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Abstract: Exponential stabilization of nonlinear driftless affine control systems is addressed with the
concern of achieving robustness with respect to imperfect knowledge of the system’s control vector fields.
In order to satisfy this robustness requirement, and inspired by [1] where the same issue was first ad-
dressed, we consider a control strategy which consists of applying periodically updated open-loop controls
that are continuous with respect to state initial conditions. These controllers are more precisely described
as continuous time-periodic feedbacks associated with a specific dynamic extension of the original system.
Sufficient conditions which, if they are satisfied by the control law, ensure that the control is a robust
exponential stabilizer for the extended system are given. Explicit and simple control expressions which
satisfy these conditions in the case of n-dimensional chained systems are proposed. A constructive al-
gorithm for the design of such control laws, which applies to any (sufficiently regular) driftless control
system, is described.
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Stabilisation exponentielle de systémes sans dérive
avec robustesse par rapport aux dynamiques non modélisées

Résumé : Pour les systémes de commande sans dérive, le probléme de la stabilisation exponentielle
est considéré avec pour principal objectif I'obtention de commandes robustes par rapport aux erreurs
de modélisation sur les champs de commande. Motivés par [1], ou ce probléme de robustesse a déja
été étudié, nous considérons des lois de commande en boucle ouverte, réinitialisées périodiquement, et
dépendant continument de I’état initial. Ces lois de commande peuvent aussi étre vues comme des retours
d’état instationnaires continus définis & partir d’une extension dynamique particuliére du systéme de
départ. Nous énoncons des conditions suffisantes portant sur ces retours d’état pour qu’ils stabilisent
de facon robuste le systéme étendu. Nous proposons ensuite des lois de commande explicites et simples
qui satisfont ces conditions pour un systéme chainé de dimension quelconque. Enfin, nous décrivons
un algorithme de synthése de lois de commande robustes, applicable & tout systéme régulier localement
commandable.

Mots-clés : systéme non linéaire, stabilisation asymptotique, commande robuste, série de Chen-Fliess
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1 Introduction

We consider an analytic driftless system on R™
(So) : &= filz)ui, (1)
=1

locally controllable around the origin, i.e.

Span{f(0): f € Lie(f1,...,fm)} =R"*, (2)

and address the problem of constructing explicit feedback laws which (locally) exponentially stabilize, in
some sense specified later, the origin z = 0 of the controlled system. A further requirement is that these
feedbacks should also be exponential stabilizers for any “perturbed” system in the form

(Se) + &= (fz) + hi(e, 2))us, (3)

=1

with h; analytic in R x R™ and h;(0,z) = 0, when |¢| is small enough. In other words, given a nominal
control system (.Sp), we would like to find nominal feedback controls, derived on the basis of this nominal
system, that preserve the property of exponential stability when they are applied to “neighboring” systems
(Se). It is of course assumed that the tangent linear approximation of (Sp) at (z = 0,u = 0) is not
stabilizable, since otherwise the problem is simply solved by using an adequate linear feedback u(z) = K.
This assumption implies in particular that the rank of the matrix formed by the column-vectors f;(0),
1 <14 < m, is smaller than n.

In this context, the term Y., h;(€, z)u; represents a class of unmodeled dynamics with respect to which
the stabilizing nominal feedback must be robust. As pointed out in [16], such unmodeled dynamics may for
example arise in practice, when dealing with nonholonomic wheeled vehicles, because of uncertainties upon
the geometrical features of the vehicle. The present study is in fact essentially motivated by this robustness
requirement. Indeed, explicit “homogeneous” exponential (time-varying) stabilizers u(z, t) for systems (Sp)
have been derived in various previous studies (see [13, 15], for example). However, as demonstrated recently
in [12], none of these controls solves the robustness problem stated above in the sense that there always
exists some h;(e, .) for which the origin of the associated controlled system is not stable when € # 0. Note
that this negative result does not contradict the fact that such controllers are robust against less general
unmodeled dynamics, as this is ensured by the existence of a Lyapunov function for the controlled nominal
system. It just emphasizes the fact that, contrary to the case of linear control systems stabilized via the
use of linear feedbacks, the existence of a Lyapunov function for the controlled system is not sufficient to
ensure the type of robustness considered here. This negative result also strongly suggests (although this
remains to be rigorously established) that no continuous feedback u(z,t), not necessarily homogeneous,
can be a robust exponential stabilizer. However, it does not imply that the problem cannot be handled via
an adequate dynamic extension of the original nominal system. Proving the existence, or non-existence,
of solutions of this type could thus be a subject for future studies. As a matter of fact, and as explained
below, the present study may already be seen as a step in this direction.

Feedbacks which are continuous with respect to the state do not represent the only “reasonable” possibil-
ity in order to achieve the desired robustness result. For instance, besides feedbacks which are discontinuous
at the origin, as proposed by several authors in the past (see [3, 8], for example) and for which robustness
issues have seldom been addressed so far, a possibility consists in considering hybrid open-loop/feedback
control strategies such as open-loop controls which are periodically updated from the measurement x(kT),
k € N, of the state at discrete time-instants. Such a control has features shared by classical piecewise-
constant discrete-time feedbacks, but unlike these (and for the purpose of asymptotic stabilization) the
control value between two sampling time-instants cannot, in the present case, be constant because this
would contradict the known non-existence (resulting from the violation of Brockett’s condition [2]) of
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4 Morin € Samson

asymptotically stabilizing continuous pure-state feedbacks u(xz). The idea of using this type of control for
the purpose of stabilizing the class of driftless systems considered here is not new. This possibility has
sometimes been presented as an extension of solutions obtained when addressing the open-loop steering
problem, i.e. the problem of finding an open-loop control which steers the system from an initial state to
another desired one (see [14, 17|, for example). Hybrid continuous/discrete time exponential stabilizers
for chained systems, which do not specifically rely on open-loop steering control, have also been proposed
in [19]. However, [1] is to our knowledge the only study where the robustness problem stated above has
been formulated in a similar fashion and where it has been shown that this problem can be solved by using
a hybrid open-loop/feedback control. More precisely, the above reference i) proposes a methodology for
constructing a robust control solution in the specific case (of practical interest) when the nominal system
(So) is a 2-input n-dimensional chained system, ii) describes sufficient conditions for the n-dimensional
case which, if they are met by the control expression, ensures robust stabilization, and iii) provides an
explicit control expression in the 4-dimensional case (the dimension 4 having been chosen merely to show
that the approach remains tractable for dimensions larger than 3). In fact, although this is not specified
in the above reference, the proposed control does not “strictly” ensure asymptotic stability, in the usual
sense of Lyapunov, of the origin of the perturbed systems (S,).

In order to be more specific about the latter point, and also clarify the meaning of “periodically updated
open-loop control applied to a time-continuous system & = f(z,u)”, it is useful to introduce the following
extended control system:

z = f(z,u)
i=0_tr)e -y o) 0<a<T, (4)
keN

with T' denoting the updating time-period of the control part which depends upon ¥, érr the classical
dirac impulse at the time-instant k7T, and y_, the delay operator such that y_,(t) = y(t — a). Given a
continuous feedback control u(z,y,t), an initial condition (x(to),y(to)) to the controlled extended system
is defined by i) choosing a point (zg,y0) € R™ x R™, and ii) setting x(to) = xo, y(to) = yo if to is not a
multiple of T, and y(to) = xg if to = kT'. The introduction of the extra equation in y just indicates that y(t)
is constant and equal to z(kT') on the time-interval [kT, (k + 1)T'). Therefore, any control the expression
of which, on the time-interval [kT', (k + 1)T), is a function of z(kT') and ¢, may just be interpreted as a
feedback control u(y,t) for the corresponding extended system. From now on, we will adopt this point
of view whenever referring to this type of control. As commonly done elsewhere, we will also say that a
feedback control u(zx,y,t) is a (uniform) ezponential stabilizer for the extended system (4) if there exist
an open set U € R* x R™ containing the point (0,0), a positive real number 7, and a function § of class
KC such that:

(2(t), y(0))] < B2(to), y(to))exp(=7(t —to)) Vi =>to 2 0; V(z(to),y(to)) € U (5)

with (z(t),y(t)) denoting any solution of the controlled system. Note that the satisfaction of (5) does not
imply that the control is an exponential stabilizer for the original system (while the converse is true). It
is thus a slightly weaker property. However, except for asking finite-time convergence to zero, it is nearly
the best that can be obtained when using a control which depends continuously upon y, knowing that
such a control cannot by construction asymptotically stabilize the original system. For instance x(t) may
well cross zero at a time-instant which is not a multiple of 7', without stopping there. Note that a similar
impossibility holds when the feedback control depends on the integral of the state x: asymptotic stability
can only be established for an extended state which contains the integral of x. This has not prevented
linear PID controllers from being popular and widely employed in practice.

Let us now come back to the control strategy studied in [1] and interpret it in view of the above
definitions. It yields continuous time-periodic feedbacks u(y,t) (i.e. such that u(y,t + T') = u(y,t) for
some T" > 0), the time-periods of which are equal to the updating period T (i.e. 7' = T'). In our opinion,
the importance of the contribution in [1] comes from that it convincingly demonstrates the possibility
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FExponential stabilization with robustness 5

of achieving robust (with respect to unmodeled dynamics, as defined earlier) ezponential stabilization
(stability being now taken in the strict sense of Lyapunov) of an extended control system

T = Z fi(a:)u,-

?):(25kT)($—y—a) 0<a<T
keN

(So) :

via the use of a continuous time-periodic feedback u(y, t).

In the present paper, the exploration of this possibility is carried further on. The first result provides
a sufficient condition under which a time-periodic continuous feedback controller u(y,t) i) exponentially
stabilizes the origin of a system (6), and also ii) exponentially stabilizes the origin of any neighboring
system

T = Z(fi(l") + hi(e, ))u;
(50 : )
=0 o)z —ya) O0<a<T
kEN

provided that |e| is small enough. Then, on the basis of this result, we propose a systematic and complete
control design procedure which only involves a finite number of algebraic operations. Following this design
procedure thus yields entirely explicit feedback laws. The procedure is itself adapted from existing time-
periodic open-loop control design techniques which have been proposed in [22, 11] (see also [10] for an
early but complete survey of such techniques) for driftless control systems affine in the control. Although
the implementation of the resulting algorithm is somewhat involved in the general case, we show that
simple control expressions can be obtained for specific classes of systems, as illustrated in the case where
the original system (Sp) is in the chained form. Also, with respect to the solution given in [1] for the 4-
dimensional chained system, the single control expression proposed here encompasses all dimensions with
no extra work needed.

The paper is organized as follows. The main robustness result is presented in Section 2. This result is
used in Section 3 for the design of robust stabilizers. A few final remarks are given in Section 4.

The following notation is used.

The identity function on R™ is denoted id, |.| is the Euclidean norm, and |.|p is the norm induced
by a positive definite matrix P.

The transpose of a row-vector (z1,...,2Z,) is denoted as (z1,...,z,)".

For any vector field X and smooth function fon R™, X f denotes the Lie derivative of f along the
vector field X. When f = (f1,...,fn) is a smooth map from R™ to itself, X f denotes the map

(X fi,..., X fn).
A square matrix A is called discrete-stable if all its eigenvalues are strictly inside the complex unit
circle.

Given a continuous functions g, defined on some neighborhood of the origin in R™, we denote o(g)
(resp. O(g)) any function or map such that % — 0 as |z] — 0 (resp. such that ‘O‘gzi()zl)‘ <K

in some neighborhood of the origin). When g = |.|, we write o(x) (resp. O(z)) instead of o(g)(z)
(resp. O(g)(x)).
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6 Morin € Samson

2 Sufficient conditions for exponential and robust stabilization

Prior to stating the main result of this section, we review some properties of Chen-Fliess series that will
be used in the sequel. The exposition is based on [6, 23], and limited here to driftless systems.

A m-valued multi-indez I is a vector I = (i1, ... ,1;) with & denoting a strictly positive integer, and
i1,... %) integers taken in the set {1,...,m}. We denote the length of I as |I|, i.e. T = (iy,...,ix) =
|I| = k.

Given piecewise continuous functions uy, ... ,u,, defined on some time-interval [0, 7], and a m-valued
multi-index I = (i1, ... ,1x), we define

t t T 12
/ wy = / / / Wiy (b )iy (tor) -+~ us, (#1) by - dt (¢ € [0,T]) . (8)
0 o Jo 0
Given smooth vector fields fi,..., f,, on R*, and a m-valued multi-index I = (i1, ... ,ix), we define the
k-th order differential operator fr: C°(R";R) — C>°(R";R) by
frg=fofio---fug. 9)

The following proposition is a classical result (see e.g.[23] for the proof).

Proposition 1 [25] Consider the analytic system (So) and a compact set K C R™. There exists p > 0
such that for M, T > 0 verifying

MT < p, (10)
and for any control w = (uq,... ,unm) piecewise continuous on [0,T] and verifying
lu(t)| < M, Vtelo,T], (11)

the solution x(.) of (So), with zq = z(0) € K, satisfies
ot) =20+ Y (frid)(ao) [ wr, Vee0.T). (12)
T 0

Furthermore, the series in the right-hand side of (12) is uniformly absolutely convergent w.r.t. t € [0,T]
and xo € K.

Note that the sum in the right-hand side of equality (12) can be developed as

S % G fwidan) [ [ [ ) v )i

k=111,...,ip=1

Let us also remark that the condition (10), which relates the integration time-interval to the control size, is
specific to driftless systems. For a system which contains a drift term, it is a priori not true that decreasing
the size of the control inputs allows to increase the time-interval on which the expansion (12) is valid. The
fact that this property holds for driftless systems can be viewed as a consequence of time-scaling invariance
properties.

We are now ready to state sufficient conditions under which exponential stabilization robust to un-
modeled dynamics is granted.

Theorem 1 Consider an analytic locally controllable system (So), a neighborhood U of the origin in R™,
and a function u € CO(U x [0, T]; R™). Assume that

1. there exist o, K > 0 such that |u(z,t)| < K|z|* for all (z,t) € U x [0,T],

INRIA



FExponential stabilization with robustness 7

2. the solution x(.) of

m

=Y fil@ui(zo,t), z(0)=z0€U, (13)

satisfies x(T) = Axg + o(xg) with A a discrete-stable matriz,

3. for any multi-index I of length |I| < 1/a (this assumption is only needed when a < 1),
T
/ wi(z) = O(x) (14)
0

Then, given a family of perturbed systems (S.), there exists g > 0 such that the origin of (S.) controlled
by u(y,t) is locally exponentially stable for any € € (—e€gp, o) -

Proof: It much relies on the following claim.

Claim 1 Given €; > 0, there exists § > 0 such that, for |xo| < 6 and || < €1, the solution of

b= 30 (i) + hules ) wileor8), 2(0) = 7o (15)
i=1
is defined on [0,T] and satisfies
#(T) = Azo + B(e, 20) + (€, o) + o(z0) (16)
with
% — 0 as € — 0 uniformly in zg (|zo| < 6) (17)
% — 0 as xg — 0 uniformly ine (|e| < €1). (18)

(Proof in Appendix)

Existence of the solutions of the system (S.) controlled by u(y,t), when the initial conditions zy and
yo are close enough to the origin, can easily be established (details are left to the interested reader) once
it is proven that these solutions at least exist on a small time-interval and are uniformly bounded with
respect to zo and yo. Existence on a small time-interval is in fact granted by application of Proposition
1 (as illustrated in the proof of Claim 1), while uniform boundedness of the solutions simply results from
the property of (local) stability which is proven below.

In order to prove that the origin of the system (S.) controlled by u(y,t) is locally (uniformly) expo-
nentially stable, one must establish that i) the solutions of this system converge exponentially to zero
(uniformly with respect to the initial conditions (g, zg, %)), and ii) the origin of the controlled system is
stable.

Since A is a discrete-stable matrix, there exists a positive definite matrix P such that |A|lp < 1
(= 31 < 1 : |Az|p < 7lz|p). For the sake of simplifying the notation, and keeping in mind that
subsequent normed vectors will refer to the norm induced by the matrix P, we will just drop the index P
in the remaining of the proof.

i) exponential convergence
Let tg € [koT, (ko+1)T) (ko € N), and (z(., 0, Zo, ¥0), Y (-, t0, Zo, Yo)) denote the solution of the controlled
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8 Morin € Samson

system (S,) with initial conditions (tg,zo,%o). Then for any k¥ € N such that to < kT, and any t €
[kT, (k 4+ 1)T), this solution satisfies

m

T = ;(fz(x) + hz(evx))uz(x(kT)vt) (19)

9=0, y(t)=az(kT)

In order to show the exponential convergence to zero of the trajectories of (19), it is clearly sufficient to
show that the = component converges exponentially to the origin. In view of relations (16)-(18) in Claim
1, there exist €g > 0, §g > 0, and a positive real number 7 < 1 such that, for |z¢| < 6y and € < €

|$€((k+1)T7t07$07y0)| Sﬂwf(kTvthxOvyO)l? Vk > kO' (20)

This already establishes that the sequence {z.(kT,to, o, yo)}ren converges exponentially to zero, uni-
formly with respect to the initial conditions (tg, %o, ¥o)-

In order to infer uniform exponential convergence to zero of z.(t,to,Zo, yo), it is thus sufficient to show
that

|z (KT + s,t0,T0,y0)| < K|z (KT, t0,%0,y0)|" , Vs€[0,T), Yk >k, (21)
for some positive constants K and 5 independent of g, xo, yo. Since u is T-periodic

xe(kT + Sat()v manO) = xe(saoaxe(kTa t07x07y0)7 ye(kTv t07x07y0))
= xe(saoaxe(kTa t07x07y0)7$€(kT7 t07x07y0)) .

Therefore, (21) is equivalent to

|.’L‘€(S,0,$0,.’IIO)| S K

xo|" , Vs€[0,T). (22)
From Assumption 1, and the continuity of the vector fields f;, and h;, the above inequality follows by the
classical Gronwall lemma.

ii) uniform stability of the origin
We distinguish two cases, according to whether ¢ty is, or is not, a multiple of T'.

case 1: ty is not a multiple of T'.

Then there exists ko € N such that k¢T < tg < (ko +1)T. There also exists an open ball B, € R centered
on 0 such that the function (¢, %0, %0, y0) — (¢, to, %o, yo) is continuous on the set {(¢,t0,z,y) : to <t <
(ko + )T, to € (koT, (ko + 1)T),z € B,y € Bc}. Therefore, the function v, defined by

A
ve(20,90) = sup sup |ze(t,t0, 0, Yo)| (23)
to€(koT,(ko+1)T) t€[to,(ko+1)T)

is itself continuous on B, X B.. Note that v.(0,0) = 0, since z.(t, to,0,0) = 0, Vt > to, and that v(zo, yo) >
|zo|. Furthermore, there exists 6. > 0 such that v.(zo,y0) < min(1,7p,), ¥(xo,%0) : |zo| < ¢, |y0| < e,
with rp, denoting the radius of B.. Recall also that

[Ye(t,to, 2o, yo)| = |yo| , Vto € (koT, (ko +1)T') , Vt € [to, (ko + 1)T) . (24)
Now, since by (20) and (21)
|z (t, to, 2o, Y0)| < Kl|z((ko + 1)T,t0, z0,y0)|" , Vt > (ko +1)T,
and

|y€(t7t07$07y0)| < |.T€((k(] + 1)T7 t0»$07y0)| ) vt > (ko + 1)T ’

INRIA



FExponential stabilization with robustness 9

one deduces from (23) and (24) (using also the fact that |(z,y)| < |z| + |y|) that

‘xe(t7t07w07y0>7y6(t7t07$07y0)| S KVe(3307ZUO)" + mam(Ve($0’?Jo)7 |?JO|) )
(25)
vt Z th V(x(]ayo) : |.T(]| S 667 |y0| S 6€~

case 2: to is a multiple of T (i.e. to = koT).
Then y(0) = xp, and one easily obtains in this case

|xe(t7t07xOvyO)vye(tvt()vavyO)' S K|x0|71 + |$0| ’ Vit Z t07 V(.T(],y()) : |.’II(]| S 667 |y0| S 65 - (26)

The comparison of the right-hand sides of inequalities (25) and (26) shows that (25) holds in fact for every
value of t.
|

3 Control design

This section addresses the problem of constructing explicit controllers that meet the conditions of Theorem
1. Such a controller has to belong to the set of exponential stabilizers for the extended system (Sp). A
common approach, for obtaining of continuous (time-varying) feedback control laws which exponentially
stabilize a driftless control system such as (Sp), consists in considering a nilpotent homogeneous approz-
imation of this system and finding a control which i) asymptotically stabilizes the origin of this simpler
system , and ii) makes the corresponding controlled system homogeneous of degree zero. This approach
is justified by the fact that any time-varying continuous feedback endowed with these two properties is a
local exponential stabilizer for the original system. However, as pointed out in the paper’s introduction
and shown is [12], such a feedback cannot be a robust stabilizer in the sense that we are considering
here. Nonetheless, we will show below that the same type of approach, applied the the extended system
(Sp), instead of the original system (S;), provides a systematic way of constructing explicit and robust
time-periodic feedbacks u(y,t). More precisely, we will show that, given an adequate homogeneous ap-
proximation of (Sp), the set of continuous time-periodic feedbacks u(z,y,t) which exponentially stabilize
the origin of the corresponding extended system contains a subset of robust stabilizers, and we will provide
a systematic procedure for constructing elements that belong to this subset.

We have chosen to decompose the developments yielding to this result in three steps, one subsection
per step. Step 1 reviews basic definitions and facts about homogeneity and homogeneous approximations,
prior to pointing out an additional sufficient condition, stated in Theorem 2, under which a continuous
feedback u(y, t) which robustly exponentially stabilizes the origin of a homogeneous approximation of (Sp),
by application of Theorem 1, also robustly exponentially stabilizes the origin of (Sp). Step 2 provides the
expression of a control solution when (Sy) can be approximated by a chained system. The proof of stability
and robustness just consists in verifying that this control satisfies the four conditions stated in Theorems
1 and 2. The proposed control law is quite simple, and it applies to any dimension. Note also that it is
different from the one proposed in [1] for a chained system of dimension four. Finally, step 3 describes a
general control design procedure which applies to any driftless system (Sg). The procedure takes advantage
of known techniques for nilpotent control systems based on the use of oscillatory open-loop controls in order
to achieve net motion in any direction of the state space. Unfortunately (and unavoidably), the procedure
also inherits the complexity of the abovementioned techniques, itself directly related to the process of
selecting the “right” frequencies which facilitate motion monitoring in the state space. Unsurprisingly, the
selection of these frequencies gets all the more involved that controllability of the system relies on high-
order Lie brackets of the control vector fields. One can also verify that the proposed general procedure
yields control expressions which are more complicated than the one proposed in step 2, in the specific case
when the system (Sp) can be approximated by a chained system. This is a good illustration of the fact
that Theorems 1 and 2 can be used in various ways for robust control design purposes and that simpler
solutions can be obtained by better exploiting the inner structure of the system. For instance, the control
solution of step 2 takes advantage of non-uniqueness of dilations which can be associated with chained
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10 Morin € Samson

systems, while the general design procedure of step 3 is carried out only for the so-called standard dilation,
the interest of which is that it can be systematically determined from the control filtration associated with
the system. Apart from this, the two solutions have many features in common.

3.1 Homogeneous approximations and robust asymptotic stability

Given A > 0 and a weight vector r = (rq,... ,ry) (r; > 0 Vi), a dilation 6 is a map from R™ to R™ defined
by:

05 (#1y ey 2m) = (N 21,000, A™2,) .

A function f € C°(R"™;R) is homogeneous of degree | with respect to the family of dilations &5 (A > 0), or,
more concisely, 6"-homogeneous of degree [, if

YA>0, f(85(2)) = N f(2).

A §"-homogeneous norm can be defined as a positive definite function of z, §"-homogeneous of degree one.
Although this is not a “true” norm when the weight coefficients are not all equal, it still provides a means
of “measuring” the size of z.
A continuous vector field on R™ is 6"-homogeneous of degree d if, for all ¢ = 1,... ,n, the function z —
Xi(z) is é"-homogeneous of degree r; + d. According to these definitions, homogeneity is coordinate
dependent, however it is possible to define the above concepts in a coordinate independent framework
[7, 18].

The following property is used extensively in the sequel. Given a family of dilations 65 (A > 0), a smooth
function f and a smooth vector field X, §"-homogeneous of degree deg(f) and deg(X) respectively, the
function X f is 6"-homogeneous of degree

deg(X f) = deg(X) + deg(f)-

Finally, we say that the system
£= bi(z)us (27)
i=1

is a 6"-homogeneous approzimation of (Sp) if:
1. the change of coordinates ¢ : & — z transforms (Sp) into
=Y (bi(2) + gi(2)) wi (28)
=1

where b; is §"-homogeneous of some degree d; < 0, and g; denotes higher-order terms, i.e. such that
gi,; (the j-th component of g;) satisfies

9i5 = O(prj—i—di) ) (.7 = 17 .- 7”) . (29)
where p is a §"-homogeneous norm;
2. the system (27) is controllable.

Hermes [5], and Stefani [20] have shown that any driftless system (Sp) satisfying the LARC (Lie Algebra
Rank Condition) at the origin (2) has a homogeneous approximation. Homogeneous approximations of
controllable driftless systems are not unique in general. Explicit construction of such approximations
requires to find both a weight vector and a change of coordinates for which properties 1 and 2 above are
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fulfilled. A constructive procedure can be found in [20, 21] (see also [5] but with a less explicit change of
coordinates).

The control design procedure presented in step 3 will make use of a particular homogeneous approxi-
mation of (Sp) —one for which the vector fields b; are homogeneous of the same degree —1. Let us briefly
recall some features of this approximation.

Consider the control filtration, F of Lie(f1,... , fm) defined as F 2 (F5)j>0 with

Fo 2 {0}

Fi 2 span{fi,.... fm}

Fo 2 span{fi S lfrofolooo s [a Fonlc (et i)
Fr = span{all Lie brackets of the f/s of length ¢ < k}

Denote also
Fi(0) £ span {f(0) : f € Fi},
and ny 2 dimFy (0). Then, by the LARC at the origin, there exists a smallest integer P such that
O=np<nm <nme<...<np_1<np=n.

Now, define the weight vector r according to

rjép fornp,_1 +1<j<n, (p=1,...,P). (30)

Note that the sequence r1,72,... ,r, is increasing, i.e. 1 =7 <ry <...<7r, = P. The results given in
[5, 20] imply

Proposition 2 [5, 20] There exists a 6"-homogeneous approzimation (27) of system (So) with v given by
(30). Furthermore, every control vector field of the approrimating system is 6" -homogeneous of degree —1.

We refer the reader to the references cited above for the construction of a change of coordinates ¢ that
transforms (Sp) into (28). Let us remark that the control vector fields b; of the approximating homogeneous
system (27) are polynomials in the z coordinates, and that {b1,...,bn} forms a nilpotent set of vector
fields —more precisely, any Lie bracket of the b;’s of length strictly larger than P is identically zero.
Since homogeneous approximations are nilpotent, for any time-function u, the Chen-Fliess series asso-
ciated with any such an approximation only involves a finite number of terms. This property is very useful
when trying to derive exponential stabilizers for the homogeneous approximation of a given system. Of
course, such controllers are of interest only if they are also exponential stabilizers for the original system.
The following theorem points out sufficient conditions on the control law to ensure that such is the case.

Theorem 2 Consider a §"-homogeneous approzimation (27) of (So), with d; e deg(b;) i =1,...,m),
and a control function u € CO(U x [0,T); R™) such that the three assumptions in Theorem 1 are verified
for this approximating system. Assume furthermore that the following assumption, which is a stronger
version of the third assumption in Theorem 1, is also verified for the approximating system:

8-bis. for any multi-index I = (i1,... i) of length |I| <1/a,

T
/ ur(z) = Z arkzr +o(z2), (31)
0 ker 2| |
A 7]
where ||I]| = — Zdij, and the ary’s are some scalars.
=1
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12 Morin € Samson

Then, the three assumptions of Theorem 1 are verified for the system (28).
Note that it is not required that all d;’s be equal, as it occurs when the approximation is obtained by
using the dilation defined by (30).

Proof: Assumptions 1 and 3 of Theorem 1 are obviously verified for the system (28), since they only
involve the control law and do not depend on the control system. Hence, we only need to take care of
Assumption 2 and show that the solution of

m

2= (bi(2) + gi(2))us(z0, 1),  2(to) =20, (32)

=1
satisfies
2(T) = Azy + o(zp) (33)

for some discrete-stable matrix A. Let us first introduce some notations. Without loss of generality, we
assume that the variables z; are ordered by increasing weight, i.e.

r1<ry< ... <1y

and decompose z as z = (2!, ..., zF), where each z? (1 < p < P) is the sub-vector of z whose components
have same weight r? (r; < r? < r,) with

mn=rt<r?l<...<rf=r,.

In a similar way, a map f from R® to R® can be decomposed as f = (f1,..., fF).
We may now proceed with the proof. The solution of (32) can be expanded as

() =+ L ((b+ 9)rid) o) [ wilen).

By Proposition 1, the series in the right-hand side of this equality is uniformly convergent w.r.t. zp
(Jz0] < 6) and ¢t € [0,T]. The above expression may be rewritten as

t t
2(t) = 20+ (b id)(z0) / wr(z0) + (a9 id)(z0) / wr(z0) . (34)

I 0 I 0
Here, dy 2 d ---dj (for I = (i1,...,ir)), where each d belongs to {b;, g}, and the product d7 contains
at least one of the g;’s. Note that the first sum in the right-hand side involves a finite number of terms
because {b1,... b} is a nilpotent set of vector fields. As a consequence, the series defined by the second

sum is uniformly convergent w.r.t. zo and ¢. Each of these two sums is now considered separately.
Since Assumption 2 in Theorem 1 is verified for the approximating system (27), we have

20+ 3 (brid)(20) /0 wr(z0) = Azo + ofz0) (35)

where A is a discrete-stable matrix. We claim that the matrix A is necessarily block upper-triangular in
the sense that

Ayp * * 2
Azg = L % B (36)
0 App ZéJ
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In order to prove this assertion, it is clearly sufficient to show that, for p=1,..., P,
T
Z(b; z'd)”(zo)/ ur(2o) ZAP e%¢ + 0(%0) (37)
I 0 q>p

for some matrices A, . Let us rewrite the sum in the left-hand side of (37) as

T
> (b”'d)p/0 wur+ Y. (brid)? /0u1+z (brid)? /u1 (38)

ITll<re, 1S5 I1)>r, 1<% >3

where the argument 2, is omitted for the sake of conciseness.

We first note that the last sum in (38) is a o(zp) because, from Assumption 1, each fOT wy is itself a
o(z9) when |I| > 1/a.

From Assumption 3-bis in Theorem 2, all iterated integrals in the second sum are of the form

Z ar,kzo,k + 0(20) .

kiry >rP

which may also be written as

Z ar,qz8 + o(z0) -

p<qg<P

since any zo,x whose weight rj is greater or equal to r? has to be an element of some z{ with ¢ > p. This
clearly implies that the second sum in (38) can be written as the right-hand side of (37).

Let us finally consider the first sum in (38). Since (b;id)?(2o) is just b;z? evaluated at 2y, and since
each component of z? is homogeneous of degree 77, it follows that each component of (by id)? is a function
homogeneous of positive degree r? — ||I]|. Therefore, each (byid)? vanishes at the origin and, since it is
a smooth function, there exists Ky > 0 such that |(b;id)P(20)| < K |zp|. This inequality, combined with
Assumption 1 which tells us that | fOT ur(20)| = o(|z0|°") for some Br > 0, implies that the first sum in (38)
is a 0(z0). Therefore, relation (37) holds for every p = 1,... , P and, subsequently, the matrix A is block
upper-triangular. Moreover, A being a discrete-stable matrix, each matrix A,, on the block diagonal is
necessarily a discrete-stable matrix itself.

Let us now show that

T
Z(dfv id)(z0) / ur(z9) = Czo + o(zp) (39)
T 0
where C' is a block upper-triangular matrix with zeroes on the block diagonal , i.e
0 * x\ [z
Czo=1|: . || |+o2). (40)
0 --- 0 zE

To this purpose, we just need to show that, for p=1,... P,

T
STy o) [ wilea) = 3 Cpasf + ol (a1)
I q>p
for some matrices C} ;. Let us again decompose the sum in the left-hand side of (41) as

(dgid)P/TuI+ > (dfiay /u1+ > (dfidy /uf. (42)
0 0

l][<7?,|1]<1/ e (L1l >r?,|1]<1/e [[>1/a
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We start with the third sum in (42), and define

with ¢ > 0 small enough so that, by Assumption 1 of Theorem 1, @; is continuous. Then,

T T
> @iy [ = 3 lal @ id)) [ ).

[1]>1/a 0 I[>1/a

Choosing o small enough such that the inequality |I|(c — o) > 1+ ug > 1 holds for every I such that
|[I| > 1/c, and using the fact that, from Proposition 1, the series

> (@tid)o) | it

[ I|>1/a

is uniformly absolutely convergent for zy small enough, we obtain (provided that |zp| < 1)

X @idpa) [ el <l sGo 3)

[I1>1/a

with S a continuous function. This establishes that the third sum in (42) is a o(z).

Let us now consider the second sum in (42). From Assumption 3-bis, and as pointed out before in the
proof (with the only difference that ||I|| is now taken strictly greater than r?), all iterated integrals in this
sum are of the form

Z ar,qzg + 0(z0) .

q>p

This implies that the second sum in (42) can be written as the right-hand side of (41).

Let us finally consider the first sum in (42). By definition of the product df, there is at least one term
in this product which belongs to {gi, ... ,gm}. Now, since g; ; = o(p™+%), for j = 1,... ,n (relation (29)),
the Taylor expansion of g; at the origin gives a sum of vector fields homogeneous of degree strictly larger
than d;. This in turn implies that each dy is a sum of differential operators of degree strictly larger than
—||I]|, and that every component of (d id)? is a sum of homogeneous functions of degree strictly larger
than (r? —||I||). Since (r?—||I]|) > 0, this degree is thus strictly positive. Therefore, every (d id)” vanishes
at the origin and, since it is also a smooth function, there exists K > 0 such that |(df id)?(zo)| < K1|zo|-

This inequality, combined with Assumption 1 which implies that | fOT u(20)| tends to zero when zp tends to
zero, implies that the first sum in (42) is a 0o(zp). We have thus proved that (41) holds for any p =1,... , P,
and, subsequently, that relations (39) and (40) also hold. It follows from (34), (35), and (39) that relation
(33) is true with A = A + C, a discrete-stable matrix. Therefore Assumption 2 is verified for the system
(28), and this concludes the proof of Theorem 2. |

3.2 Robust exponential stabilizers for chained systems

Consider the following n-dimensional chained system

T = w
To = U

(S0) § T = ¥ (44)
Tpn = UITn—1-

The next proposition points out a set of robust exponential stabilizers for this type of system.
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FExponential stabilization with robustness 15

Proposition 3 With the control function u € CO(R™ x [0,T]; R?) defined by

w(zt) = %[(k1 )y + 27y () sin(wt)]
uz(z,t) = %[(kg —Dxs + ; 20725 — 2)! (ks — 1)pf1_a;i(w) cos((i — 2)wt), 43)

with
T= 27r/wn (w#0)
pq(a:)=2aj|a:j|q++—2, (g=>n—2,a; >0) (46)
k<1, Vie1l,.. .n,

the three assumptions in Theorem 1, and the extra assumption in Theorem 2, are verified for the system

(44)-

Proof: We give the proof for w = 1 (= T = 27)—any other value of w being taken care of by introducing
the time-scaling t — wt. Throughout the proof, the control vector fields associated with the chained
system (44) are denoted as b; and b, i.e.

For any ¢ > 0, and corresponding dilation 6"(9) such that r(¢) = (1,¢,¢ + 1,... ,q +n — 2), the v.f. b

and by are §"(9-homogeneous of degree —1 and —gq respectively. In view of (45), u(z,t) and ua(x,t) are

67(9)_homogeneous of degree 1 and ¢ respectively. Therefore, since q is positive, Assumption 1 of Theorem
1 1

1 is verified with o« = — .
max; Tq ; q+n—2

Let us now check that Assumption 2 is verified. The solution z(.) of (13) on the time-interval [0,T] is
given by

t
2(t) = 0 + 3 (b1 id) (z0) / wze)  (te[0,T]). (a7)
I; 0
It is simple to show by induction that
(blblzd)(x):(oa ,0,.%'2,--- 7$n—k)l (k22)7 (48)
k
which implies
(b2b1blld)(x)=(07707170770)I (kzl)v (49)
N—— N——
k k+1

and, subsequently

(bibzbl e blld) =0 Vi = ].,2 .
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16 Morin € Samson

Hence, the only multi-indices for which by id is not identically zero are those of the form I = (1,...,1) or
I=(2,1,...,1), and one obtains from (47), (48), and (49),

T n—2 T
.’JU(T) = Zop+ Z b1 ld :L’o)/o U(l,___,l)(.ibo) + Z(bz by---by ’td)(xo)/o u(2,1’___71)(w0)
k=0

~—
k k
T n—2 T
:x+b:c/ux+ bb~--bidx/u 1 zo) +o(x
o+ bi(zo) ; 1(zo) kZ:O( 2 01 k 1 id)(zo) ; 2.1,...,1)(T0) (w0)
(50)
1 o o0 ... 0 fTu1(930)
0 1 0 Jo u2(zo)
= ot | gz, 0 1 Jo wen(@o) + o(zg),
: : . S T :
Ton—2 0 ... 0 1 fo u(2,1,...,1)($0)
Therefore
fqiul(wo)
jfp u2 (o)
e(T)=z0+ | Jo wezn(@o) | +o(xo). (51)

fOT u(2717~~~ 71)(1.0)
Let us now calculate the iterated integral involved in the right-hand side of equality (51). First, we have
T T
/ ul(aso) = (kl - 1>a70,1 s / u2(a:0) = (kz - 1)1’0,2 . (52)
0 0

Calculation of the other integrals makes use of the following lemma.

Lemma 1 For any k and i in N— {0}, and any p € {1,...,k},

27 tht1 to
/ / / Sintppy - sinty dty - dtpps =0
0 0 0

27 tht1
/ / o / S$intpp -« sintyqq cositysint, 1 «--sinty dty -+ - dtgy1 = (53)
0
0 ifi>k
% ifi=kandp=1
(Proof in Appendix)
From (45)
T " 9i—2(; t
227231 — 2)! (ks — 1)zo s k1
/0 U(z’ 1,..., ]-)(:I:O> = Z T z (k+2) / / / sin tk+1
S—— =3

k41

sin to COS(i — 2)t1 dti ... dtk+1 + O(.’L'())

Using the fact that py(z) = O(|z| q+i——2)

T " 9i-2(; t
2i-2( — 2)! (k; — 1)z k41
/ U(Z’ ]-7 ey 1)(.’1]0) = Z T ’L (k+2 / / / sin tk+1
T i=kt2

sinty cos(i — 2)ty dty . . .dtk+1 + o(xo)
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FExponential stabilization with robustness 17

and, by application of Lemma 1

T
/ w2 1, ... 1)@0) = (kkt2 — 1)Zo,k+2 + 0(20) (54)
0 ——

k+1
Using (52) and (54) in (51), we obtain
z(T) = Azg + o(zo) (55)

with A = diag{ki, k2, ... ,kn}, a discrete-stable matrix since k; € (—1,1) (i =1,...,n).

There remains to show that Assumptions 3 of Theorem 1 and 3-bis of Theorem 2 are verified. It is in
fact sufficient to show that the stronger latter assumption holds. To this purpose, we must show that (31)
holds for every possible I.

Let us first consider the case where I = (1,...,1). If |I| = 1, then

/OT wi(z) = /OT (@) = (bt —1)z1

and (31) obviously holds. If |I| > 1, then

T t|1|
/ ur(z) = |I| / / / sint gy ...sinty dt|r...dt; + o(x)
0

where the last equality results from Lemma 1. Therefore, (31) holds for every I which does not contain
the index 2. r

Assume now that I contains the index 2 twice at least. If I = (2,2), then simple calculation of [ u(z)
yields

/0 " (@) = ola). (56)

If |I| > 2, the iterated integral is 67(9)-homogeneous of degree strictly larger than 2¢. Since ¢ > n — 2 (see
(46)) and r;,(q) <g+n—2 (i=1,...,n), this degree is larger than the degree of homogeneity of each x;,
so that (56) also holds in this case.

Let us finally consider the case where I contains the index 2 exactly once.
If I =(2,1,...,1), the satisfaction of (31) follows from (54).
If the index 2 is not in the first entry, i.e. I is of the form

(1,...,1,2,1,...,1)  (p>0),
——— N

then ||I|| = k + ¢ and

T i—2 t t
20725 = 2)! (k; — Dz e+t 2. . )
/0 ur(z) = 2 : (T Z (k+2 / / .. ./0 Sintgyq .. .sintppo cos(i — 2)tp4

sint,...sinty dtgy1 ... dt1 + o(z)

"L 2072(5 = 2) (ks — 1)y tht1 2 ) ,
= Z T D / / . / Sintgiq .. .sint,qo cos(i — 2)tp41
0

i=k+2

sint,...sinty dtgg ... dt1 + o(z)

T ptpga ta )
= (kpgo — 1)Tpy2 / / .. / Sintgy1 .. .sintpie cos(i — 2)tp41
o Jo 0
sint,...sinty dtgy ... dt; + o(z)
n

21 21_2 k—l 41 t2. ) ]
+ Z (T gy / / /0 Sintpyq ... sintppo cos(i — 2)tp4q

RR n° 3477 i=k+3
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Since the weight of 2 is equal to k+q (=||I]]), the first term in the right-hand side of the last equality is
one of the linear terms involved in the right-hand side of relation (31), whereas all other iterated integrals
are equal to zero by application of Lemma 1.

We have thus shown that relation (31) holds for every possible I, and this concludes the proof of Proposition
3. ]

3.3 A general control design procedure

We present in this section a general algorithm to construct robust and exponential stabilizers for (So).
The proposed controllers are built from a homogeneous approximation (27) of (Sp). The algorithm uses
previous results by Sussmann and Liu [22], and Liu [11]. It is also much related to the algorithm developed
in [15] for the construction of continuous time-periodic feedbacks u(z,t) which exponentially stabilize the
origin of a driftless system (Sp) but present the shortcoming of not being endowed with the type of
robustness here considered.

To simplify the exposition of the algorithm, we assume that (Sp) is given in the form

m

&= Z(bi(w) + gi(z))ui , (57)
where
T = i bi(z)u; (58)

is a homogeneous approximation! of (Sp), and the g;’s denote higher-order terms.
We also assume that the dilation 6" associated with this approximating system is the standard dilation,
with 7 defined as in (30). In view of Proposition 2, we thus have

{2 2 m &
and the state vector x can be written as
r=(z,...,2%)
with P (p = 1, ..., P) denoting the sub-vector of z whose components have same weight p. From (30), =?

has dimension n, — n,_1 —note that this dimension might be zero for some values of p (those for which
r,#p,Vi=1,...,n).
The algorithm consists of the three steps described below.

Step 1. Select n vector fields IN)]‘ (j =1,...,n), obtained as Lie brackets of length £(j) of the control
vector fields b;, and such that the matrix

B(z) & (El(x), . ,En(x))

is nonsingular at = 0. Existence of such vector fields is guaranteed by the controllability of system (58).
We assume that the b;’s are ordered by “increasing length”, i.e.,

(1) < ... <ln). (60)

This is equivalent to ordering them by “decreasing degree of homogeneity” since, by (59),

deg (b;) = —£(j) -

From this construction, we deduce

1Here we use the same symbol for the state vectors of both systems (Sg) and (57), however, it should be clear from Section
3.1 that in general, a change of coordinates is necessary to transform one system into the other.
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Lemma 2 The matriz B(z) is block lower triangular, i.e.

B! 0 ... 0
Ba) = (B\@).... , B"(x)) = Bm'(“’) B.m | : (61)
B . e
where each sub-matriz E”’(x) (p=1,...,P), of dimension n x (n, —np—_1), corresponds to the vector fields

I~)j of equal length £(j) = p. Furthermore, each BPP is nonsingular, and B (0) =0 for ¢ > p.

Proof: The lower triangular structure of B, the fact that BP? is constant, and the equalities B®(0) =
0 (¢ > p), are immediate consequences of the homogeneity of the b;’s and the ordering of the sub-vectors
2P by increasing weight, once having recalled that a smooth homogeneous function is identically zero if its
degree of homogeneity is strictly negative, is constant if its degree of homogeneity is zero, and vanishes
at the origin if its degree of homogeneity is strictly positive. Finally, each BP? is necessarily nonsingular
because B(0) is nonsingular by construction. |

Step 2. Choose discrete-stable matrices A? (p = 1,...P), with dim(AP) = (n, — np—1) X (np — Np_1),
and define the linear map a from R* to R™ as follows

a(x) = B7Y(0)(4 - Dz, (62)
with
Al 0
A=
0 AP

This construction yields
Lemma 3
1. xo + B(xo)a(wo) = Azg + o(zo),
2. each component a; of a is a 6"-homogeneous function of degree £(j).

Proof: Point 1 is a direct consequence of the definition of a. Indeed, B(z) = B(0) + O(x) since B is a
smooth —matrix-valued— function. Therefore, using the fact that a is linear

zo + B(xo)a(zo) = zo + B(0)a(zo) + o(z) = Az + o(xp) -
For the proof of Point 2, let us decompose a —with obvious notations— as a = (a', ... ,a’). Then,
aP(z) = (BPP)" (AP — I)aP. (63)

Therefore, each component of the sub-vector a? is a 6"-homogeneous function of degree p. This is equivalent
to the fact that each a; is ¢"-homogeneous of degree ((j), since £(j) = p for every j such that z; is a
component of zP. ]

Step 3. This is the last and main step of the algorithm. The objective is to find a set of functions wu;,
depending on both z and ¢, such that

T
xg+2(b1id)(xo)/0 ur(zo) = o+ B(xo)a(wo) + o(xo)
I

= Azg+o(xzg) (by Lemma 3)
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for some T' > 0, in order to have Assumption 2 in Theorem 1 verified. The proposed construction of these
functions strongly relies on Sussmann and Liu’s results. Prior to addressing the construction itself, let us
recall some definitions and properties.

Definition 1 [22, 11] Let Q be a finite subset of R and || denote the number of elements of Q. The set
Q is said to be “Minimally Canceling” (in short, MC) if and only if :

i)Y w=0

wEN

i4) this is the only zero sum with at most |Q| terms taken in Q2 with possible repetitions:

Z)\wwzo

wen Ao)oea = (0,...,0)
()\w)wGQ € z® = or (17 71) (64)
>l <19 or (=1,...,-1)

weD

Definition 2 [22, 11] Let (2)¢ck be a finite family of finite subsets Q¢ of R. The family (2)¢ck is said
to be “independent with respect to p” if and only if :

Z Z)\wwzo

fGEwEQE

Modocatcen € L5 b= Y Aw=0 VE€E (65)
Z > Pl <p weas
EEE wet

The interest of MC sets in our context comes mainly from the following two results. The first one was
proved by Kurzweil and Jarnik [9] (see also [11]). The second result is deduced from the former, after
standard computations.

Proposition 4 [9] Let fi1,... fi be smooth vector fields, and o; (i =1,... 1) be T-periodic functions such
that

T
|ﬂ§l=¢/ ar=0.
0

Then,
T T
Z fI/ ar =% Z [foy, [fo2)s [ - - 7f0(l)]"-]]/0 ar,
I=(o(1),...,000) °° I=(o(1),...,a(1)
oce () o€ 6()

with &(1) denoting the group of permutation of | elements.

Corollary 1 Let f1,... fi be smooth vector fields, and Q = {w1,... ,w} be a MC set such that the w;’s
have a common divisor T. Define also

o ={ et 625 . 0
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Then, for any I = (a(1),... ,0(1)) (o € &(1))

T _1)-1
/ oy o EDT 1
0

2l-1 u)il(Wil +wi2)"'(wi1 + ~~~+wit—1)

so that, by Proposition 4,

T
X afe
I=(o(1),...,0()) °°
g e 6(l)

_ 1 Z (—1)1_1T [fa(l)a[fa(Q)a["' 7f0(l)]"']]
I={(c(1),...,0(]) 250 wo()(Wo(1) F wo(2)  (Wo(n) + -+ Wo(-1))

o e 6()

(67)

Given a set of vector fields fi,..., fm, since any Lie bracket of the f;’s can be expressed as a linear
combination of brackets of the form [f;,, [fi,, [-- - » fi,] - - - ]|, one might hope, in view of the previous equality,

that any Lie bracket can also be expressed as a linear combination of vector fields in the form )" fr fOT ar.
This happens to be the case, as proved by Liu in [11]. More precisely,

Proposition 5
Let:

e fi,...fm be smooth vector fields, and fj (j =1,...,n) be vector fields obtained as Lie brackets of
length £(j) of the f;’s.

o (Fi)k=1,.. Kk denote a partition of {fl,... ,fn} in homogeneous components, i.e., Fy contains all
f;’s obtained as Lie brackets of (k) vector fields f.x, ..., le:c(k), with i) TF not necessarily different

from Tjk when 1 # j (so that two different symbols may denote the same vector field), and i) each of
the symbols f.» (i = 1,...,1(k)) appearing exactly once in the Lie bracket (so that I(k) is also the
length of the Lie bracket).

Then, for every k € {1,... K}, there exist an integer C(k) and MC sets Q% = {wp,...
k,c
wl(k)}czl,...,()(k) such that
e the family of sets (Qk’“)f;l”:.’."’g(k) is independent w.r.t. maxpeqy,.. xy [(K),
e all elements in these sets have a common divisor T (> 0),
[ 4

C(k)

Z k,c Z f/T k,c 68
122 I o ar (68)

e=1 I= (Tf(l), - ,T:(l(k)))

o€ (k)

fierR = f;

with

k,c .
ket ={ cosw;t (i=1)

Ork sinwtt (i=2,...,0(k)

Ti A
K3

and ,uj”c denoting some scalar (the value of which depends on the elements of Q%°).
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Let us remark that the possibility of choosing the sets Q¢ with a common divisor T is not explicitly
proved in [11]. However, the proof clearly shows that the set of possible sets Q¢ (seen as a subset of
RX« Hk)C(R)) is open. Therefore, each element of Q% can be chosen rational. The main part of Liu’s
algorithm consists in showing how to find the MC sets 2% so that (68) can be satisfied. Although we will
make use of the result obtained by application of this (rather involved) algorithm, we just refer the reader
interested in the details of the algorithm itself to [11].

We can now return to the control design procedure. Let us first first partition the set {I~)1, e ,I;n}
into homogeneous components By (k = 1,...,K), with (k) denoting the length of the generating Lie
bracket associated with each f; € By . Note that all vector fields in By are ¢"-homogeneous of the
same degree —I(k). Now, in view of the above proposition, and by applying Liu’s algorithm, one can
determine a family of MC sets QF¢ = {wP°, ... ,wlk(’,g)}(k =1,...,K; ¢ =1,...C(k)), independent
w.r.t. P = maxpeqr,.. x} (k) (= maxjeq,... 3 £(j)), and with a common divisor T, such that for any
ke{l,...,K} and b; € By,

_ C(k) . T .
b= Y ou > br /0 o (70)
e=1 I= (T(’f(l)7 .. ,Tf(l(k)))
o € S(I(k))

k,c
k
Ti

. k . . k
To each function a_r}f, we associate a state dependent function vT;f defined as follows
i i

> w ey Way(@) (=)

with the functions o} chosen as in (69).

vljjcc(w) = j:b;€{Br} (71)
pi(a'*)) (i=2,....,Uk))
with, for example,
pr(a') = |a! ]/ (72
Note that,
I(k)
) = Y uhea(e), (73)
=1 J:b;E€By,

so that, in view of (70),

K C(k) T K N
> > ide) [ (@) @) = 3 by(w)a (0)
L=l T = (7R 0y TR ) ’ k=1 ;€ {B)
o € &(I(k)) (74)
= Y bi@)a;(x)
Jj=1
= B(z)a(x)

The following result concludes the construction.
Proposition 6 With the function u € CO(R™ x [0,T]; R™) defined by

K C(k)

wiz,t) =YY" > a’;g(t)v’;}g(x) (75)

k=1 c=1 p;q—l’f:i

the three assumptions in Theorem 1, and Assumption 3-bis in Theorem 2, are verified for the system (58).

INRIA



FExponential stabilization with robustness 23

Proof:
Verification of Assumption 1
Obvious, after remarking that each u; is 6"-homogeneous of degree 1 because, from (71) and Lemma 3,

each v* ,c is 6"-homogeneous of degree 1.

Verification of Assumption 2
Since every 7 belongs to {1,...,m},

U(k)

b Oék cvk ,C b Oék cvk: ,C
E E .,_k Tk- - E k ko
'L

1= 1p7—

so that, by (75),

K
Do bi@)uieo. ) = 30 D0 D boa(@ali (i (@o). (76)

To simplify the notations, let us introduce the following onto map from U C (N — {0}) x (N — {0}) to
vV c(N-{0})

k—1
q : (k) — g=c+»_ C(i) (with C(0)=0) (77)

=0

and the inverse map

k—1
g qe{d Cli)+1,....,3 C)} — (k(a)e(a) = (kg — > CG) (78)
1=0 ; 3

We can then rewrite (76) as

with

A
Ve = Oé"vq

k c
o & o0

A k(q),c
vI S A’E‘(Iq)) (q) (50)
X3 2 ka(q)
A
S(QA) = 1(k(q)))
Q=X Clk) -

As a consequence, the solution at time T of & = ;" | bi(z)u;(zo,t), with 2(0) = zo, is given by

S(q1))  S(ai)
z(T) = x0+z Z Z ZX‘“ CXZid)( xo// / vIi (2o, ti) - - - (81)

=1 q1,...,¢;i=1 s1=1 s;=1
’)’Sl(xo,tl)dtl...di

Let us recall a property easily obtained by standard computation.
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Lemma 4 Assume that

T tr t1
/ / / gk(wktk)...gl(wltl)dtl...dtk #0 (82)
0 0 0

where each g; is either the sin or the cos function, and the wy’s have T as common factor. Then, there
exist A1,..., Ak € {0,1, =1}, with A\g # 0 for some 3 € {1,... ,k}, such that

k
Z Apwp =0.
p=1

This property, combined with those associated with MC sets, is used to establish the following result

Lemma 5 The iterated integral

// /’Yi’ zo,ti) ... yE (20, t1) dty .. . dt; (83)

is possibly not a o(xp) only if g = g2 = -+ = ¢ 2 q and (s1,...,8;) = (c(1),...,0(S(q)) for some
permutation o € &(S(q)).

Proof of Lemma 5
From the definition of ¢ in (80), the iterated integral (83) may also be written as

v (20) .. .01 ( xO/ / / ali(ts)...alt(ty)dty ... dt; . (84)

From (69), (80), and Lemma 4, the iterated integral in the above expression is different from zero only if
there exist Ay,...,\; € {0,1,—1}, with Ag # 0 for some 3 € {1,... ,i}, such that

> Al =0. (85)
p=1

Let us first assume that there exists p € {1, ... ,i} such that g, # ¢g.
Since the sets 29 = Q%€ are independent w1th respect to P, the above equality then implies, in particular,
that

B __
E Apwsy, =
P9p=4p

Now, there are two possible cases.

case 1: cardinal{p: g, = g} < S(gg) (= l(k(gg))), so that

> Il <ael. (86)
P9p=4q3
From the fact that the set 29 is minimally cancelling, we deduce that every element w3’ (s = 1,...,S(gg))

of this set appears in the sum (85) exactly once. Therefore

S(ap)

qi q1 — 413
oot =T[o¥ I o
s=1

Pap#ap
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and also
S(gp)
qi q1 __ a3 B __ s . qp
ot = I I =] X el I o],
s=1 P:gp7#4p j:b;EB P:p#4p

eI CT

where the last equality comes from (73) and (80). From (62), a is a smooth function which vanishes at
1

the origin, whereas vi* (z) = O(|z| @ ). Therefore, the integral (84) is a o(z¢) as announced.

case 2: cardinal{p : g, = qs} > S(gs) —i.e. (84) involves more than S(gg) terms vi;. Then, since each

v®¢ is a function of the sub-vector z!(¥), with I(k) = S(g), and is homogeneous of degree one

7

@ =1 [ »%@) I »2@ | =h%) J] vi(x)

p=1 Pidp=9p Pap#9s PiqpFap

where h is §"-homogeneous of degree strictly larger than S(gg). Therefore, in a neighborhood of the origin,

|h(25(98)] < K|29(99)| for some constant K and the iterated integral (84) is a o(x) in this case too.
Now consider the case where all ¢;’s are equal, but (s1,...,s;) # (0(1),...,0(S(gg))). If i < S(gs),

or i = S(gp) so that there exist p1,p2 € {1,...,i}) such that s,, = s,,, we directly deduce from Lemma 4

and from the fact that every set Q¢ is MC, that the integral in (84) is equal to zero. If i > S(gs), then

we deduce from (71), using similar arguments as previously, that this integral is a o(zo).

This concludes the proof of Lemma 5. [ |

In view of Lemma, 5, (81) simplifies into

Q T tS(q) t1
2T) = w+Y B (Ko X g id) o) /0 /0 /0 72 st (@0s @) -

9=10€6(5(q))

Yoy (o tr) dty ... dtsq) + o(xo)

K C() T (87)
= 0+ Y T (br id) (o) / o5k (zp)
k=1c=1 7 _ ( k k 0
I= (Ta(l), ... ,Ta(l(k)))
o € 6(l(k))
= z9 + B(xzg)a(z) + o)
= Azy+ o(xg),
where the second and third equalities come from (80) and (74), and the fourth from Lemma 3.
Assumption 2 is thus verified.
Verification of Assumption 3-bis
Since all vector fields b; are §"-homogeneous of degree one, so that ||I|| = |I|, it is sufficient to show that
I
/ ur(z) = arz'! + o(x) . (88)
0

From (75) and (80),
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Therefore, for any I, fOT wr(z) is a sum of terms of the form

T t1) io q
/ / . / Voipt (@, 8) .8 (2, t) dty ... dtypy (89)
0o Jo 0
for some multi-indices (g1, ... ,q|7), and (s1,...,87). From Lemma 5, we only need to consider the case
where ¢ = ... = ¢ £ ¢ and (s15-++,81) = (0(1),...,0(I])) with |I| = S(g), since otherwise the

expression in (89) is known to be a o(x). In this case, (89) rewrites as

S(q)

T ts(q) to
Hv;?(x)/ / / al ..ol db .. disgg
1 o Jo 0
T rtsq t2
= Z ,u,?aj (z) /0 /(; .. ./0 ags(q) co.al dty . dsg) (90)

jzgj eEgk(q

)
S(a) T rts t2
— bz q)/o /0 /0 ol ...af dtr...dtsy),

where h is a linear map. Since S(g) = |I|, the last equality shows that the expression in (89) is linear in
2! and, subsequently, that fOT wr(x) is as announced in (88). ]

4 Final remarks

We conclude the present study with a few general remarks. The first one concerns the assumption of
analycity which has been made on the control vector fields of the system (Sp). In fact, the main results
of the study remain valid when the control vector fields are smooth only, or even of class C* with k large
enough depending on the structure of the system’s Control Lie Algebra. The proofs can be carried out in
the same manner except for mild complications which arise in particular from using a finite expansion of
the control system’s solutions instead of the infinite Chen-Fliess expansion. Such a finite expansion can be
derived in the same way as a Taylor expansion with integral remainder is obtained for a smooth function.

The second remark concerns possible applications of Theorem 1 in order to construct robust exponential
stabilizers. In section 3, this result was combined with the use of sinusoidal functions of time in the control
expression. However, there is no obligation for the control law to depend on time in this manner. For
instance, when the system (Sp) is known to be differentially flat [4], adequate control functions can be
obtained by considering specifically tailored flatness-based solutions to the open-loop steering problem, as
done for example in [1] in the case of chained systems. Is is worth mentioning at this point that, although
the control design approach and robustness analysis in [1] are very different from the ones developed in
the present paper, the specific conditions imposed in this reference on the control law imply that the
assumptions of Theorem 1 are verified. This suggests that these assumptions are not unduly strong and
also illustrates the fact that the domain of application of Theorem 1 extends to different control design
techniques.

How does the general control design procedure described in section 3.3 compare with the related one
developed in [15] for the design of exponentially stabilizing continuous time-periodic feedbacks. Besides
the fact, already pointed out before, that the latter method fails to produce controls which are robust in
the sense considered in the present paper, the number of calculations required to synthesize the control law
is also generally much higher and the resulting control expression significantly more complicated (because
of state dependent terms which only vanish when the state is constant). Periodic dependency with respect
to time also involves high frequencies resulting in highly oscillatory trajectories (a feature rarely desirable
when dealing with mechanical systems), whereas the construction here proposed allows for choosing the
control frequencies independently of the asymptotic rate of convergence.

Nonetheless, we are also aware that the hybrid open-loop/feedback controls here considered carry their
own limitations the importance of which remains to be evaluated in future studies. For instance, just
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to cite a slightly uncommon issue, robustness with respect to modeling errors has been obtained under
the assumption that the updating period of the control, i.e. the time interval during which the control
is applied in open-loop fashion, is an exact multiple of the periods of the time functions involved in the
control law. It is possible to show (this is beyond the scope of this study) that the slightest violation of this
assumption, while unavoidable in practice for reasons that anyone having control implementation in mind
will easily figure out, almost invariably results in the loss of stability of the origin of the controlled system.
This means that the control is not robust with respect to the imperfect verification of this assumption.
Although the source of this robustness problem is little connected with the modeling of the control system
itself, its practical consequences should probably not be disregarded when attempting to address the
complex and delicate issue of comparing different control techniques.

Appendix

Proof of Claim 1

Let us first consider the issue of existence of the solutions of system (15). This system can equivalently be
written as a system in R*"*! with (z,€) as state, and (u,um+1 = 0) as control:

By applying Proposition 1 to this system, one deduces that for any compact set S x [—e1,€1], S C U,
there exists u > 0 such that, if (10) and (11) are satisfied, the solution of (15) is defined on [0,T] and can
be expanded in the form of a Chen-Fliess series. Using Assumption 1 of Theorem 1, which implies that
|u(z,t)| tends to zero as |z| tends to zero, one also deduces that for some positive ¢, (10) and (11) are
satisfied if |zo| < 6. Existence (and uniqueness) of the solutions of (15) is therefore guaranteed, and these
solutions can be expanded, on [0,77], as

2(t) =20 + S((F + o) id)(xo)/o wi(zo),

N

with he;(.) = hi(e,.). We may rewrite this equality as

t

() = a0+ S (frid)(ao) [ uran) + Y(d id)ao) [ ur(an). a

T 0

Here, d* = d;, ---d;, (for I = (i1,... ,iy)), with d; taken in {f;, h.;} and the product d}* involving at
least one h. ;. Note that each series in (91) is convergent uniformly w.r.t. ¢ (|zo| < ¢', ¢’ possibly smaller
that 8), € (|| < €1), and ¢ € [0,T]. This simply results from the existence (previously established) of z(t),
for t € [0, T, and the fact that the first series is convergent since

r0-+ S (frid)(eo) | us(ao) (92)

is precisely the Chen-Fliess expansion associated with (Sp).
Moreover, by Assumption 2 of Theorem 1

T
zo + Y _(frid)(zo) /0 ur(zo) = Azo + o(zo) - (93)
I
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Let us now define (e, o) and (e, xo) as follows

A T A T
flez) 2 S (@ id)e) [ wien), Aesn) Y (@ id)a) [ urla). (94)
[I1<1/a 0 [I|>1/a 0
so that
T
S id)(ao) [ ur(eo) = Bl ) + (o). (95)
I 0

From Assumption 1 and 3 of Theorem 1, each iterated integral involved in (94) satisfies, in the neighbor-
hood of zg =0,

T
[ o) < Koo
0
for some positive constant K. This implies in particular, that
x
|ﬁ(e o) <K Z d}}zd )(zo0)] -
EE
[11<1/a

Recalling that each product dI' contains at least one h.; and that h;(0,2) = 0, V2 € R*, one deduces
that every function (e, ) — d (o) involved in right-hand side of the above inequality is continuous w.r.t
o and €, and vanishes at € = 0 Therefore, for § small enough, and using the fact that the number of
multi-indices I such that |I| < 1/« is finite

sup M —0ase — 0.
leol<s |0l
This establishes (17). Let us now define
(%o, 1 ,
ﬁi(‘rOvt)ém (Z=17"'7m)
|x0|a—a

with o > 0 so that, by Assumption 1 of Theorem 1, i; is continuous. Then,

T
o) = Y0 feol 1l i) [ arta).
11> 1/a ‘

Choosing ¢ small enough so that |I|(a — o) > 1+ po > 1 for every I such that |I| > 1/a, and since, from
Proposition 1, the series

T
> @id)an) [ (o)
[1]>1/a 0
is uniformly absolutely convergent for zy small enough, one obtains (provided that |z¢| < 1)

[y(e, 20)| < Jao| 70 S(e, o) (96)
with

A h T

Stea)2 3 Ndirid)m)l | [ o)
1>1/a 0

a positive continuous function. Relation (18) directly follows from this inequality, and this concludes the
proof of Claim 1. [
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Proof of Lemma 1

We shall use the following relation, the proof of which is easily worked out by induction on k:

t  ptg ta k (_1)k—1
/ / / sintk...sintldtl...dtk:ch,j(l—cosjt), Chk = SR (97)
0o Jo 0 — :
7j=1

From this, we readily obtain the first equation in (53). We also deduce that

T ptrga ta
/ / . / COS itlc—l—l sin tk ...sin tl dt1 R dtk+1 =
0 0 0

0 ifi>k (98)
(—1)kT if =
SRRl 1 l—k‘

Now, we claim that for any ¢ > k,

T ptegr to
/ / e / sin tk+1 ...sin t2 COS itl dtl e dtk+1
0 0

T ptpga 0 to
(—l)k/ / / COSttgy1 Sinty ...sinty dty ... dtg41 -
o Jo 0

To show this, we view the first integral as a multiple integral on RFf*! (on the domain
{(t1,... ,try1) € R¥*L 10 <t < ... < t441 < T}, to be more precise) so that this integral can also

be written as
T /T T
/ / / costtysinty...sintgyr dty ... dtgys -
0 t1 Tk

Setting ; 2 teao s (i=1,...,k+ 1), this gives

T T T
/ / .. / COSUTk41SINTE ...SinTy d7my ... dTy1 =
0 Th41 T2

T T Thk+1 T T2
/ / —/ / —/ COSiTk41SINTE ...SinTy d71 ... dThq1
0 0 0 0 0

Using (97), this last term simplifies into

T p7r+41 T2
(—1)]“/ / / COS T4 SINTE ...sinTy d7y ... d7Tke1
o Jo 0

and (99) follows. Finally, (53) follows directly from (98) and (99). ]

(99)
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