possibility for it to be emitted. Consider the previous
example:
present S2 el se present Sl then
emt Sl I emt S2

end end

The compiler blocks on both branches of the parallel statement, as S1 and S2 are not
present. At that moment, S1 cannot be decided to be absent because there is a potential
emission of it in the el se part of the left branch. S2 also cannot be decided as absent as
there is a potential emission of it in the right branch. Thus, the statement is rejected as
there is no way to proceed.

Several ways of computing possibly emitted signals are possible. In a simple solution,
the compiler computes potential emissions without using the signal environment (this
solution is used in the Esterel v3 compiler described in section 5.2). Consider for
example:

emt S2;

present Sl then

present S2 else emt Sl end
end

The compiler blocks when evaluating the test of S1 and computes the possibly emitted
signals at that stage. As the compiler does not use the signal environment, it cannot de-

INRIA

SugarCubes Implementation of Causality 7

duce that, as S2 is already emitted, emission of S1 is actually impossible. Thus the
statement is rejected, as S1 is possibly emitted.

In a more powerful solution (used in the Esterel v5 compiler described in section 5.3),
the compiler can use the signal environment, but without any possibility to add new in-
formation in it, while computing potential emissions. The previous statement is accep-
ted by such a solution, as the fact that emission of S1 is impossible can be deduced,
when the test is analysed, from the fact that S2 is emitted. However, there still exist
statements without causality problem which are rejected. Consider for example:

present S then
present S else enit S end
end

Emission of S is unreachable as the two tests of S are exclusive. However the compiler
is not able to exclude this emission, when S is not already emitted, as, during potential
analysis, S does not appear in the environment; thus S is seen as potentially emitted
and the statement is rejected.

More powerful compilers can be designed that would be allowed to increase their kno-
wledge in the course of the computation of possible emissions. It is a goal of this paper
to study such approaches.

The present discussion is rather imprecise and it is necessary to be formal to eliminate
possible ambiguities; this is done in the next section.

3 Formal Semantics

One considers a small subset of Esterel statements, sufficient to reflect the existence
of causality problems and gives it a basic semantics, expressed in an operational style
based on rewriting rules[PlI].

The basic semantics defined in this section rejects incoherent statements, but accepts
nondeterministic ones. A restriction in the way signals are decided absent is introduced
in section 4 in order to reject nondeterministic statements.

3.1 Basic Rules

One writes:
tEod .t E

to means that statement t, executed in the signal environment E, transforms (one also
says rewrites) in t', and E in E’, and returns a as termination flag. There are 3 possi-
ble termination flags:

RR n° 3487

Frédéric Boussinot

« TERM means that execution is terminated and that nothing remains to do;

* STOP means that execution is terminated but that something remains to do at next
instant;

 SUSP means that execution must be resumed in the current instant.

An environment is a set which contains signals that are present or absent, but not both
(environments are coherent). To note that an event S is present, one just puts its name
in the environment; to note that it is absent, one puts its name with a bar on it ($).

Environment E+$ is obtained by adding $ to E provided S is not in E (otherwise E+%
would not be coherent); In the same way, E+S consists in adding S to E, provided that $
is not in E; finally, E+E’ is the union of E and E’.

As the focus is put on causality, we consider a very simple syntax which captures the
core of the problem: sequence, parallel, pause, and signal emission and test.

One extends the syntax of the parallel statement: q||p is used to store the termination
flags of the parallel branches (a is the termination flag of the left branch, B is the ter-
mination flag of the right one); a and B can be omitted when they are both equal to
SUSP.

The BNF description of statements is:

present Sthentel setend

Compared to the Esterel kernel syntax, loops, boolean i f tests, preemption, and traps
are not considered here. One feels that their introduction does not really complicate the
problem, which is deeply concentrated in the statements considered here, specially in
the parallel and present ones. As a justification, let us recall that in Esterel the seman-
tics of preemption is mainly captured by the present operator, and that the semantics
of loops is basically captured by the ones of sequence.

Now, one considers each operator in turn and gives rewriting rules for it.

Nothing
The not hi ng statement does nothing and terminates:

nothingE o &M _ nothing,E

INRIA

SugarCubes Implementation of Causality 9

Pause
The pause statement stops execution for the current instant, and nothing remains to be
done at next instant:

pause,E o0B'@8. nothingE

Emit
The enmi t statement emits a signal and rewrites in not hi ng:

emit S,E oM. nothing E+S

Let us recall that S must not have the absent status in E ($ not in E), otherwise E+S
would not be coherent.

Sequence
There are two rules for the sequence, depending on the termination of the left branch.

» If the left branch terminates, then the right one is immediately executed:

tEo M.t B uE of_uE"

a
tuEoo-u,E"

« If the left branch is stopped or suspended, then so is the sequence:

tEcf .t E' o#TERM
tuEnD g. t"uE'

Signal Tests
There are three rules for the signal test, depending if the signal is present, absent, or
unknown.

» the t hen branch is executed if the signal is present (STE):
SOE tEnf_tE
present S then t else u endEcf_t,E

« the el se branch is executed if the signal is absent ($ 0OE):
$0E uEof_uE
present S then t else u endEcf®.u,E

 the test is suspended if the signal is unknown (neither present nor absent):

SOE $0E
present S then t else u end,Em%UDSEﬂpresent S then t else u end,E

RR n° 3487

10

Frédéric Boussinot

Parallelism
Parallelism is synchronous: both branches run together in the same instant.

» If both branches are suspended (which is the initial situation at each instant), then
they are both executed (let us remember that || means sse||suse):
tEnf_t,E uEof_uE"
t||uEoETE .t o||p u,E +E"

Note that the two parallel branches are run in the same environment and that the pro-
duced environment E'+E” must be coherent. This forbids emission of a signal in one
branch, and decision of its absence in the other branch.

 If there is only one suspended branch, then the other one is run:
B#SUSP tEcof . t,E a#SUSP uEof . u E
t susp||p uEosBE .t allg WE' t al|susp uEoE .t allg ULE'

* The parallel is terminated or stopped when both branches are:
o #SUSP [#SUSP
t oflp uEoSE t|luE

where a xB equals TERM if both a and B are TERM, and equals STOP otherwise.

3.2 Absence Decision

Up to now, there is no possibility to make signals absent. This possibility is introduced
with the notion of a complete execution: a complete execution of a statement t is a se-
quence of rewritings, starting from t and ending with a termination flag TERM or STOP.
More precisely, a complete execution of statement to, with Epas input environment, is

a sequence of the form:
to,Eq 08B t, By t,Eq + X 0B B L t5,Ey o 10, En + X, 08 -ty Enes

where:
* a is different from SUSP;

+ there is no absent signal in the input environment Eo;

e Xi,...,Xn are sets of absent signals.

One simply notes the previous sequence by:

a
to, EO 0 tn+1’En+1

INRIA

SugarCubes Implementation of Causality 11

Signals present in Eq are inputs, produced by the external context, which is not allowed
to make signals absent. It is important to remark that absent signals in X; cannot be
emitted in E;, in order E+X; to be coherent.

Example

Let us prove that:
TERM
present S1 then emit S2 end || emit S1, 0 [nothing || nothing, S1,52

one has:
present S1 then present S1 then
emit S2 DE%BH emit S2 emit S1, O DEEEMﬂ nothing, S1
end, O end, O
present S1 then present S1 then
emit S2 emit S2
end 0 E%E - end
1 SUSP || TERM
emit S1, O nothing, S1
and:

emit S2, S1 D-ID-%?MH nothing, S1,S2
present S1 then

emit S2 O EE&HA nothing, S1S2
end, S1
present S1 then
emit S2
end] BL&E - nothing TERM || TERM nothing, S1,S2
SUSP || TERM
nothing, S1

which finally gives the result because:
. i TERM , .
nothing TERM||TERM nothing, S1,S2 O U U U - nothing||nothing, S1,S2
No signal absence is needed in this proof.

Nondeterminism
The result of the rewriting may depend on the choice of signals that are decided absent.
Consider:

present Sl else emt S2 end

present S2 else enmt S1 end

If S1 is decided as absent, then S2 is emitted; on the contrary, if S2 is decided as ab-
sent, then S1 is emitted. Both choices are possible and such a statement is nondetermi-
nistic. Note that deciding both signals as absent in a single step would not lead to a ter-

RR n° 3487

12

Frédéric Boussinot

minated rewriting.

Nondeterminism will be rejected in section 4, by restricting the way signals are deci-
ded absent.

3.3 Definition of Incoherency

A statement t is incoherent if there exists an environment E without any absent signal

in it such that no terminated or stopped rewriting apply to t,E:
a
there is no t', E’ such that t,EO t’,E’

Examples of Incoherent Statements
Let us try to execute the following statement in the empty environment:

present S else emt S end

The only possibility is to decide that S is absent; but then, emi t S would have to be
executed in the environment where S is absent, which is impossible. Thus, there is no
way to rewrite the statement in the empty environment, which means that it is incohe-
rent.

In the same way, the following statement is shown to be incoherent:

present S then nothing end; emt S

Examples of Coherent Statements
From the previous example, it is easy to see that the following statement, which does
not need any absence decision, is coherent:

present Sl then emit S2 end || enit Sl

The following statement is also coherent:
present Sthen enit S end

In an environment E where S is present, the t hen branch is executed, which does not
change E and rewrites in not hi ng. In an environment where S is not present, S must
first be decided as absent and then the el se branch, which is not hi ng, is executed.

Finally, let us prove that the following statement is coherent:

present Sl then

emt S2;

present S2 elseemt Sl end
end

If the environment does not contain S1, the only possibility is to decide that S1 is ab-
sent; then, the implicit el se branch is chosen and the statement rewrites in not hi ng. If

INRIA

SugarCubes Implementation of Causality 13

S1 is in the environment, then the statements becomes equivalent to:
emt S2;
present S2 elseemt Sl end

which is coherent. Thus, the initial statement is coherent.

4 Potential Functions

One now restrict the possibility of deciding that signals are absent in order to reject
nondeterministic statements. One uses a potential function M which computes poten-
tially emitted signals. Now, one considers sequences of rewritings of the form:

to,Eq 0B Bt By t,Eq + X 0B B L t5,Ey o 10, En +Xn 08 - thsn,Enes

where, at each step, all signals that are not potentially emitted are decided absent: for
all i, X; is the set of $ such that SLIN(t;,E;). Intuitively, this is a correct strategy, pro-

vided M is correct, that is indeed detects signals which are potentially emitted.

In the following subsections, one considers several I functions. The three first func-
tions correspond to the v3, v4, and v5 versions of the Esterel compiler; for this rea-
son, one gives them the names My3, Mv4, and Mys. Two other functions are also consi-

dered; for simplicity, they are named Mye and My7.

One adopts the two following notations:
o if X is a set, a:X=X if a=SUSP, and a:X=[] if a ZSUSP;

» if F is a boolean expression, a#F=F if a=SUSP, a#F=true if a=TERM, and o#F=false
if a=STOP.

4.1 The v3 Semantics
The potential function My3 (corresponding to the Esterel v3 compiler described in sec-
tion 5.2) does not use the signal environment. It is defined by:
Myv3(t,E) = mya(t)

where mv3 is defined as follows:

« T3(not hi ng) = va(pause) = [

+ m3(emt S)=S

o mv3(tal | pu) = a:mvs(t) U Bimvs(u)

 my3(present S thentel seuend)=my3(t) LI mva(u)

L nv3(t;u) = nv3(t) L ﬂv3(U), if Tv3(t),

RR n° 3487

Frédéric Boussinot

= my3(t) otherwise.

The function ty3 returns true if execution of its parameter can terminate, false other-
wise:

* Ty3(not hing) =tys(emt S)=true

* Ty3(pause) = false

o Ty3(tal | pu) = a#tys(t) and BH#tvs(u)

e Ty3(tu) = tv3(t) and tv3(u)

* Ty3(present S thentel seuend)=T1y3(t) or Tva(u)

4.2 The v4 Semantics
The potential function Mya (corresponding to the static analysis of the Esterel v4 com-

piler described in section 5.3) does not take instants into account. It is defined by:
r|v4(t,E) = T[v4(t)

where tv4 is defined as follows:
« m4(not hi ng) = Twa(pause) = [J
 mw(enmit S)=S
o Twva(t ol | pu) = a:mva(t) L Bimva(u)
o Tya(t;u) = Tva(present S thentel se uend)

= T[v4(t) LJ T[v4(U)

The only difference with the definition of the potential function of v3 concerns the se-
quence operator. Basically, in v4 instants are not considered and the sequence and pa-
rallel operators are processed in the same way.

From the definition, it is clear that My4 is more restrictive than My3: a coherent state-

ment for My4 is also coherent for My3. One writes: Mya L Mya.

4.3 The v5 Semantics
The potential function Myg (corresponding to the Esterel v5 compiler described in sec-
tion 5.4) uses the environment but does not change it in any way. It is defined by:

« Mys(not hi ng,E) = MNys(pause,E) = [

. Musenit SE) =S

* Mus(tal|p yE) =a:Nys(tE) LI B:Nys(u,E)

e TMys(tu,E) = Nys(t,E) L Mys(u,E), if Tvs(t,E)

INRIA

SugarCubes Implementation of Causality 15

= Mys(t,E), otherwise
* Mys(present S thentel seuendE)
= Nys(t,E), if SOE
= Mys(u,E), if $0UE
= Mys(t,E) L Mys(u,E), otherwise

Definition of tys is:

* Tys(not hi ng,E) = tys(em t S,E) = true
* T1ys(pause,E) = false
* Tys(t ol | pu,E) = a#tys(t,E) and B#tvs(u,E)
e Tys(t;u,E) = 1y5(t,E) and tys(u,E)
» Tys(present S thentel seuendE)
= tys(t,E), if SOE
tvs(u,E), if $0E

tvs(t,E) or tys5(u,E), otherwise

The environment E is only used by present and always passed as it, without being chan-
ged.

It is clear from the definition that My3 is more restrictive than Mys: My3z LI Mys.

4.4 The v6 Semantics

The potential function Mye is a variant of Mys in which the signal environment can be
changed while analysing pr esent statements, to keep track of the choosen branch. Myg
is defined exactly as MNys, except for present :

Mve(present S thentel se uend,E)
= Nye(t,E), if SOE
= Nys(u,E), if $OE
= MNye(t,E+S) LI Mye(u,E+$), otherwise

with tve defined exactly as tys, except for:

Tve(present S thentel se uend,E)
tve(LE), if STE
tve(U,E), if $0UE

tv6(t,E+S) or tve(u,E+ %), otherwise

RR n° 3487

16

Frédéric Boussinot

The difference with Mys only concerns the case where the signal status is unknown

(neither S nor $ is in E); then, the two branches are considered, but they are analysed
in the environment augmented with the according signal status.

It is clear from the definition that Mys is more restrictive than Myes: Mys L Mye.

Let us show that the following statement t is coherent for v6:

present S then

present S elseemt S end
end

If S is in the starting environment E, then the rule for present with S present applies,
and t rewrites in not hi ng. Let us suppose now that S is not in E. Then present can only
suspend (remember: the starting environment does not contain any absent signal).
Then, the only solution is to make S absent, which needs to compute the following:

Mve(t,E) = Mye(present S else enit S end,E+S) LI Mys(not hi ng,E+ %)
= Mys(not hing,E+S) L 0O = O

Thus, S can safely be decided absent, and t is coherent.

4.5 The v7 Semantics
The potential function My7 is a variant of Mye with a finer analysis of sequences. In My7,

signals that are necessarily emitted by the left part are added to the environment of
the right part. My7 is defined exactly as Mvyes, except for the sequence which is as fol-

lows:
My7(t;u,E) = Ny7(t,E) L Ny7(u,E+My7(t,E)), if tve(t,E)

= MNy7(t,E), otherwise

Signals that are necessarily emitted (computed by the function My7) in the left part of a
sequence can be safely considered as present in the right part. Definition of My7 is as
follows:

« Myz(not hi ng,E) = My7(pause,E) =

* Myz(enmit S,E)=S

e My7(tal | pyu,E) = a:My7(t,E) LI B:My7(u,E)

 My7(present S thentel seuend,E)

= Mvy7(t,E), if SOE

My7(u,E), if $0E
My7(t,E+S) N My7(u,E+$), otherwise

INRIA

SugarCubes Implementation of Causality 17

e My7(tu,E) = My7(t,E) LI My7(u,E+My7(t,E)), if pvz(t,E)

= My7(t,E), otherwise

The function py7 returns true if execution of its parameter must terminate, and false

otherwise:

* py7(not hing,E) = py7(emt S,E) =true
* uv7(pause,E) = false
* Hv7(tal | pu,E) = a#pvz(t,E) and B#pv7(u,E)
* py7(tEUE) = pv7(LE) and pvz7(u,E)
* uy7(present S thentel seuendE)
= pv7(t,E), if SOE
uv7(u,E), if $0E
uv7(t,E+S) and py7(u,E+%), otherwise

The only difference with tye is that and replaces or in the last equality. This reflects

the fact that, in order to be sure that a present statement terminates, one must be
sure that both branches do.

The following statement is accepted by the v7 semantics:

present Sl then

enmt S2;

present S2 elseemt Sl end
end

It is clear from the definition that Mye is more restrictive than My7: Mvs LI My7.

4.6 Others Possible Semantics

We have seen in the previous sections the inclusions of semantics:

Mya LJ Mv3 L Mys L Mve (| Myv7

Examples of coherent but rejected statements have been given for each of v3-v6; here
is an example of a coherent statement rejected by v7:
present Sl then
emt S2
I

present S2 elseemt Sl end
end

RR n° 3487

18

Frédéric Boussinot

The value returned by My7 when computing present S1 is the union of the values retur-
ned by the two parallel branches in the same environment. Thus, there is no way to see

that, as S2 is necessarily emitted by the left branch, emission of S1 is actually impos-
sible.

The following figure sums up the situation:

present S then present Sl then

present S elseemt S end emt S2:
emt S2; end present S2 elseenit S1 end
present Sl1 then end

present S2 elseenmt Sl end

end /
ad
—
present Sl elseenit S2 end; present Sl then
emt S2

pause; I

present S2 elseemt Sl end present S2 elseenmt Sl end

end

It is possible to imagine semantics even more powerful than v7; consider for example a
variant of v7 with the following change for parallel:

Mv7(tal | g UE) = c:My7(t,E+My7(u,E)) LI B:My7(u,E+My7(t,E))

Each branch sees the signals that must be emitted by the other. Such a semantics would
accept the previous statement.

However, one shall not consider such semantics in more details as they would be very
close from the basic semantics.

4.7 Correctness

In potential based semantics, there is no choice at any step in the rule to apply (it is
defined by the structure of the statement) nor in the signals to be decided as absent
(they are defined by the potential function).

In the basic semantics, a nondeterministic situation always has the form:
t1,E1

t,E
Y
B t2,E2
where there exists a signal S which is present in one of E1, E2 but is absent in the

INRIA

SugarCubes Implementation of Causality 19

other. One says that t,E is nondeterministic.

One shows that, if t,E is nondeterministic, then no terminating rewriting sequence can
be built from t,E in a potentially based semantics. To get this result, one first shows
the correctness of the potential functions, which intuitively means that all emitted si-
gnals are indeed detected.

Definition of Correctness
A potential function M is correct if all signals that are emitted are indeed detected:

if t,ED%Ht',E' then for all S emitted in E’-E, SLIM(t,E)

One first proves correction of v5 (the simpler cases of v3 and v4 are left to the
reader), then correction of v7 (the case of v6 is very similar to the one of v5). Proofs
are by induction on the structure of statements.

Correction of v5
In the following, M means Mys and T means tys. One has the following properties:

Property 1. Rewriting always makes the environment more precise:

t,Eo g t',E' implies E LIE’

Property 2. Impossibility of termination cannot disappear as the environment beco-
mes more precise:

E1LIE2 and 1(t,E2) implies 1(t,E1)

Property 3. The more precise the environment is, the smaller the potentially emitted
signals set is:

if E1LIE2 then MN(t,E2) LN (t,E1).

Property 4. The function t reflects termination:

tEoDTY . t,E' implies t(t,E)

Property 5. Mys is correct:
if tEof_t,E' then S emitted in E’-E implies S LI Mys(t,E)

The proof is by induction.
o The property is of course true for not hi ng and pause that do not change the envi-
ronment.
o Supposetisenmit S.ThenE-E=S=TM(emt SE).
o Suppose tispresent S then t1 else t2 end. One gets the result by inspecting the
RR n° 3487

20

Frédéric Boussinot

three cases.
o Suppose t is tlq||pt2. One gets the result by inspecting the various cases.

o Suppose t is t1;t2. If t1 does not terminate, one gets the result by induction. Now,
suppose that t1 terminates:

t,EobTY_t E t,E 0l t"E"
tl, tZ,E O % N t”,E”

Suppose S LE’-E; then, one gets the result by induction. Suppose now that S LIE"-E’; by
induction, S LIN(t2,E’). By property 4, t(t1,E) is true; thus N (t1;t2,E) = NO(t1,E)LJ
n(2,E). But, as ELIE’, SLIN(t2,E), by property 3, which gives the result.

Correction of v7
One needs the following auxiliary property concerning My7.

Property 6. Signals that must be emitted are indeed emitted by a terminated rewrit-
ing:
tEof .t ,E' with a ZSUSP implies My7(t,E) LIE’

Property 7. My7 is correct.

The only operator to consider is the sequence. Suppose t is t1;t2. If t1 does not termi-
nate, one has the result by induction. Suppose now t1 terminates:

t,EobTY_t E' t,E 0l t"E"
tl, tZ,E O % N t”,E”

Suppose S LEE'-E; then, one gets the result by induction. Otherwise, SLIE”-E'. As
Tv7(t1,E) is true (property 4), one has My7(t1;t2,E) = My7(t1,E) LI MNy7(t2,E+My7(t,E)).

By induction, SLMy7(t2,E’). By property 6, My7(t1,E) LIE'. As ELIE’, E+My7(t1,E) LIE".
Thus, SLINy7(t2,E+My7(t1,E)) which proves that SLIMy7(t1;t2,E).

Extension of Correctness to Sequences
In the following, M means one of My3 -My7. One has the following property:

Property 8. Non-terminated rewritings make potentially emitted signals sets more

precise:

it tEodPE.t,E then M(t,E’)LIN(L,E)

Correction of M extends to sequences. Suppose:
to,Eq 08Bt By t,Eq + X 0B B L t5,Ey o 10, En + X, 08 -ty Enes

with a signal S present in E,.; but not in E,. Then, there exist j such that S LEj+1-Ej. As
N is correct, SLN(t,E;+X;). Thus, by property 3, SLIN(t,E;). By applying property 8

INRIA

SugarCubes Implementation of Causality 21

and property 3 repeatedly, one gets the result: SLIM(to,Eo).

4.8 Determinism

Now one can prove that if t,E is nondeterministic in the basic semantics, then it is re-
jected by potential based semantics.

Let us consider the nondeterministic situation:
t1,E1

©

t,E
B t2,E2

and a signal S1 which is present in one of E1, E2 but is absent in the other. Let us write
X->Y if emission of Y results from choosing one branch of a present X statement, and
absence of Y results from choosing the other branch. One build a set G, starting from
S1. There exists a signal S2 such that S2->S1. If S2 is equal to S1, one terminates the
construction of G because of the cycle S1<->S1. Otherwise, one continues with S2 and,
as the number of signals is finite, one eventually falls in the first case. At the end of
the construction, each signal in G can be emitted by deciding absent an other signal of G.
Now, considering the potential based semantics, on one hand, none of the elements in G
can be decided absent as it is potentially emitted. On the other hand, there is no possi-
bility to get a terminated rewriting without making one element of G absent. Thus, the-
re is a step with no possibility of progression, which implies that t,E is rejected.

5 Comparison with Esterel

In this section, one compares the semantics previously defined with the Esterel seman-
tics. One considers four Esterel semantics: the behavioural semantics, and the seman-
tics corresponding to versions v3, v4, and v5 of the Esterel compilers.

5.1 Behavioural Semantics

As the basic semantics, the Esterel behavioural semantics[BG] does not reject nonde-
terministic statements but only incoherent ones. In the behavioural semantics, the key
rule for causality is the one of local signal declaration. It is the place where one can
make hypothesis on signal presence or absence. Hypothesis concern local signals and
must be validated in the produced environment: a signal supposed absent must not be
emitted, and a signal supposed present must be emitted.

On the opposite, in the basic semantics, the only rule that can make a signal present is
the emi t rule; there is no possibility to suppose a signal present. An advantage is that
Esterel non-causal executions, in which a presence hypothesis is needed, are impossible
in the basic semantics. Consider:

RR n° 3487

22

Frédéric Boussinot

present Sthen emt T end; enmt S

It is accepted by the behavioural semantics of Esterel (while rejected by potential-ba-
sed semantics), with S emitted, but it is rejected by the basic semantics.

Note that the difference on non-causal executions has a consequence on the definition of
non-deterministic statements. Consider, for example:

present S then enit S end

* It is non deterministic in Esterel, because, starting from the empty environment,
one has a (non-causal) transition with S emitted and (a causal) one without it (one
assumes S is local).

» It is deterministic in the basic semantics because there is a unique solution, with S
absent.

However, in both cases, the statement is rejected by potential based semantics.

To sum up the relations between the behavioural and the basic semantics:

* a program rejected by the behavioural semantics is also rejected by the basic se-
mantics, but the converse is false (present S then nothing end; emt S).

» there exists programs which are nondeterministic with the behavioural semantics,
but are deterministic with the basic semantics (present S then enmit S end).

» there exists programs which are deterministic for the behavioural semantics, but
are rejected by the basic semantics (present S then nothing end; emt S).

5.2 The v3 Compiler

The Esterel v3 compiler[BG] uses a potential function which does not take in account the
signal environment.

There are actually two distinct Esterel v3 semantics. The first one, which is imple-
mented as the default in the Esterel v3 compiler, is more restrictive than the v3 se-
mantics presented previously. The second one, which is available with the oldcausality
flag, corresponds to the one presented here.

The default Esterel v3 semantics allows one to take the t hen branch of a present S sta-
tement only when no potential emission of S remain. Thus, signal presence is treated
exactly in the same way as absence (this symmetry is the basic reason why this se-
mantics was introduced, while more restrictive than the oldcausality one). Here is an
example of a statement which is rejected by the default Esterel v3 semantics:

emt S present S elseemt S end

The emission of S in the el se branch of the pr esent statement is considered as possible,
although S is already emitted.

INRIA

SugarCubes Implementation of Causality 23

On the contrary, the oldcausality v3 compiler accepts the previous statement, as it can
execute the t hen branch of present S as soon as S is emitted.

The Esterel v3 compiler translates programs in finite states machines (automata) in
both versions.

5.3 The v4 Compiler

The v4 Esterel compiler is based on the static cycle detection. This approach, which is
the most restrictive, has been introduced to overcome the problem of automata states
explosion in the Esterel v3 compiler.

In the Esterel v4 compiler, a program is translated into a system of equations the size
of which is linear in the size of the program code. A program is accepted by the compi-
ler if the associated system is cycle free, and thus can be sorted.

The Esterel v4 compiler starts by building the dependency graph of signals emissions
and tests, and it rejects the program is there is a cycle in it. This method is even more
restrictive than the v4 semantics described in this paper. For example, the Esterel v4
compiler rejects the following program accepted by the previous v4 semantics:

emt S present S elseemt S end

The Esterel v4 compiler has been felt as too restrictive and is presently replaced by
the v5 compiler.

5.4 The v5 Compiler

The Esterel v5 compiler is based on the constructive approach[Be]; two functions are
defined: can which computes what signals are possibly emitted by a statement, and
must which computes what signals are necessarily emitted. The two functions can only
proceed by constructive steps, “deducing facts from facts”.

The Esterel v5 semantics of a statement t in an environment E is defined in two steps:
1. First, the environment produced E’ is incrementally computed (as a fix-point), us-
ing can and must.
2. Second, if all signals are determined (the statement is constructive and accepted by
the semantics), then the new statement t' is computed using the behavioural se-
mantics, starting from E’ (assuming that there is no instantaneous loop in t).

The function can is actually equivalent to Mys. The function must is very close to My7

and differs from it in the way unknown signals are processed. In the case of an unknown
signal, must returns the empty set, instead of the intersection of the two branches re-
turned by My7. As a consequence, the following program is, for example, rejected by

the Esterel constructive semantics, while accepted by v7:

RR n° 3487

24 Frédéric Boussinot

present Sl then
present S2 then enit S3 el se emt S3 end,;
present S3 else emt Sl end

end

6 The SugarCubes Framework

The two main notions of SugarCubes are the one of reactive instruction whose seman-
tics refer to instants, and the one of reactive machine whose purpose is to execute re-
active instructions in an environment made of instantaneously broadcast events.

6.1 Instructions

The I nstructi on class implements reactive instructions. A reactive instruction is acti-
vated by a call to its method acti v which returns as result one of the three following
values:

 TERM (for terminated) means that the instruction is completely terminated; nothing
remains to do for the current instant and also for future ones. Thus, to activate one
more time an instruction returning TERM has no effect and also returns TERM.

» STOP (for stopped) means that execution of the instruction is over for current ins-
tant, but that some code remains to be executed at next instant.

* SUSP (for suspended) means that execution of the instruction has not reached a
stable state and must be resumed during current instant. This is for example the
case for the instruction that waits for a not yet generated event (see below): exe-
cution is suspended to let the others components the possibility to generate the
event during current instant.

The basic reactive instructions of SugarCubes are:

» St op, which stops execution for the current instant;

* Seqg to put one reactive instruction in sequence with another one;

 Merge to put two reactive instructions in parallel;

» atoms to execute basic Java statements such as printing messages;

* Loop and Repeat, for cyclic executions;

* Gener at e to generate an event, Awai t to wait for it, and When to test for an event.

The correspondence between SugarCubes and the syntax previously introduced is as
follows:

» SugarCubes events are analogous to Esterel signals;
» St op corresponds to pause;

INRIA

SugarCubes Implementation of Causality 25

* Merge corresponds to the parallel statement;
* Seq corresponds to the sequence;

* Generate correspondstoemnt.

However, When does not correspond to pr esent, as immediate reaction to absence is
forbidden in SugarCubes. Actually, the rules for When are the following:

SOE tEof_.t.E
when S then t else u end,Eof_t E'

SOE $UE
when S then t else u end,EDEUDSEHWhen S then t else u end,E

$0E
when S then t else u end,En39F . uE

The only difference with present is the last rule, which forbids immediate reaction to
the signal absence.

Now, one briefly describes reactive machines and the Mer ge and When instructions.

6.2 Machines

The class Event Machi ne implements reactive machines. A reactive machine executes a
program which is a reactive instruction. It has two main tasks to perform: first, to de-
cide the end of instants, and second, to broadcast events. Initially, the program is the
Not hi ng instruction which does nothing and terminates instantaneously. New instruc-
tions are dynamically added to the program (by calling the machine method add) and
executed in parallel with the previous ones.

Basically, a reactive machine detects the end of the current instant, when all parallel
instructions of the program are terminated or stopped. The behaviour is as follows:

 The program is cyclically activated while there are suspended instructions in it
(while activation returns SUSP).

* The end of the current instant is effective when all the parallel instructions in the
program are terminated or stopped (no suspended instruction remains).

» At the end of each program activation, the machine tests if some new events were
generated during this execution. If it was not the case, then there is no hope that
future program activations will change the situation. Then, a flag is set to let sus-
pended instructions stop, knowing from that point that events which are not emitted
are actually absent.

RR n° 3487

26

Frédéric Boussinot

Two fields nove and endOf | nst ant are used to implement this behaviour. Field nove is
set to true to indicate that a new event is generated (Gener at e statement); in this case,
the end of the current instant is postponed to allow the suspended receivers awaiting
the event (Awai t instruction) or testing it (When instruction) to resume. Field endOf | ns-
t ant is set to true when the end of the current instant is decided by the machine, to let
suspended receivers know that awaited or tested events are absent.

Method act i v of Event Machi ne implements this behaviour; the code is the following:

endOf I nstant = nove = fal se;
while (programactiv(this) == SUSP){
if (nove) nove = false; else endOfInstant = true;

}
newl nstant ();

Parameter t hi s is the machine, which is the execution context of the program.

6.3 Merge Instruction

The Mer ge instruction actually implements the rules for the parallel operator introduced
in section 3. Statuses of branches are coded in two fields | ef t St at us and ri ght St at us
whose initial values are SUSP. The code of method activ is:

if (leftStatus == SUSP) leftStatus = |left.activ(machine);

if (rightStatus == SUSP) rightStatus = right.activ(machine);
if (leftStatus == TERM && rightStatus == TERM{ return TERM }
if (leftStatus == SUSP || rightStatus == SUSP){ return SUSP; }
leftStatus = rightStatus = SUSP;

return STOP,

6.4 Reaction to Absence

The When instruction behaves as the pr esent statement except that absence is only de-
cided at the end of the the current instant. The acti v method of When is (I eft is the t hen
branch and ri ght is the el se one):
if_?!testEvaIuated){ .

if (event.presence(nmachine) == UNKNOMN) return SUSP;

val ue = event.isPresent (machine);

test Eval uated = true;

i f(machine.i sendOfInstant()) return STOP;

return value ? left.activ(machine) : right.activ(machine);
The return code is STOP if the test cannot be evaluated before the end of the instant;

this is for example the case when one tests for an absent event. As a consequence, re-
action to absence is always postponed to the next instant.

INRIA

SugarCubes Implementation of Causality 27

7 Extensions to SugarCubes

Now, one extends SugarCubes to deal with immediate reaction to absence. Basically,
one gives instructions a new method expl or e which implements potential events com-
puting. This method adds potentially generated events to a vector, and returns a boo-
lean which indicates if control can go in sequence, or not. So, expl or e actually imple-
ments both M and 1 functions of the semantics.

In potential based approaches, the natural moments for absence decisions are blocked
situations, when there is no other way to proceed. That is, absence decisions are de-
layed as far as possible.

The proposed implementation exactly mimics the semantics of parallel and present.
Execution of a parallel branch is suspended when one tries to test a signal which is nei-
ther emitted nor absent. When all parallel branches are either terminated or suspended,
potential analysis can start to decide if some signals can be made absent. An incoherent
program is detected if all signals on which execution is blocked are potentially emitted.
Otherwise, signals that are not potentially emitted are decided as absents and execution
can proceed with this new information.

One first describes the new algorithm for machines, then the Present class which
implements the present instruction; finally, one describes the expl or e method which
implements potential functions.

7.1 IraMachine

The extended machine class is the class | raMachi ne (Ira stands for Immediate Reaction
to Absence). Two new fields are introduced:

* | ockOn is the vector of events on which execution is blocked because they are unk-
nown;

» possi bl e is the vector of potentially generated events.

Method makeAl | Absent sets to absent all events not in possi bl e; it returns false if no
event can be set to absent, and true otherwise.

The code for method acti v is the following:

endOf I nstant = nove = fal se;
while (programactiv(this) == SUSP){
if (move) nove = false;
else if (lockOn.isEmpty()) endOflnstant = true;
el se{
body. expl ore(this);
if (!makeAll Absent()){
Systemout.println("causality error");
break;

}
}
if (!lockOn.isEnpty()) lockOn = new Vector();

RR n° 3487

28

Frédéric Boussinot

if (!possible.isEnpty()) possible = new Vector();

newl nstant () ;

When the body is suspended while there is no new generated event (move is false) but
while there exist events on which execution is blocked (I ockOn is not empty), then po-
tentially generated events are computed by calling the method expl or e.

A causality error is detected when there is no possibility to set any event to absent (all
events on which execution is suspended are potentially generated). This corresponds in
the semantics to situations where the program is suspended while no non-empty Xj can

be added to the environment; in this case, no terminated rewriting exist.

7.2 Present Instruction

There are two differences between the acti v method of When and the one of Present :
« when the event is unknown, it is added to the | ockOn vector;

» when the event is absent, control immediately goes to the right (el se) branch.

Method acti v of Present is:

(!testEval uated){
|f (event presence(nachi ne) == UNKNOWN) {
(! machi ne. | ockOn. cont ai ns(nane)) machi ne. | ockOn. addEl ement (nane) ;
ret urn SUSP;

value = event.isPr esent(machl ne) ;
t est EvaI uated = true

return value ? left.activ(machine) : right.activ(nmachine);

7.3 Method explore for v5

One describes the method expl or e for the v5 semantics.

Generate
When explored, Gener at e adds the event to the vector possi bl e of possibly generated
events; it returns true indicating that the control goes in sequence.

machi ne. possi bl e. addEl enent (event Nane) ;
return true;

Merge
Both branches are explored and expl or e returns true if both branches return true
(possible termination only if both branches possibly terminate).

boolean bl = (leftStatus == TERM), br = (rightStatus == TERM;

if (leftStatus == SUSP) bl = left.explore(context);

if (rightStatus == SUSP) br = right.explore(context);
return bl && br;

INRIA

SugarCubes Implementation of Causality 29

Note that the two branches are explored in the same context.

Seq
The left branch is first explored; if it terminates, then the right branch is also explo-
red. Exploration returns true if both branches return true.

if (left.isTerm nated()) return right.explore(context)
boolean b = left.explore(context);

if (b) return right.explore(context);

return fal se

Present
If the event is present, only the t hen (I ef t) branch is explored; if it is absent, only the
el se (ri ght) branch is explored; if it is unknown, both branches are explored and the
control can go in sequence as soon as one branch can. Thus, in this case the two sets of
events possibly generated by the two branches are added to possi bl y.

if (testEval uated)
~return value ? 'left.explore(context) : right.expl ore(cont ext);
if (event.isPresent(machi ne) return |eft.explore(nmachine
if (event.i sAbsent(nachl ne)) return right.explore(nmachine
bool ean bl = | eft. expl ore(machi ne);

bool ean b2 = right.expl ore(machine);
return bl || b2;

7.4 Method explore for v6

One describes now the method expl or e of Present for the vé semantics:

if (testEval uated)

return value ? left.explore(con text) : right.explore(context);
Event event = machine. get Event (nane
if (event. |sPresent machl ne)) return |eft.explore(machine
if (event.i sAbsent(rTachl ne)) return right.explore(nmachine
AccessToEvent access = machi ne. get AccessToEvent (nane) ;
Event save = access. event() [/ save the event
Event newEvent = (Event)save clone(); // make a copy of the event
newEvent . %enerate(mchl ne); /'l make the presence hypothesis
access. se Event?neV\Event)
bool ean bl = left. expl ore(nmachine); /'l explore the then branch
newEvent . makeAbsent (machi ne) /1 make the absence hypothesis
access. set Event (newEvent)
bool ean b2 = right. expl ore(rrachl ne); /'l explore the else branch
access. set Event (save) ; /] restore the event

return bl || b2;

7.4 Method explore for v7

For v7, one needs to implement both My7 and My7 functions with the expl or e method.

One introduces a new field in machines to determine which of the two functions is ac-
tually computed: My7 when possi bl eFl ag is true and My7 otherwise.

RR n° 3487

30

Frédéric Boussinot

A new method get Necessary is added to Seq, Pr esent, and Gener at e to compute My7. As

it is standard code, one does not give it here.

8 Conclusion

In this paper, one adopts a non-standard point of view upon Esterel semantics. There
are several benefits in doing so:

« One gets a “software-based” description, complementary to the standard
“circuit-based” one of [Be].

* One gets a very simple description of the Esterel v5 semantics, in which only the
can function appears. Signals that must be emitted need not to be explicitly compu-
ted.

» Semantics and implementation are very close; in particular, the SugarCubes imple-
mentation is straightforward.

» One gets a very clear characterisation of the Esterel v5 semantics: it is the one al-
lowed to use the signal environment, but not to extend it in any way, when comput-
ing potentially emitted signals.

If the Esterel v5 semantics is, in some sense, the “end of the story”, when one adopts
the circuit point of view (it is shown in [Be] that the constructive semantics implemen-
ted in the Esterel v5 compiler exactly reflects the circuit semantics), this could not be
the same, when adopting the software point of view. Experiments with SugarCubes can
be a way to investigate this question.

INRIA

SugarCubes Implementation of Causality 31

Acknowledgments
Thanks to Robert de Simone for his comments on a first version of this paper.

Bibliography

[BG] G. Berry, G. Gonthier, The Esterel Synchronous Language: Design, Semantics, Implementation,
Science of Computer Programming, 19(2), 1992.

[Be] G. Berry, The Constructive Semantics of Esterel, 1995, available at URL http://www.
inria.fr/ meijelesterel/Docunmentation.

[Bo] F. Boussinot, Reactive-C: An extension of C to program reactive systems, Software Practice
and Experience, 21(4): 401-428, 1991.

[BDS] F. Boussinot, R. De Simone, The SL Synchronous Language, IEEE Trans. Software Engineer-
ing, 22(4), 1996.

[BS] F. Boussinot, J-F Susini, The SugarCubes Tool Box - Definition, INRIA Research Report 3247,
available at URL http://www. i nria.fr/ meijel/rc/ Sugar Cubes/, 1997 (to appear in Software
Practice & Experience).

[GJS] J. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison-Wesley, 1996.

[HCRR] N. Halbwachs, P. Caspi, P. Raymond, Ch. Ratel, The Synchronous Dataflow Programming Lan-
guage Lustre, Proc. IEEE, 79(9), 1991.

[Ha] N. Halbwachs, Synchronous Programming of Reactive System, Kluwer Academic Pub., 1993.

[HP] D. Harel, A. Pnueli, On the Development of Reactive Systems, NATO ASI Series F, Vol. 13,
Springer-Verlag, 1985.

[Har] D. Harel, StateCharts: A Visual Approach to Complex Systems, Science of Computer Pro-
gramming, 8(3), 1987.

[LBBG] P. Leguernic, A. Benveniste, P. Bournai, T. Gautier, SIGNAL: A Dataflow Oriented Language
for Signal Processing, IEEE-ASSP, 34(2), 1986.

[PI] G. Plotkin, A Structural Approach to Operational Semantics, Report DAIMI FN-19, Aarhus Uni-
versity, 1981.

RR n° 3487

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

