
HAL Id: inria-00073201
https://inria.hal.science/inria-00073201

Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SugarCubes Implementation of Causality
Frédéric Boussinot

To cite this version:
Frédéric Boussinot. SugarCubes Implementation of Causality. RR-3487, INRIA. 1998. �inria-
00073201�

https://inria.hal.science/inria-00073201
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SugarCubes Implementation of Causality

Frédéric Boussinot

N° 3487

Septembre 1998

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

���������	�
����
�����������
���
������ �"!�#��$#�%&�'�(��������!)�+*

,.-0/213/4-6587:9<;>=3?0?658@3;+A

BDCFE�GIHIJLKNM�O6PQH6RTSVU�HXWYPQZVP[W\E�GIH6P
].^_a`[H�W\P�bcH6d `[H

M�RaeFe+_2^fW�gVHh^\H6ijCkH6^\ijCFHml>n3oap4q4rsKutvH6eVWQH6G�wk^\H�J6x2xTqhKuokJ eFRTyTH6P

z�{�|6}�~��k�T}T��� RaS+PQRT��d�W[ZIek^Q_2wk��H�G�P�RTeke>H6Ra^�d�l�PQZ4l+ijCk^Q_2lk_TS+P.��_T^\G�Ra��d�PQG�P�wFR2Pfd�i�RT����ZI��CkH�l�_TlkHLH�GId�W\P
RTlsRawFPQH�l4W Pfd�yTlFRT�8�YtVH��TH6^\RT��PfWQ^jR�W\H�yTd�H6P�CFR��TH�w>H�H6l:gVH6�TH���_Te>H6g�W_�^\H[`[H0i)WYek^_Ty2^\RTG�P���d�W\C:i�RTSFP\Ra��d�W[Z
eF^Q_2wk��H6G�P��.t4WQ^jR�W\H�y2d�H0P	wFR2PfH0g�_2l�e+_TWQH6l2W\d�RT�>��SklFi)W\d�_2lFP�Ra^\H�PfWQS+gVd�H0g��VRalFg�PfH6�TH6^\RT�F��_2^QG�Ra��PQH�G�Ral4WQd�i�P
S+Pfd�lky�WQCkH0PfH(��SklFiXWQd�_TlFPhRT^QH<gVHX�FlFH6g���_2^hR���^jRay2G<H6l4W�_a��WQCkHIPQZ4l+ijCk^Q_2lk_TS+PY��Ralky2SFRay2H���PfWQH6^QH6�8����G<�
eF��H6G<H6l4W\R�W\d�_2l�d�ls�TR���R<_a�"WQCFH6PQH�P[W\^\RaWQH�y2d�H0P�d�P�RT��PQ_Iek^\H6PQH�l4WQH0g���BDCkd�PDd�GIek��H�GIH�l4WjR�WQd�_Tlcd�P�wFR2PfH0g�_2l
tVSky2RT^ � Skw>H6P���Ckd�ijCcd�P�RIPQHXW�_T�3�2R���RIi���R2PQPQH6P���_T^�^\H6R2i)W\d��2H�ek^_Ty2^\RTGIG<d�lky+�
���4�� \¡�¢ ~�£"|T�]3RT^\RT����H���d�PQGc�kM�H6R2i)W\d��2HhtVZ4l+ijCk^Q_2lk_TS+P�].^_Ty2^\RTGIG<d�lky+�v�	P[W\H�^\H��¤�+�TR���R

¥�¦ §8¨L©8ª�«�«a¬)­®§�¯�­®¬)°²±�­¤³j´�µ[¶	·V¶[¸¹¶fµ[¬)°Dº®»�¼�½+·

������������
������ �"!�#�����
 �X��������������!)���
�� ���������	�
���:
��

�	� |�

� � ��� H0P�ek^_TwF��E6G<H0P�gVH�i�RaS+PQRT��d�WQO�RTekeFRa^jRad�P\PfH6l2W�gkRTlFP���H6P���_T^\G�Ra��d�PQGIH6P�PQZvlFijCk^_TlkH0P ��_2^\P
gkH���� O�GId�PQPQd�_Tl g�� Skl Pfd�yTl+Ra�	RTwFPfH6l4W6��].��SFPfd�H�SF^\P�PfWQ^jR�W\O�y2d�H0Ph_Tl4W�OXW\O�gVO6�TH���_TeFe+O6H6Phe>_TSk^(^QHf`[HXW\H�^���H6P
eF^Q_2yT^jRaGIGIH6PIR�Z2RTl2W�gkH�WQH6��P�ek^Q_2wk��E�GIH6P6���LRal+P�iXH�W\HXUvWQH2��_Tl O�WQSFgVd�Hs��H6P�P[W\^\RaWQO�y2d�H0P�� wFR2PfHsgVH
��_2lFi)W\d�_2lFP.gVH�e>_aW\H�l4WQd�H���P.HXW�eF��SFPQd�H�Sk^jP.PfO6G�Ral4WQd��4SkH6P"��_2^QGIH�����H6P"SVWQd���d�P\Ral4W	iXH0P"��_TlFiXWQd�_TlFP	Pf_2l2W�gVO��Flkd�H6P
e>_TSF^	Skl���^jRay2GIH�l4W�gVS���RalFy2Ray2H�PfZvlFijCk^_TlFH���P[W\H�^\H��¤� � � d�GIek��O�GIH�l4WjR�WQd�_Tl�H�l��2R���R�gVHYiXH0P	PfWQ^jR�W\O�yTd�H6P
H0P[WhO6y2Ra��H�GIH6l2Whek^\O6PQH�l4W\O�HT�I�.����H�SkWQd���d�PfHI��H6P�tVSky2RT^ � Skw>H6P��4Skd�PQ_Tl4WhSkl H�lFPQH�G(wk��HIgkHIi���R2PQPQH6Ph�2R���R
e>_TSF^���R<ek^_Ty2^\RTG<G�RaWQd�_Tl�^\O6R2i)WQd��TH2�
�'¢ }0| ��� � |��]3Ra^jRa����O6��d�PQG<H2�V].^Q_2yT^jRaGIG�R�W\d�_2l�^QO0RTiXWQd��THhPfZvlFijCF^Q_2lkHT�V��PfWQH6^QH6�8�F�2R���R

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ o

1 Introduction
Reactive systems maintain a permanent close interaction with their environment [HP].
Embedded systems, as those used in airplanes, cars or cellular phones, are examples of
such systems. Synchronous formalisms[Ha] have been designed for high level specifi-
cation and programming of reactive systems.

Amongst the synchronous formalisms, is the Esterel language[BG] which adopts an im-
perative style. In Esterel programs, parallel components all share a global logical clock
defining global instants and communicate using broadcast signals. Esterel is based on
two fundamental hypothesis:

• the perfect synchrony hypothesis states that signal emissions and testings are ins-
tantaneous;

• the determinism hypothesis states that the behaviour of a program depends only on
its inputs, and not on some internal choices.

As consequence of the perfect synchrony hypothesis is the existence of incoherent pro-
grams, in which there is no way to decide, while respecting the hypothesis, if a signal
is present or absent. Basically, incoherency occurs when a signal is emitted only if it is
absent.

In Esterel, incoherent or nondeterministic programs are said to have causality pro-
blems. Several solutions have been proposed to detect these programs at compile time
[BG,Be]. However, the basic cause of causality problems is the possibility of immediate
reaction to a signal absence . Without this possibility, causality problems do not exist
anymore [BDS].

The reactive approach based on the Reactive-C language[Bo] comes from the synchro-
nous approach with two main goals:

• to avoid causality problems by restricting the possible instantaneous program re-
actions (actually, by forbidding instantaneous reaction to absence; instantaneous
reaction to presence remains allowed);

• to allow programmers to dynamically create parallel components (which is forbid-
den in synchronous formalisms) in order to get a more natural approach for dealing
with systems which are basically dynamic.

Recently, a set of Java classes named SugarCubes[BS] has been designed for reactive
programming in Java[GJS]. Roughly speaking, SugarCubes is to Java what Reactive-C
is to C.

In this paper, one describes an experiment made with SugarCubes to deal with instanta-
neous reaction to absence, in order to get the synchronous and the reactive approaches
closer. The flexibility of the Java language appears as a good point for experimenting

,-, ´
.�/10�2�3

p � ���������� ��	� "��(� �� *� "
�

with various possible solutions.

Causality problems also appear in other synchronous formalisms (for example in
Lustre[HCRR], Signal[LBBG], or Statecharts[Har]); however, it is in the Esterel lan-
guage that these problems appear in the purest form. This is the reason why, in this
text, one chooses to put the focus on Esterel and to use its syntax.

The paper has the following structure: in section 2, causality problems and various
ways to reject them are presented. The formal semantics of a fragment of Esterel
which focus on causality is presented in section 3. Several solutions, based on poten-
tially emitted signals, to reject programs with causality problems are presented in
section 4. Comparison with Esterel is made in section 5. SugarCubes is presented in
section 6, and is extended in section 7 to implement instantaneous reaction to absence.

2 Causality Problems
The synchronous hypothesis implies that testing a signal does not take time. In particu-
lar, one can test for the absence of a signal and, as the test takes no time, react in the
same instant to this very absence. The basic Esterel statement to test for a signal pre-
sence has the form:

present S then

 <immediate reaction to presence of S>
else

 <immediate reaction to absence of S>
end

2.1 Incoherency
An incoherent statement is a statement in which there is no possibility to determine a
signal presence status, while respecting the synchronous hypothesis. The following test
is an example of an incoherent statement (nothing is the statement that does nothing
and terminates immediately; emit is signal emission):

present S then

 nothing
else

 emit S
end

On one hand, signal S cannot be present as it is emitted only in case it is absent. On the
other hand, signal S cannot be absent as, then, it is emitted and thus present.

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ �

In incoherent statements, the symptom is always the same: immediate reaction to the
absence of a signal leads to negating this absence by emitting the signal.

Incoherency is related to parallelism as one can get an incoherent statement by putting
in parallel two coherent statements. The following parallel statement is an example of
an incoherent statement made of two coherent ones (absence of the then or of the else
branch in a present statement simply means that this branch is nothing):

present S2 else

 emit S1
end

present S1 then
 emit S2
end

||

If S2 is absent, then S1 is emitted by the left parallel branch; as S1 is present, S2 is
emitted, which is contradictory with the absence of S2. Now, if S2 is present, then it
is emitted by the right branch; but, this implies that S1 is also present; this is not pos-
sible because, as S2 is present, there is no emission of S1.

2.2 Nondeterminism
A nondeterministic statement can behave differently, while respecting the synchronous
hypothesis. Consider the previous example, changing in the right parallel the then
branch by a else branch:

present S2 else

 emit S1
end

present S1 else
 emit S2
end

||

There are two possibilities: either S2 is absent and S1 present, or S1 is absent and S2
present, which lead to two different behaviours. An important point is that the two be-
haviours consist in an immediate reaction to a signal absence.

One now considers several general strategies proposed to reject statements with cau-
sality problems. The precise use of theses strategies by Esterel compilers is conside-
red in section 5.

2.3 Static Cycle Detection
In static cycle detection, the basic idea is to consider the graph of signal emissions and
tests; as any causality problem implies a cycle in this graph, rejecting statements with
cyclic graphs implies rejecting all programs with causality problems.

In the previous example, there is an arrow from S2 to S1 produced by the left parallel
branch, and conversely, there is an arrow from S1 to S2 produced by the right one.
Thus, there is a cycle and the statement is rejected.

This approach is very restrictive as it also rejects a very large class of programs free
from causality problem. Here is an example of a coherent rejected statement (pause is

,-, ´
.�/10�2�3

� � ���������� ��	� "��(� �� *� "
�

the Esterel statement to stop execution for the current instant):

present S1 else emit S2 end;
pause;
present S2 else emit S1 end

There is a cycle between S1 and S2 in the static graph constructed, despite the fact
that the two tests are not executed at the same instant.

As another example, consider:

present S1 then
 present S2 else emit S2 end
end

It is rejected while, as no emission of S1 exist, the then branch of present S1 cannot
be run.

The static cycle detection is used in the Esterel v4 compiler (considered in section 5.3)
and in the Lustre compiler.

2.4 Possibly Emitted Signals
In approaches based on possibly emitted signals, the compiler can decide that a signal is
absent only when there is no possibility for it to be emitted. Consider the previous
example:

present S2 else
 emit S1
end

present S1 then
 emit S2
end

||

The compiler blocks on both branches of the parallel statement, as S1 and S2 are not
present. At that moment, S1 cannot be decided to be absent because there is a potential
emission of it in the else part of the left branch. S2 also cannot be decided as absent as
there is a potential emission of it in the right branch. Thus, the statement is rejected as
there is no way to proceed.

Several ways of computing possibly emitted signals are possible. In a simple solution,
the compiler computes potential emissions without using the signal environment (this
solution is used in the Esterel v3 compiler described in section 5.2). Consider for
example:

emit S2;
present S1 then
 present S2 else emit S1 end
end

The compiler blocks when evaluating the test of S1 and computes the possibly emitted
signals at that stage. As the compiler does not use the signal environment, it cannot de-

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ r

duce that, as S2 is already emitted, emission of S1 is actually impossible. Thus the
statement is rejected, as S1 is possibly emitted.

In a more powerful solution (used in the Esterel v5 compiler described in section 5.3),
the compiler can use the signal environment, but without any possibility to add new in-
formation in it, while computing potential emissions. The previous statement is accep-
ted by such a solution, as the fact that emission of S1 is impossible can be deduced,
when the test is analysed, from the fact that S2 is emitted. However, there still exist
statements without causality problem which are rejected. Consider for example:

present S then
 present S else emit S end
end

Emission of S is unreachable as the two tests of S are exclusive. However the compiler
is not able to exclude this emission, when S is not already emitted, as, during potential
analysis, S does not appear in the environment; thus S is seen as potentially emitted
and the statement is rejected.

More powerful compilers can be designed that would be allowed to increase their kno-
wledge in the course of the computation of possible emissions . It is a goal of this paper
to study such approaches.

The present discussion is rather imprecise and it is necessary to be formal to eliminate
possible ambiguities; this is done in the next section.

3 Formal Semantics
One considers a small subset of Esterel statements, sufficient to reflect the existence
of causality problems and gives it a basic semantics , expressed in an operational style
based on rewriting rules[Pl].

The basic semantics defined in this section rejects incoherent statements, but accepts
nondeterministic ones. A restriction in the way signals are decided absent is introduced
in section 4 in order to reject nondeterministic statements.

3.1 Basic Rules
One writes:

 t E t E, ,α
 → ′ ′

to means that statement t, executed in the signal environment E, transforms (one also
says rewrites) in t’, and E in E’, and returns α as termination flag. There are 3 possi-
ble termination flags:

,-, ´
.�/10�2�3

q � ���������� ��	� "��(� �� *� "
�

• TERM means that execution is terminated and that nothing remains to do;

• STOP means that execution is terminated but that something remains to do at next
instant;

• SUSP means that execution must be resumed in the current instant.

An environment is a set which contains signals that are present or absent, but not both
(environments are coherent). To note that an event S is present, one just puts its name
in the environment; to note that it is absent, one puts its name with a bar on it (/S) .

Environment E+ /S is obtained by adding /S to E provided S is not in E (otherwise E+ /S
would not be coherent); In the same way, E+S consists in adding S to E, provided that /S
is not in E; finally, E+E’ is the union of E and E’.

As the focus is put on causality, we consider a very simple syntax which captures the
core of the problem: sequence, parallel, pause, and signal emission and test.

One extends the syntax of the parallel statement: α||β is used to store the termination

flags of the parallel branches (α is the termination flag of the left branch, β is the ter-
mination flag of the right one); α and β can be omitted when they are both equal to
SUSP.

The BNF description of statements is:

t = nothing
| pause
| t ; t
| t α||β t

| emit S
| present S then t else t end

Compared to the Esterel kernel syntax, loops, boolean if tests, preemption, and traps
are not considered here. One feels that their introduction does not really complicate the
problem, which is deeply concentrated in the statements considered here, specially in
the parallel and present ones. As a justification, let us recall that in Esterel the seman-
tics of preemption is mainly captured by the present operator, and that the semantics
of loops is basically captured by the ones of sequence.

Now, one considers each operator in turn and gives rewriting rules for it.

Nothing
The nothing statement does nothing and terminates:

nothing E nothing ETERM, , →

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ x

Pause
The pause statement stops execution for the current instant, and nothing remains to be
done at next instant:

pause E nothing ESTOP, , →

Emit
The emit statement emits a signal and rewrites in nothing:

emit S,E TERM nothing E S → +,

Let us recall that S must not have the absent status in E (/S not in E), otherwise E+S
would not be coherent.

Sequence
There are two rules for the sequence, depending on the termination of the left branch.

• If the left branch terminates, then the right one is immediately executed:

t E t E u E u E

t u E u E

TERM, , , ,

; , ,

 →  →

 →

′ ′ ′ ′ ′′
′ ′′

α

α

• If the left branch is stopped or suspended, then so is the sequence:

t E t E TERM

t u E t u E

, ,

; , ; ,

α

α
α →

 →

′ ′ ≠
′ ′

Signal Tests
There are three rules for the signal test, depending if the signal is present, absent, or
unknown.

• the then branch is executed if the signal is present (S E∈) :

S E t E t E

present S then t else u end E t E

∈ ′ ′
′ ′

 →

 →

, ,

 , ,

α

α

• the else branch is executed if the signal is absent (/ ∈S E) :

/ ∈ ′ ′
′ ′

 →

 →

S E u E u E

present S then t else u end E u E

, ,

 , ,

α

α

• the test is suspended if the signal is unknown (neither present nor absent):

S E S E

present S then t else u end E present S then t else u end ESUSP

∉ / ∉
 → , ,

,-, ´
.�/10�2�3

J�� � ���������� ��	� "��(� �� *� "
�

Parallelism
Parallelism is synchronous: both branches run together in the same instant.

• If both branches are suspended (which is the initial situation at each instant), then
they are both executed (let us remember that || means SUSP||SUSP):

t E t E u E u E

t u E t u E ESUSP

, , , ,

|| , || ,

α β

α β

 →  →

 →

′ ′ ′ ′′
′ ′ ′ + ′′

Note that the two parallel branches are run in the same environment and that the pro-
duced environment E’+E’’ must be coherent. This forbids emission of a signal in one
branch, and decision of its absence in the other branch.

• If there is only one suspended branch, then the other one is run:

β αα β

β α β α α β

≠ ′ ′
′ ′

≠ ′ ′
′ ′

 →

 →

 →

 →

SUSP t E t E

t u E t u E

SUSP u E u E

t u E t u ESUSP
SUSP

SUSP
SUSP

, ,

 || , || ,

, ,

 || , || ,

• The parallel is terminated or stopped when both branches are:

α β

α β
α β

≠ ≠
×

 →

SUSP SUSP

t u E t u E || , || ,

where α × β equals TERM if both α and β are TERM, and equals STOP otherwise.

3.2 Absence Decision
Up to now, there is no possibility to make signals absent. This possibility is introduced
with the notion of a complete execution : a complete execution of a statement t is a se-
quence of rewritings, starting from t and ending with a termination flag TERM or STOP.
More precisely, a complete execution of statement t0, with E0 as input environment, is

a sequence of the form:

t E t E t E X t E t E X t ESUSP SUSP
n n n n n0 0 1 1 1 1 1 2 2 1 1, , , , , , →  →  →+ … + + +

α

where:

• α is different from SUSP;

• there is no absent signal in the input environment E0;

• X1,...,Xn are sets of absent signals.

One simply notes the previous sequence by:

t0,E0 ⇒
α

 tn+1,En+1

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ J2J

Signals present in E0 are inputs, produced by the external context, which is not allowed

to make signals absent. It is important to remark that absent signals in X i cannot be

emitted in Ei, in order Ei+X i to be coherent.

Example
Let us prove that:

present S1 then emit S2 end || emit S1, ∅ ⇒
TERM

nothing || nothing, S1,S2

one has:
present S then

emit S
end

SUSP
present S then

emit S
end

emit S
TERM

nothing S

present S then
emit S

end

emit S

SUSP

present S then
emit S

end
SUSP TERM

nothing S

,

,
 , ,

||
 ,

 ||
 ,

1
2

1
2 1 1

1
2

1

1
2

1

∅ ∅
∅

∅

 →  →

 →

and:
emit S S

TERM
nothing S S

present S then
emit S

end S

TERM
nothing S S

present S then
emit S

end
SUSP TERM

nothing S

SUSP
nothing TERM TERM nothing S S

 , , ,

,
, ,

 ||
 ,

 || , ,

2 1 1 2

1
2

1
1 2

1
2

1

1 2

 →

 →

 →

which finally gives the result because:

nothing TERM||TERM nothing, S1,S2
TERM

 → nothing||nothing, S1,S2

No signal absence is needed in this proof.

Nondeterminism
The result of the rewriting may depend on the choice of signals that are decided absent.
Consider:

 present S1 else emit S2 end
||
 present S2 else emit S1 end

If S1 is decided as absent, then S2 is emitted; on the contrary, if S2 is decided as ab-
sent, then S1 is emitted. Both choices are possible and such a statement is nondetermi-
nistic. Note that deciding both signals as absent in a single step would not lead to a ter-

,-, ´
.�/10�2�3

J�� � ���������� ��	� "��(� �� *� "
�

minated rewriting.

Nondeterminism will be rejected in section 4, by restricting the way signals are deci-
ded absent.

3.3 Definition of Incoherency
A statement t is incoherent if there exists an environment E without any absent signal
in it such that no terminated or stopped rewriting apply to t,E:

there is no t’, E’ such that t,E ⇒
α

t ’ , E ’

Examples of Incoherent Statements
Let us try to execute the following statement in the empty environment:

present S else emit S end

The only possibility is to decide that S is absent; but then, emit S would have to be
executed in the environment where S is absent, which is impossible. Thus, there is no
way to rewrite the statement in the empty environment, which means that it is incohe-
rent.

In the same way, the following statement is shown to be incoherent:

present S then nothing end; emit S

Examples of Coherent Statements
From the previous example, it is easy to see that the following statement, which does
not need any absence decision, is coherent:

present S1 then emit S2 end || emit S1

The following statement is also coherent:

present S then emit S end

In an environment E where S is present, the then branch is executed, which does not
change E and rewrites in nothing. In an environment where S is not present, S must
first be decided as absent and then the else branch, which is nothing, is executed.

Finally, let us prove that the following statement is coherent:

present S1 then
 emit S2;

 present S2 else emit S1 end
end

If the environment does not contain S1, the only possibility is to decide that S1 is ab-
sent; then, the implicit else branch is chosen and the statement rewrites in nothing. If

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ J0o

S1 is in the environment, then the statements becomes equivalent to:

emit S2;

present S2 else emit S1 end
which is coherent. Thus, the initial statement is coherent.

4 Potential Functions
One now restrict the possibility of deciding that signals are absent in order to reject
nondeterministic statements. One uses a potential function Π which computes poten-
tially emitted signals. Now, one considers sequences of rewritings of the form:

t E t E t E X t E t E X t ESUSP SUSP
n n n n n0 0 1 1 1 1 1 2 2 1 1, , , , , , →  →  →+ … + + +

α

where, at each step, all signals that are not potentially emitted are decided absent: for
all i, Xi is the set of /S such that S ∉Π (t i,E i). Intuitively, this is a correct strategy, pro-

vided Π is correct, that is indeed detects signals which are potentially emitted.

In the following subsections, one considers several Π functions. The three first func-
tions correspond to the v3, v4, and v5 versions of the Esterel compiler; for this rea-
son, one gives them the names Πv3, Πv4, and Πv5. Two other functions are also consi-

dered; for simplicity, they are named Πv6 and Πv7.

One adopts the two following notations:

• if X is a set, α:X=X if α=SUSP, and α:X= ∅ if α ≠ SUSP;

• if F is a boolean expression, α#F=F if α=SUSP, α#F=true if α=TERM, and α#F=false
if α=STOP.

4.1 The v3 Semantics
The potential function Πv3 (corresponding to the Esterel v3 compiler described in sec-

tion 5.2) does not use the signal environment. It is defined by:
 Πv 3 (t,E) = π v 3 (t)

where πv3 is defined as follows:

• πv3(nothing) = πv3(pause) = ∅
• πv3(emit S) = S

• πv3(t α||β u) = α:πv3(t) ∪ β:πv3(u)

• πv3(present S then t else u end) = πv3(t) ∪ πv3(u)

• πv3(t;u) = πv3(t) ∪ π v3(u), if τv3(t),

,-, ´
.�/10�2�3

J6p � ���������� ��	� "��(� �� *� "
�

 = πv3(t) otherwise.

The function τv3 returns true if execution of its parameter can terminate, false other-

wise:

• τv3(nothing) = τv3(emit S) = true

• τv3(pause) = false

• τv3(t α||β u) = α#τv3(t) and β#τv3(u)

• τv3(t;u) = τv3(t) and τv3(u)

• τv3(present S then t else u end) = τv3(t) or τv3(u)

4.2 The v4 Semantics
The potential function Πv4 (corresponding to the static analysis of the Esterel v4 com-

piler described in section 5.3) does not take instants into account. It is defined by:

 Π v4(t,E) = πv4(t)

where πv4 is defined as follows:

• πv4(nothing) = πv4(pause) = ∅
• πv4(emit S) = S

• πv4(t α||β u) = α:πv4(t) ∪ β:πv4(u)

• πv4(t;u) = πv4(present S then t else u end)

 = πv4(t) ∪ πv4(u)

The only difference with the definition of the potential function of v3 concerns the se-
quence operator. Basically, in v4 instants are not considered and the sequence and pa-
rallel operators are processed in the same way.

From the definition, it is clear that Πv4 is more restrictive than Πv3: a coherent state-

ment for Πv4 is also coherent for Πv3. One writes: Πv4 ⊂ Πv3.

4.3 The v5 Semantics
The potential function Πv5 (corresponding to the Esterel v5 compiler described in sec-

tion 5.4) uses the environment but does not change it in any way. It is defined by:

• Πv5(nothing,E) = Πv5(pause,E) = ∅
• Πv5(emit S,E) = S

• Πv5(t α||β u,E) = α:Πv5(t,E) ∪ β:Πv5(u,E)

• Πv5(t;u,E) = Πv5(t,E) ∪ Π v5(u,E), if τv5(t,E)

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ J �

 = Πv5(t,E), otherwise

• Πv5(present S then t else u end,E)

= Π v5(t,E), if S E∈
= Π v5(u,E), if / ∈S E

= Πv5(t,E) ∪ Πv5(u,E), otherwise

Definition of τv5 is:

• τv5(nothing,E) = τv5(emit S,E) = true

• τv5(pause,E) = false

• τv5(t α||β u,E) = α#τv5(t,E) and β#τv5(u,E)

• τv5(t;u,E) = τv5(t,E) and τv5(u,E)

• τv5(present S then t else u end,E)

= τv5(t,E), if S E∈
= τv5(u,E), if / ∈S E

= τv5(t,E) or τv5(u,E), otherwise

The environment E is only used by present and always passed as it, without being chan-
ged.

It is clear from the definition that Πv3 is more restrictive than Πv5: Πv3 ⊂ Πv5.

4.4 The v6 Semantics
The potential function Π v6 is a variant of Πv5 in which the signal environment can be

changed while analysing present statements, to keep track of the choosen branch. Πv6

is defined exactly as Πv5, except for present:

 Πv6(present S then t else u end,E)

= Π v6(t,E), if S E∈
= Π v6(u,E), if / ∈S E

= Πv6(t,E+S) ∪ Πv6(u,E+ /S), otherwise

with τv6 defined exactly as τv5, except for:

 τv6(present S then t else u end,E)

= τv6(t,E), if S E∈
= τv6(u,E), if / ∈S E

= τv6(t,E+S) or τv6(u,E+ /S), otherwise

,-, ´
.�/10�2�3

J � � ���������� ��	� "��(� �� *� "
�

The difference with Π v5 only concerns the case where the signal status is unknown

(neither S nor /S is in E); then, the two branches are considered, but they are analysed
in the environment augmented with the according signal status.

It is clear from the definition that Πv5 is more restrictive than Πv6: Πv 5 ⊂Πv6.

Let us show that the following statement t is coherent for v6:

present S then

 present S else emit S end
end

If S is in the starting environment E, then the rule for present with S present applies,
and t rewrites in nothing. Let us suppose now that S is not in E. Then present can only
suspend (remember: the starting environment does not contain any absent signal).
Then, the only solution is to make S absent, which needs to compute the following:

 Πv6(t,E) = Πv6(present S else emit S end,E+S) ∪ Πv6(nothing,E+ /S)

 = Πv6(nothing,E+S) ∪ ∅ = ∅

Thus, S can safely be decided absent, and t is coherent.

4.5 The v7 Semantics
The potential function Πv7 is a variant of Πv6 with a finer analysis of sequences. In Π v7,

signals that are necessarily emitted by the left part are added to the environment of
the right part. Πv7 is defined exactly as Πv6, except for the sequence which is as fol-

lows:

 Πv7(t;u,E) = Πv7(t,E) ∪ Πv7(u,E+Μ v7(t,E)), if τv6(t,E)

 = Πv7(t,E), otherwise

Signals that are necessarily emitted (computed by the function Μ v7) in the left part of a

sequence can be safely considered as present in the right part. Definition of Μv7 is as

fol lows:

• Μv7(nothing,E) = Μv7(pause,E) = ∅
• Μv7(emit S,E) = S

• Μv7(t α||β u,E) = α:Μv7(t,E) ∪ β:Μv7(u,E)

• Μv7(present S then t else u end,E)

= Μ v7(t,E), if S E∈
= Μ v7(u,E), if / ∈S E

 = Μv7(t,E+S) ∩ Μv7(u,E+ /S), otherwise

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ J�r

• Μ v7(t;u,E) = Μ v7(t,E) ∪ Μ v7(u,E+Μ v7(t,E)), if µv7(t,E)

 = Μv7(t,E), otherwise

The function µv7 returns true if execution of its parameter must terminate, and false

otherwise:

• µv7(nothing,E) = µv7(emit S,E) = true

• µv7(pause,E) = false

• µv7(t α||β u,E) = α#µv7(t,E) and β#µv7(u,E)

• µv7(t;u,E) = µv7(t,E) and µv7(u,E)

• µv7(present S then t else u end,E)

= µv7(t,E), if S E∈
= µv7(u,E), if / ∈S E

= µv7(t,E+S) and µv7(u,E+ /S), otherwise

The only difference with τv6 is that and replaces or in the last equality. This reflects

the fact that, in order to be sure that a present statement terminates, one must be
sure that both branches do.

The following statement is accepted by the v7 semantics:

present S1 then
 emit S2;

 present S2 else emit S1 end
end

It is clear from the definition that Πv6 is more restrictive than Πv7: Πv6 ⊂ Πv7.

4.6 Others Possible Semantics
We have seen in the previous sections the inclusions of semantics:

 Πv 4 ⊂ Πv3 ⊂ Πv5 ⊂ Πv6 ⊂ Πv7

Examples of coherent but rejected statements have been given for each of v3-v6; here
is an example of a coherent statement rejected by v7:

present S1 then
 emit S2
 ||

 present S2 else emit S1 end
end

,-, ´
.�/10�2�3

J0q � ���������� ��	� "��(� �� *� "
�

The value returned by Πv7 when computing present S1 is the union of the values retur-

ned by the two parallel branches in the same environment. Thus, there is no way to see
that, as S2 is necessarily emitted by the left branch, emission of S1 is actually impos-
sible.

The following figure sums up the situation:

present S1 then
 emit S2
 ||
 present S2 else emit S1 end
end

present S then
 present S else emit S end
end

present S1 then
 emit S2;
 present S2 else emit S1 end
end

present S1 else emit S2 end;
pause;
present S2 else emit S1 end

emit S2;
present S1 then
 present S2 else emit S1 end
end

v 4 v 3 v 5 v 6 v 7 basic

It is possible to imagine semantics even more powerful than v7; consider for example a
variant of v7 with the following change for parallel:

Πv7(t α||β u,E) = α:Πv7(t,E+Μv7(u,E)) ∪ β:Πv7(u,E+Μv7(t,E))

Each branch sees the signals that must be emitted by the other. Such a semantics would
accept the previous statement.

However, one shall not consider such semantics in more details as they would be very
close from the basic semantics.

4.7 Correctness
In potential based semantics, there is no choice at any step in the rule to apply (it is
defined by the structure of the statement) nor in the signals to be decided as absent
(they are defined by the potential function).

In the basic semantics, a nondeterministic situation always has the form:

⇒α
t,E

t1,E1

t2,E2β
⇒

where there exists a signal S which is present in one of E1, E2 but is absent in the

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ J0x

other. One says that t,E is nondeterministic.

One shows that, if t,E is nondeterministic, then no terminating rewriting sequence can
be built from t,E in a potentially based semantics. To get this result, one first shows
the correctness of the potential functions, which intuitively means that all emitted si-
gnals are indeed detected.

Definition of Correctness
A potential function Π is correct if all signals that are emitted are indeed detected:

if t E t E, ,α
 → ′ ′ then for all S emitted in E’-E, S ∈Π (t,E)

One first proves correction of v5 (the simpler cases of v3 and v4 are left to the
reader), then correction of v7 (the case of v6 is very similar to the one of v5). Proofs
are by induction on the structure of statements.

Correction of v5
In the following, Π means Πv5 and τ means τv5. One has the following properties:

Property 1. Rewriting always makes the environment more precise:

t E t E, ,α
 → ′ ′ implies E ⊂E’

Property 2. Impossibility of termination cannot disappear as the environment beco-
mes more precise:

E1 ⊂E2 and τ(t,E2) implies τ(t,E1)

Property 3. The more precise the environment is, the smaller the potentially emitted
signals set is:

if E1 ⊂E2 then Π(t,E2) ⊂Π (t,E1).

Property 4. The function τ reflects termination:

t E t ETERM, , → ′ ′ implies τ(t,E)

 Property 5. Π v5 is correct:

if t E t E, ,α
 → ′ ′ then S emitted in E’-E implies S ∈ Πv5(t,E)

The proof is by induction.
The property is of course true for nothing and pause that do not change the envi-
ronment.
Suppose t is emit S. Then E’-E = S = Π(emit S,E).
Suppose t is present S then t1 else t2 end. One gets the result by inspecting the

,-, ´
.�/10�2�3

� � � ���������� ��	� "��(� �� *� "
�

three cases.
Suppose t is t1α||βt2. One gets the result by inspecting the various cases.

Suppose t is t1;t2. If t1 does not terminate, one gets the result by induction. Now,
suppose that t1 terminates:

t E t E t E t E

t t E t E

TERM
1 2

1 2

, , , ,

; , ,

 →  →

 →

′ ′ ′ ′′ ′′
′′ ′′

α

α

Suppose S ∈E’-E; then, one gets the result by induction. Suppose now that S ∈E’’-E’; by
induction, S ∈Π (t2,E’). By property 4, τ (t1,E) is true; thus Π (t1;t2,E) = Π (t1,E) ∪
Π(t2,E). But, as E ⊂E’, S ∈Π (t2,E), by property 3, which gives the result.

Correction of v7
One needs the following auxiliary property concerning Μv7.

Property 6. Signals that must be emitted are indeed emitted by a terminated rewrit-
ing:

t E t E, ,α
 → ′ ′ with α ≠ SUSP implies Mv7(t,E) ⊂E’

Property 7. Π v7 is correct.

The only operator to consider is the sequence. Suppose t is t1;t2. If t1 does not termi-
nate, one has the result by induction. Suppose now t1 terminates:

t E t E t E t E

t t E t E

TERM
1 2

1 2

, , , ,

; , ,

 →  →

 →

′ ′ ′ ′′ ′′
′′ ′′

α

α

Suppose S ∈E’-E; then, one gets the result by induction. Otherwise, S ∈E’’-E’. As
τv7(t1,E) is true (property 4), one has Π v7(t1;t2,E) = Π v7(t1,E) ∪Πv7(t2,E+Mv7(t,E)).

By induction, S ∈Π v7(t2,E’). By property 6, Μ v7(t1,E) ⊂E’. As E ⊂E’, E+Μv7(t1,E) ⊂E’.

Thus, S ∈Πv7(t2,E+Μv7(t1,E)) which proves that S ∈Π v7(t1;t2,E).

Extension of Correctness to Sequences
In the following, Π means one of Πv3 -Πv7. One has the following property:

Property 8. Non-terminated rewritings make potentially emitted signals sets more
precise:

if t E t ESUSP, , → ′ ′ then Π (t’,E’) ⊂Π (t,E)

Correction of Π extends to sequences. Suppose:

t E t E t E X t E t E X t ESUSP SUSP
n n n n n0 0 1 1 1 1 1 2 2 1 1, , , , , , →  →  →+ … + + +

α

with a signal S present in En+1 but not in E0. Then, there exist j such that S ∈E j+1-E j. As

Π is correct, S ∈Π (t j,E j+X j). Thus, by property 3, S ∈Π (t j,E j). By applying property 8

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ �kJ

and property 3 repeatedly, one gets the result: S ∈Π(t0,E0).

4.8 Determinism
Now one can prove that if t,E is nondeterministic in the basic semantics, then it is re-
jected by potential based semantics.

Let us consider the nondeterministic situation:

⇒α
t,E

t1,E1

t2,E2β
⇒

and a signal S1 which is present in one of E1, E2 but is absent in the other. Let us write
X->Y if emission of Y results from choosing one branch of a present X statement, and
absence of Y results from choosing the other branch. One build a set G, starting from
S1. There exists a signal S2 such that S2->S1. If S2 is equal to S1, one terminates the
construction of G because of the cycle S1<->S1. Otherwise, one continues with S2 and,
as the number of signals is finite, one eventually falls in the first case. At the end of
the construction, each signal in G can be emitted by deciding absent an other signal of G.
Now, considering the potential based semantics, on one hand, none of the elements in G
can be decided absent as it is potentially emitted. On the other hand, there is no possi-
bility to get a terminated rewriting without making one element of G absent. Thus, the-
re is a step with no possibility of progression, which implies that t,E is rejected.

5 Comparison with Esterel
In this section, one compares the semantics previously defined with the Esterel seman-
tics. One considers four Esterel semantics: the behavioural semantics, and the seman-
tics corresponding to versions v3, v4, and v5 of the Esterel compilers.

5.1 Behavioural Semantics
As the basic semantics, the Esterel behavioural semantics [BG] does not reject nonde-
terministic statements but only incoherent ones. In the behavioural semantics, the key
rule for causality is the one of local signal declaration. It is the place where one can
make hypothesis on signal presence or absence. Hypothesis concern local signals and
must be validated in the produced environment: a signal supposed absent must not be
emitted, and a signal supposed present must be emitted.

On the opposite, in the basic semantics, the only rule that can make a signal present is
the emit rule; there is no possibility to suppose a signal present. An advantage is that
Esterel non-causal executions, in which a presence hypothesis is needed, are impossible
in the basic semantics. Consider:

,-, ´
.�/10�2�3

� � � ���������� ��	� "��(� �� *� "
�

present S then emit T end; emit S

It is accepted by the behavioural semantics of Esterel (while rejected by potential-ba-
sed semantics), with S emitted, but it is rejected by the basic semantics.

Note that the difference on non-causal executions has a consequence on the definition of
non-deterministic statements. Consider, for example:

present S then emit S end

• It is non deterministic in Esterel, because, starting from the empty environment,
one has a (non-causal) transition with S emitted and (a causal) one without it (one
assumes S is local).

• It is deterministic in the basic semantics because there is a unique solution, with S
absent.

However, in both cases, the statement is rejected by potential based semantics.

To sum up the relations between the behavioural and the basic semantics:

• a program rejected by the behavioural semantics is also rejected by the basic se-
mantics, but the converse is false (present S then nothing end; emit S).

• there exists programs which are nondeterministic with the behavioural semantics,
but are deterministic with the basic semantics (present S then emit S end).

• there exists programs which are deterministic for the behavioural semantics, but
are rejected by the basic semantics (present S then nothing end; emit S).

5.2 The v3 Compiler
The Esterel v3 compiler[BG] uses a potential function which does not take in account the
signal environment.

There are actually two distinct Esterel v3 semantics. The first one, which is imple-
mented as the default in the Esterel v3 compiler, is more restrictive than the v3 se-
mantics presented previously. The second one, which is available with the oldcausality
flag, corresponds to the one presented here.

The default Esterel v3 semantics allows one to take the then branch of a present S sta-
tement only when no potential emission of S remain. Thus, signal presence is treated
exactly in the same way as absence (this symmetry is the basic reason why this se-
mantics was introduced, while more restrictive than the oldcausality one). Here is an
example of a statement which is rejected by the default Esterel v3 semantics:

emit S; present S else emit S end

The emission of S in the else branch of the present statement is considered as possible,
although S is already emitted.

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ �To

On the contrary, the oldcausality v3 compiler accepts the previous statement, as it can
execute the then branch of present S as soon as S is emitted.

The Esterel v3 compiler translates programs in finite states machines (automata) in
both versions.

5.3 The v4 Compiler
The v4 Esterel compiler is based on the static cycle detection. This approach, which is
the most restrictive, has been introduced to overcome the problem of automata states
explosion in the Esterel v3 compiler.

In the Esterel v4 compiler, a program is translated into a system of equations the size
of which is linear in the size of the program code. A program is accepted by the compi-
ler if the associated system is cycle free, and thus can be sorted.

The Esterel v4 compiler starts by building the dependency graph of signals emissions
and tests, and it rejects the program is there is a cycle in it. This method is even more
restrictive than the v4 semantics described in this paper. For example, the Esterel v4
compiler rejects the following program accepted by the previous v4 semantics:

emit S; present S else emit S end

The Esterel v4 compiler has been felt as too restrictive and is presently replaced by
the v5 compiler.

5.4 The v5 Compiler
The Esterel v5 compiler is based on the constructive approach[Be]; two functions are
defined: can which computes what signals are possibly emitted by a statement, and
must which computes what signals are necessarily emitted. The two functions can only
proceed by constructive steps, “deducing facts from facts”.

The Esterel v5 semantics of a statement t in an environment E is defined in two steps:
1 . First, the environment produced E’ is incrementally computed (as a fix-point), us-

ing can and must.
2 . Second, if all signals are determined (the statement is constructive and accepted by

the semantics), then the new statement t’ is computed using the behavioural se-
mantics, starting from E’ (assuming that there is no instantaneous loop in t).

The function can is actually equivalent to Πv5. The function must is very close to Μ v7

and differs from it in the way unknown signals are processed. In the case of an unknown
signal, must returns the empty set, instead of the intersection of the two branches re-
turned by Μ v7. As a consequence, the following program is, for example, rejected by

the Esterel constructive semantics, while accepted by v7:

,-, ´
.�/10�2�3

�ap � ���������� ��	� "��(� �� *� "
�

 present S1 then
 present S2 then emit S3 else emit S3 end;
 present S3 else emit S1 end

 end

6 The SugarCubes Framework
The two main notions of SugarCubes are the one of reactive instruction whose seman-
tics refer to instants, and the one of reactive machine whose purpose is to execute re-
active instructions in an environment made of instantaneously broadcast events.

6.1 Instructions
The Instruction class implements reactive instructions. A reactive instruction is acti-
vated by a call to its method activ which returns as result one of the three following
values:

• TERM (for terminated) means that the instruction is completely terminated; nothing
remains to do for the current instant and also for future ones. Thus, to activate one
more time an instruction returning TERM has no effect and also returns TERM.

• STOP (for stopped) means that execution of the instruction is over for current ins-
tant, but that some code remains to be executed at next instant.

• SUSP (for suspended) means that execution of the instruction has not reached a
stable state and must be resumed during current instant. This is for example the
case for the instruction that waits for a not yet generated event (see below): exe-
cution is suspended to let the others components the possibility to generate the
event during current instant.

The basic reactive instructions of SugarCubes are:

• Stop, which stops execution for the current instant;

• Seq to put one reactive instruction in sequence with another one;

• Merge to put two reactive instructions in parallel;

• atoms to execute basic Java statements such as printing messages;

• Loop and Repeat, for cyclic executions;

• Generate to generate an event, Await to wait for it, and When to test for an event.

The correspondence between SugarCubes and the syntax previously introduced is as
fol lows:

• SugarCubes events are analogous to Esterel signals;

• Stop corresponds to pause;

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ � �

• Merge corresponds to the parallel statement;

• Seq corresponds to the sequence;

• Generate corresponds to emit.

However, When does not correspond to present, as immediate reaction to absence is
forbidden in SugarCubes. Actually, the rules for When are the following:

•

S E t E t E

when S then t else u end E t E

∈ ′ ′
′ ′

 →

 →

, ,

 , ,

α

α

S E S E

when S then t else u end E when S then t else u end ESUSP

∉ / ∉
 → , ,

/ ∈

 →

S E

when S then t else u end E u ESTOP , ,

The only difference with present is the last rule, which forbids immediate reaction to
the signal absence.

Now, one briefly describes reactive machines and the Merge and When instructions.

6.2 Machines
The class EventMachine implements reactive machines. A reactive machine executes a
program which is a reactive instruction. It has two main tasks to perform: first, to de-
cide the end of instants, and second, to broadcast events. Initially, the program is the
Nothing instruction which does nothing and terminates instantaneously. New instruc-
tions are dynamically added to the program (by calling the machine method add) and
executed in parallel with the previous ones.

Basically, a reactive machine detects the end of the current instant, when all parallel
instructions of the program are terminated or stopped. The behaviour is as follows:

• The program is cyclically activated while there are suspended instructions in it
(while activation returns SUSP).

• The end of the current instant is effective when all the parallel instructions in the
program are terminated or stopped (no suspended instruction remains).

• At the end of each program activation, the machine tests if some new events were
generated during this execution. If it was not the case, then there is no hope that
future program activations will change the situation. Then, a flag is set to let sus-
pended instructions stop, knowing from that point that events which are not emitted
are actually absent.

,-, ´
.�/10�2�3

� � � ���������� ��	� "��(� �� *� "
�

Two fields move and endOfInstant are used to implement this behaviour. Field move is
set to true to indicate that a new event is generated (Generate statement); in this case,
the end of the current instant is postponed to allow the suspended receivers awaiting
the event (Await instruction) or testing it (When instruction) to resume. Field endOfIns-
tant is set to true when the end of the current instant is decided by the machine, to let
suspended receivers know that awaited or tested events are absent.

Method activ of EventMachine implements this behaviour; the code is the following:

 endOfInstant = move = false;
 while (program.activ(this) == SUSP){
 if (move) move = false; else endOfInstant = true;
 }
 newInstant();

Parameter this is the machine, which is the execution context of the program.

6.3 Merge Instruction
The Merge instruction actually implements the rules for the parallel operator introduced
in section 3. Statuses of branches are coded in two fields leftStatus and rightStatus
whose initial values are SUSP. The code of method activ is:

if (leftStatus == SUSP) leftStatus = left.activ(machine);
if (rightStatus == SUSP) rightStatus = right.activ(machine);
if (leftStatus == TERM && rightStatus == TERM){ return TERM; }
if (leftStatus == SUSP || rightStatus == SUSP){ return SUSP; }
leftStatus = rightStatus = SUSP;
return STOP;

6.4 Reaction to Absence
The When instruction behaves as the present statement except that absence is only de-
cided at the end of the the current instant. The activ method of When is (left is the then
branch and right is the else one):

 if (!testEvaluated){
 if (event.presence(machine) == UNKNOWN) return SUSP;
 value = event.isPresent(machine);
 testEvaluated = true;
 if(machine.isEndOfInstant()) return STOP;
 }
 return value ? left.activ(machine) : right.activ(machine);

The return code is STOP if the test cannot be evaluated before the end of the instant;
this is for example the case when one tests for an absent event. As a consequence, re-
action to absence is always postponed to the next instant.

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ �4r

7 Extensions to SugarCubes
Now, one extends SugarCubes to deal with immediate reaction to absence. Basically,
one gives instructions a new method explore which implements potential events com-
puting. This method adds potentially generated events to a vector, and returns a boo-
lean which indicates if control can go in sequence, or not. So, explore actually imple-
ments both Π and τ functions of the semantics.

In potential based approaches, the natural moments for absence decisions are blocked
situations, when there is no other way to proceed. That is, absence decisions are de-
layed as far as possible.

The proposed implementation exactly mimics the semantics of parallel and present.
Execution of a parallel branch is suspended when one tries to test a signal which is nei-
ther emitted nor absent. When all parallel branches are either terminated or suspended,
potential analysis can start to decide if some signals can be made absent. An incoherent
program is detected if all signals on which execution is blocked are potentially emitted.
Otherwise, signals that are not potentially emitted are decided as absents and execution
can proceed with this new information.

One first describes the new algorithm for machines, then the Present class which
implements the present instruction; finally, one describes the explore method which
implements potential functions.

7.1 IraMachine
The extended machine class is the class IraMachine (Ira stands for Immediate Reaction
to Absence). Two new fields are introduced:

• lockOn is the vector of events on which execution is blocked because they are unk-
nown;

• possible is the vector of potentially generated events.

Method makeAllAbsent sets to absent all events not in possible; it returns false if no
event can be set to absent, and true otherwise.

The code for method activ is the following:

 endOfInstant = move = false;
 while (program.activ(this) == SUSP){
 if (move) move = false;
 else if (lockOn.isEmpty()) endOfInstant = true;
 else{

 body.explore(this);
 if (!makeAllAbsent()){
 System.out.println("causality error");

 break;
 }

 }
 if (!lockOn.isEmpty()) lockOn = new Vector();

,-, ´
.�/10�2�3

�Tq � ���������� ��	� "��(� �� *� "
�

 if (!possible.isEmpty()) possible = new Vector();
 }
 newInstant();

When the body is suspended while there is no new generated event (move is false) but
while there exist events on which execution is blocked (lockOn is not empty), then po-
tentially generated events are computed by calling the method explore.

A causality error is detected when there is no possibility to set any event to absent (all
events on which execution is suspended are potentially generated). This corresponds in
the semantics to situations where the program is suspended while no non-empty Xi can

be added to the environment; in this case, no terminated rewriting exist.

7.2 Present Instruction
There are two differences between the activ method of When and the one of Present:

• when the event is unknown, it is added to the lockOn vector;

• when the event is absent, control immediately goes to the right (else) branch.

Method activ of Present is:

 if (!testEvaluated){
 if (event.presence(machine) == UNKNOWN){

 if (!machine.lockOn.contains(name)) machine.lockOn.addElement(name);
 return SUSP;

 }
 value = event.isPresent(machine);
 testEvaluated = true;
 }
 return value ? left.activ(machine) : right.activ(machine);

7.3 Method explore for v5
One describes the method explore for the v5 semantics.

Generate
When explored, Generate adds the event to the vector possible of possibly generated

events; it returns true indicating that the control goes in sequence.

 machine.possible.addElement(eventName);
 return true;

Merge
Both branches are explored and explore returns true if both branches return true
(possible termination only if both branches possibly terminate).

 boolean bl = (leftStatus == TERM), br = (rightStatus == TERM);
 if (leftStatus == SUSP) bl = left.explore(context);
 if (rightStatus == SUSP) br = right.explore(context);
 return bl && br;

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ �Tx

Note that the two branches are explored in the same context.

Seq
The left branch is first explored; if it terminates, then the right branch is also explo-
red. Exploration returns true if both branches return true.

 if (left.isTerminated()) return right.explore(context);
 boolean b = left.explore(context);
 if (b) return right.explore(context);
 return false;

Present
If the event is present, only the then (left) branch is explored; if it is absent, only the
else (right) branch is explored; if it is unknown, both branches are explored and the
control can go in sequence as soon as one branch can. Thus, in this case the two sets of
events possibly generated by the two branches are added to possibly.

 if (testEvaluated)
 return value ? left.explore(context) : right.explore(context);
 if (event.isPresent(machine)) return left.explore(machine);
 if (event.isAbsent(machine)) return right.explore(machine);
 boolean b1 = left.explore(machine);
 boolean b2 = right.explore(machine);
 return b1 || b2;

7.4 Method explore for v6
One describes now the method explore of Present for the v6 semantics:

 if (testEvaluated)
 return value ? left.explore(context) : right.explore(context);
 Event event = machine.getEvent(name);
 if (event.isPresent(machine)) return left.explore(machine);
 if (event.isAbsent(machine)) return right.explore(machine);

 AccessToEvent access = machine.getAccessToEvent(name);
 Event save = access.event(); // save the event
 Event newEvent = (Event)save.clone(); // make a copy of the event

 newEvent.generate(machine); // make the presence hypothesis
 access.setEvent(newEvent);
 boolean b1 = left.explore(machine); // explore the then branch

 newEvent.makeAbsent(machine); // make the absence hypothesis
 access.setEvent(newEvent);
 boolean b2 = right.explore(machine); // explore the else branch

 access.setEvent(save); // restore the event
 return b1 || b2;

7.4 Method explore for v7
For v7, one needs to implement both Πv7 and Μ v7 functions with the explore method.

One introduces a new field in machines to determine which of the two functions is ac-
tually computed: Πv7 when possibleFlag is true and Μv7 otherwise.

,-, ´
.�/10�2�3

o � � ���������� ��	� "��(� �� *� "
�

A new method getNecessary is added to Seq, Present, and Generate to compute Μv7. As

it is standard code, one does not give it here.

8 Conclusion
In this paper, one adopts a non-standard point of view upon Esterel semantics. There
are several benefits in doing so:

• One gets a “software-based” description, complementary to the standard
“circuit-based” one of [Be].

• One gets a very simple description of the Esterel v5 semantics, in which only the
can function appears. Signals that must be emitted need not to be explicitly compu-
ted.

• Semantics and implementation are very close; in particular, the SugarCubes imple-
mentation is straightforward.

• One gets a very clear characterisation of the Esterel v5 semantics: it is the one al-
lowed to use the signal environment, but not to extend it in any way , when comput-
ing potentially emitted signals.

If the Esterel v5 semantics is, in some sense, the “end of the story”, when one adopts
the circuit point of view (it is shown in [Be] that the constructive semantics implemen-
ted in the Esterel v5 compiler exactly reflects the circuit semantics), this could not be
the same, when adopting the software point of view. Experiments with SugarCubes can
be a way to investigate this question.

�¼ ,�

�

���������
	��
�����������
�������������
�! #"
�$"&%�	'���(�����) *�!+ oFJ

Acknowledgments
Thanks to Robert de Simone for his comments on a first version of this paper.

Bibliography

[BG] G. Berry, G. Gonthier, The Esterel Synchronous Language: Design, Semantics, Implementation,
Science of Computer Programming, 19(2), 1992.

[Be] G. Berry, The Constructive Semantics of Esterel, 1995, available at URL http://www.
inria.fr/meije/esterel/Documentation.

[Bo] F. Boussinot, Reactive-C: An extension of C to program reactive systems, Software Practice
and Experience, 21(4): 401-428, 1991.

[BDS] F. Boussinot, R. De Simone, The SL Synchronous Language , IEEE Trans. Software Engineer-
ing, 22(4), 1996.

[BS] F. Boussinot, J-F Susini, The SugarCubes Tool Box - Definition, INRIA Research Report 3247,
available at URL http://www.inria.fr/meije/rc/SugarCubes/, 1997 (to appear in Software
Practice & Experience).

[GJS] J. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison-Wesley, 1996.

[HCRR] N. Halbwachs, P. Caspi, P. Raymond, Ch. Ratel, The Synchronous Dataflow Programming Lan-
guage Lustre, Proc. IEEE, 79(9), 1991.

[Ha] N. Halbwachs, Synchronous Programming of Reactive System, Kluwer Academic Pub., 1993.

[HP] D. Harel, A. Pnueli, On the Development of Reactive Systems, NATO ASI Series F, Vol. 13,
Springer-Verlag, 1985.

[Har] D. Harel, StateCharts: A Visual Approach to Complex Systems, Science of Computer Pro-
gramming, 8(3), 1987.

[LBBG] P. Leguernic, A. Benveniste, P. Bournai, T. Gautier, SIGNAL: A Dataflow Oriented Language
for Signal Processing, IEEE-ASSP, 34(2), 1986.

[Pl] G. Plotkin, A Structural Approach to Operational Semantics, Report DAIMI FN-19, Aarhus Uni-
versity, 1981.

,-, ´
.�/10�2�3

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers lès Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot St Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�

���������� ��� ���

ISSN 0249-6399

