Rounding Voronoi Diagram

Olivier Devillers 1 Pierre-Marie Gandoin
1 PRISME - Geometry, Algorithms and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Computational geometry classically assumes real-number arithmetic which does not exist in actual computers. A solution consists in using integer coordinates for data and exact arithmetic for computations. This approach implies that if the results of an algorithm are the input of another, these results must be rounded to match this hypothesis of integer coordinates. In this paper, we treat the case of two-dimensional Voronoi diagrams and are interested in rounding the Voronoi vertices at grid points while interesting properties of the Voronoi diagram are preserved. These properties are the planarity of the embedding and the convexity of the cells, we give a condition on the grid size to ensure that rounding to the nearest grid point preserve the properties. We also present heuristics to round vertices (not to the nearest) and preserve these properties.
Type de document :
Rapport
RR-3481, INRIA. 1998
Liste complète des métadonnées

https://hal.inria.fr/inria-00073208
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:11:55
Dernière modification le : samedi 27 janvier 2018 - 01:31:30
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:38:05

Fichiers

Identifiants

  • HAL Id : inria-00073208, version 1

Collections

Citation

Olivier Devillers, Pierre-Marie Gandoin. Rounding Voronoi Diagram. RR-3481, INRIA. 1998. 〈inria-00073208〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

170