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Application du modele de couches absorbantes parfaitement
adaptées (PML) au probleme de 1’élastodynamique linéaire en
milieu hétérogene anisotrope
Résumé : Nous présentons et analysons un modele de couches absorbantes parfaitement adaptées (PML) pour
la formulation en vitesse-contraintes de ’élastodynamique. Ce modele a la propriété étonnante de ne générer
aucune réflection parasite & l'interface entre le milieu élastique et la couche absorbante. Ceci nous permet

d’obtenir des réflections trés faibles méme dans le cas de couches fines. Plusieurs expériences numériques
montrent ’efficacité et la généralité du modele.

Mots-clé :  couches absorbantes, conditions absorbantes, élastodynamique, éléments finis mixtes, anisotropie
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1 Introduction

The simulation of waves by finite-differences or finite-elements methods in unbounded domains requires a specific
treatment for the boundaries of the necessarily truncated computational domain. Two solutions have been
proposed for this purpose : absorbing boundary conditions (ABC) and absorbing layers. ABC’s have been
introduced by B. Engquist and A. Majda for the acoustic wave equation [11]. They consist in adding to the
wave equation some suitable local boundary conditions that simulate the outgoing nature of the waves impinging
on the borders. This method works particularly well for absorbing waves nearly normally incident to the artificial
boundaries. For waves traveling obliquely, higher order ABC must be used to achieve acceptable accuracy, [12].

For elastic waves, the situation is more complex. First, the transparent condition, i.e. the exact condition
relating normal stress and displacement on a line for outgoing waves, is no longer a scalar but a matrix integro-
differential relation. Its approximation by partial differential equations, which is the usual way to make ABC,
leads to a very complex system of equations, especially for higher order methods. The stability of the coupled
problem composed of the elastodynamic system completed with these artificial conditions is then very difficult
to analyze and the situation is even more intricate when discretization is considered, [8]. To overcome these
difficulties, Higdon [14], [16], proposed to combine several first order boundary conditions designed for the wave
equation, each of them being associated with either the pressure waves velocity or the shear waves velocity.
These conditions are theoretically stable, [15], relatively easy to implement and efficient for the waves traveling
in a direction close to the normal of the artificial boundaries. They can be adapted to the case of surface
waves too, [21]. However, for other directions of propagation, important spurious reflections may occur. Some
authors, [18] for instance, have proposed to optimize the coefficients of Higdon’s method in order to make these
reflections decrease. However, numerical experiments still show relatively strong spurious reflections in some
situations and stability problems when higher order numerical schemes are used, [20].

Layers models are an alternative to ABC. The idea is to surround the domain of interest by some artificial
absorbing layers in which waves are trapped and attenuated. For elastic waves, several models have been
proposed. For instance, Sochacki et al., [21] suggest to add inside the layers some attenuation term, proportional
to the first time derivative of the displacement to the elastodydamic equations. This technique is inspired by
Physics and revealed to be quite delicate in practice. The main difficulty is that, when entering the layers,
the waves “sees” the change in impedance of the medium and then is reflected artificially into the domain of
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4 F. Collino and C. Tsogka

interest. The use of smooth and not too high attenuation profiles allows us to weaken the difficulty but require
the use of thick layers, [17].

In this paper, we propose to adapt a layer technique introduced in [5] for the Maxwell’s equations by Bérenger
and that is now the most widely used method for the simulation of electromagnetic waves in non bounded
domains, [6], [7], [23] . This technique consists in designing an absorbing layer called perfectly matched layer
(PML) that possesses the astonishing property of generating no reflection at the interface between the free
medium and the artificial absorbing medium. This property allow us to use a very high damping parameter
inside the layer and consequently a small layer width while achieving a quasi-perfect absorption of the waves.
To our knowledge, this method has been already used only once for elastic waves simulation. In [13], the authors
propose the use of PML for the compressionnal and shear potentials formulation. In our paper, the PML are
incorporated in the stress-velocity formulation.

The present paper is organized as follows. In section 2 we construct the PML model in the general case of
an evolution problem. It is based on an interpretation of the PML model of Bérenger [5] as a change of variable
in the complex plane c.f [9], [19]. In section 3, we apply the previous model to the velocity stress formulation
for elastodynamics and we study the properties of the continuous PML model via a plane wave analysis. In
order to show the generality of the PML model, two numerical schemes are presented (section 4). The first one
is the classical Virieux finite-differences scheme [22] while the second one is a mixed finite-element scheme [3]
which allow us to consider anisotropic media as well. We then study in section 5 the properties of the discrete
model in the case of the finite element scheme in terms of a numerical dispersion analysis. Finally in section 6
we present several numerical results which show the efficiency of this model even in the case of heterogeneous,
anisotropic elastic media and its superiority when compared to the classical ABC’s conditions.

2 Pml model for a general evolution problem

We will present in this section the basic principles of the P.M.L model in the general case of an evolution
problem. This will allow us to generalize it to other models of wave propagation. Consider a general evolution
problem of the following form, posed initially in the space IR™

() 0w — Adyv — BOyv =0
(1) o
) vit=0)=uv,

n
where v is a m-vector, A is a m x m matrix and B, = Z B;0,,; with B; some m x m matrices. Moreover, we
i=2
assume that the initial condition vy is supported in R" = {(z,y2,..,¥n) € R", < 0} as shown in Figure 1.

y

PML

support of

initial data 0 X

Figure 1: Geometry of the problem.

We would like to replace problem (1) by an equivalent one posed in the left half-space. Following the basic
principle of the PML model, that is to couple the equation in the left half-space with an equation in the right
half-space such that there is no reflection at the interface and that the wave decreases exponentially inside
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the layer. We first introduce the following system

v = v” + vt
(2) ol — Bo,v =0
Ot — Ad,v =0,

where index || means that we keep only the derivative parallel to the interface, i.e. the y-derivative (while index
1 means that only the z-derivative is considered). It is easy to see that system (2) is equivalent to(1)-(a).
Secondly we introduce some positive scalar function d(x), which will play the role of the damping factor and we
define a new wave, u, solution of (1)-(a) in the left half-space and satisfying a new system in the right half-space,
involving a damping on the normal component, so that u satisfies

Oiu — AGyu — BOyu =0, <0

3
®) uw(t=0)=vy, <0,
and
uw=ul +ut
) ot +d(z)ut — Ad,u =0, x>0,

Ol —Boyu=0, x>0,
wt=0)=0, z>0.

Another way to set the PML model is to assume that d(z) is extended by zero in R™
d(z) =0, V<0,

and that (ull,u!) is sought in IR" solution of

fut + d(x)ul —A0,u=0

duull — Bou =0

u(t =0) =y

with u = ull +u* .

(5)

If we look for the stationary solutions of system (1) with frequency w, we get
iwd — A0, 0 — BOy1 =0 .
In the same way, the stationary solutions of system (5), satisfy
(iw +d(z))at — Ad,i =0
iwil — Bo,i =0
with 4 = all + 4t ,
or, equivalently
Lo
iw + d(z)
iwill — B, =0

with @ = all + 4+ .

Wi Ao, =0

We can remark now, that 4 and 9, satisfy the same equations in the area where d is zero, whereas inside the
layer, the PML model consist in the simple substitution
w

O = 0z = iw + d(x)

Oz
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6 F. Collino and C. Tsogka

which implies the complex change of variables

F(x) =2z — 5/070 d(s)ds .

We can study now the properties of this model using a plane wave analysis. We seek particular solutions of

system (1) in the following form
v = voef'i(kmar:-l-li:yyfu.)t)7 v, € R™

(6) n—1
k= (ko) ERxR"™, weR.

Formula (6) is a plane wave propagating in the direction k with the phase velocity w/|k|. In order to be a

solution of problem (1), V' has to satisfy the following relations

(7) ivow — iAvoky, — iBuoky =0 .

In the same way, we seek particular solutions of system (5) in the following form
ul = glle—i(k=Z(x)+kyy—wt)

UJ' = ale

—i(ka@(z)+hyy—wt)
u=ul +ut .
In order to be a solution of problem (5), u!l and ' have to satisfy the following relations
ialw —iB(a* + a”)ky =0
® (iw + d(z))at —i (1 - @) A(a* + ok, =0,

or, equivalently
(0) ialw —iB(at +alk, =0
iatw —iA(at +a)k, = 0.
Adding the two equalities of (9), gives
(10) i(at + a)w — iA(a* + alYk, —iB(a* + alYk, = 0.
We can remark now that if we chose a' and all such that
at + a” = o,
equation (10) becomes the same as (7). Moreover from (9) we get

k kz
(11) al = Byg 2, at = Av—=2

w w
which gives the plane wave solution of (5). We then have the following property:
The plane wave U solution of system (5) can be written in the form

u = e—i(k:z:c+kyy—wt) e—’% Jo d(s)ds ’

and satisfies :

e u = v in the left half-space x < 0, which means that we have no reflection at the interface :

model is perfectly mached.
o u is damped in the right half-space,
e the damping coefficient in the absorbing layer is

l@)l _ 5 g agora

lo@)I

the layer

Remark 1 Notice that the damping is exponentially decreasing and it depends on the direction of propagation
of the wave. More precisely, it decreases very fast for a wave propagating normally to the interface and increases

when the direction of propagation approaches the parallel to the interface.

INRIA
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3 Pml model for elastodynamics

In this section we present the PML model for the continuous elastodynamic problem. As we have seen in section
2 we know how to construct a PML model for an evolution problem of the form (1). Thus, in order to apply
the technique described in the previous section to elastodynamics we need to write the elastodynamic problem
in the form of system (1). This can be easily done once we consider the mixed velocity-stress formulation for
elastodynamics.

3.1 The elastodynamic problem

We consider the 2D elastodynamic problem written as a first order hyperbolic system, the so called velocity-
stress system

g% —dive =0
(12) 490 _
ot e(v) 0

+ initial condition.

We suppose as in the previous section that the initial condition is supported in IR%. In (12) v = (v;,v,) denotes
the velocity, o the stress tensor and ¢ = o(z) the density. If u = (us,uy) is the displacement then

_ Ou

v—a.

We denote e(u) the deformation tensor, i.e.,

( )_1 8u,~+8uj
A _2 53}]' 8-'171 )

The stress tensor is related to the deformation tensor by Hooke’s law
o = o(u)(z,t) = C(z)e(u)(z, t) ,
where C(z) is a 4 x 4 positive tensor having the classical properties of symmetry [1]. In system (12) we used
A=A(zx)=C"Yx) .
Finally we identify the tensor o with the following vector (still denoted by o)
o =[o1, 02, 03], 01 =040 ; O2=0yy ; 03 =04y .

We can write (12) in the following matrix form

ov oo oo
—=DIZ=4+D+*— inQ
2%5¢ oy " e ™
oo ov ov
A= =EIZZ+ EL=Z inQ
a1 oy T ar M
with
ol — 00 1 pi- 00 |
(010 10 0 1
"0 0 10
1 1
_ 0 0 _
L 2 LY 9
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8 F. Collino and C. Tsogka

We can apply now the same technique as in section 2 and we get the following system in the Perfectly Matched
Layer(z > 0)

v:v” +1)l

61}” ” 60'
g =
8tJ_ oy
Ov Ny
0 @t =D,
and
o= (7” + O'J'
9ol ov
A — gIZZ
8t Oy
dat L o 0v
Aa— + d( )AO’ =F 9z )

where d(z) denotes the damping factor. In an homogeneous, isotropic elastic medium, the matrix C(z) depends
on the Lamé coefficients (A, ) of the medium. In this case system (12) can be written in the following form

5% 004y  O0gy 00 4a ov, Ovy
= - = 2
6(‘% Jr + T (A +2p) Jr + Aaay
OVy  O0gy Oyy . O0yy _ Ovy Vg
(13) °% = ax tay 0 o AT A,
o 004y % 4 Ov,
b ot Fap TH Oy ’
and the PML model becomes
v=2oll + ot i o=ol +o*t
kil o 00w ) B0y,
0 Jo ov Jo
d(z))ot = 2% ., 0u _ doyy
" (6t+())y P ; Qoflrt o
14 9 B oo B2
z zz _ 4y 9Uy
8 O, dall, v,
= . = 2p) =¥
(5 +dl= z))oy, = A5 by = (A )6y
d vy, ~dal, o,
(8t+d( T))o, y_lj’% N —May

3.2 Plane wave analysis
3.2.1 Infinite absorbing layer

In the case of a homogeneous, isotropic elastic medium, following the same technique as in section 2, we can
show that the plane waves, U;, j = p, s, solution of system (13) can be written in the following form

. cos(f)z+sin(6
7 iwVy(t— ( )‘-/; ( )y)

Up = Apdye
Us — As(i;eiwv‘g(t—

Pressure wave
(15) — sin(68)z+cos(8)y
Vs ) Shear wave ,

where V,, = /(A +2p)/p is the Pressure waves velocity, Vs = y/p/0 is the Shear waves velocity, 6 gives the
direction of wave propagation, d;, j = p, s defines the direction of particle motion and A;, j = p, s is the
amplitude of the waves. We can remark then that the plane waves, U;, j = p, s, solutions of system (14) can
be written as
o _ cos(8)&p +sin(0)y
(16) U, = A,d, e Velt % ) Pressure wave
- — sin(8)# g +cos(8)
U, = A,d,e™V-(t= Vs ) Shear wave ,

INRIA



Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media9

where we simply substituted = by Z;, j =p, s in (15) and where Z;, j = p, s is defined in the same way as in
section 2 (w replaced by wVj)
. z
i
:Ez:c—a:—— dsds, i =D, S8
Moreover we can show that ﬁj, Jj = p, s satisfy :

. (73' =Uj, for j =p, sin the left half-space £ < 0 (no reflection),

e U;, j=p, saredamped in the right half-space,

e the damping coefficient in the absorbing layer is

1Tl _ S d(s)ds
1T (@)l ’
1T @)l ol d(s)ds
[T @)l

3.2.2 Finite absorbing layer

In practice, we take a finite absorbing layer by introducing a boundary at x = §, with a Dirichlet condition as
we can see in Figure 2.

y

<\
I
o

PML

support of

initial data 0 b} X

Figure 2: A finite PML layer.

This new boundary produces a reflection, but since the wave decreases exponentially in the layer, the
reflection coefficient becomes quickly very small. This coefficient depends on the choice of d(x) and on the size
¢ of the layer. In order to study the PML layer properties in this case, we recall some classical results for the
elastodynamic problem.

Consider the elastodynamic problem with a homogeneous Dirichlet condition(# = 0) on the boundary z = 0
as shown in Figure 3. Take for example the case of an incident plane wave P

-

inc 7 wVp *d"i'i) :
U™ = Ainedye » ', d, = (cosf,sinb) .

Figure 3: Reflection of an incident P wave.

RR n~ 3471



10 F. Collino and C. Tsogka

We know then (c.f [1]) that the incident wave is reflected into a pressure wave U, and a shear wave U} given
by

ar.z
r _ Ar gr twVp(t———) o .
U, = Ajdye vl dy = (—cos#y,sinb,)

U; = Agcfgeiwv”(t_p‘s’:), d" = (—sin By, cosby),
Ps = (cosfa,sin65) ,
and we have the reflection coefficients
GGl cos(8 — 6-)
Ry, = . =
|Uzne]|  cos(f + 02)

R NUZl  sin6,

P2 Une|]  cos(6 + 62)
with sinfy =V, sinf/V,, .

In the same way in the case of an incident plane wave S we have

Figure 4: Reflection of an incident S wave.

_ UGl _ sin(6 +62)
Uzl sin(6 — 62)

- 10l sind,
P Uime]  sin(0 — 62)

with cosfy =V, cos8/V; .

RSS

We can consider now the case of the finite PML layer. Given that the plane waves, U;, j = p, s, solution of
system (13) are given by equations (15) we can compute the reflection coefficients induced by the PML layer of
length 6.

The case of a plane wave P _

As we have shown previously there is no reflection at the interface 2 = 0 when the plane wave U, penetrates

., PML
~r ~=r

ﬁ} V=0
- 0 2 |5 X
Up:Uprrﬁ Up

Figure 5: A plane wave P

the lossy medium. After traveling a length § we can compute ﬁ'p using the formula (16), obtaining
B, = e e I dds
INRIA
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Then the plane wave Up, gives at the boundary = = §, two reflected waves U’“ and U 7, which are damped till
penetrating again the elastic medium at the interface x = 0. It is easy to see that the reflection coefficient is

given in this case by

1@ _ p, 2ot i o
R, = =R o 1o 0
(1) O R s
P Ry

The case of a plane wave S
In the case of an incident plane wave S, we obtain similarly

Rgs — ||ﬁ:($)|| — Rsse—zm‘),ia f(f d(s)ds7 r < 0
as) 1.1
w NG@I_ o s prawa g
IIU @I ’ '

Remark 2 Relations (17) and (18) imply that the reflection can be made as weak as desired by choosing the
damping factor d(x) large enough. However this is no longer true when we consider the discrete PML model. As
we will see in the next section, the discrete absorbing layer model is not perfectly matched. That is a consequence
of the numerical dispersion, which introduces a reflection at the interface.

4 The discrete PML model

In this section we present the discrete PML model for elastodynamics. To do so we introduce two numerical
schemes for the discretization of system (12). The first one is a finite-differences scheme, introduced by Virieux
in [22] and the second one is obtained using a new mixed finite element [3] in a regular mesh. The use of this
finite element has the main advantage of leading to an explicit scheme (mass lumping), even in the case of an
anisotropic elastic medium.

4.1 The Virieux finite-differences scheme

This scheme uses a staggered grid formulation, so that, if v, is computed at the points (¢,7) (x; = ih,y; = jh)
of a reference grid, then v, is computed at the points (i+%,j+3), 04, and o,y at (i+1,7) and o4y at (i,j+3).
The disrcete PML model associated to the Virieux finite-differences scheme can be written as follows

(v2)it; = (W3)7; + (V)i

n—I—%_ n—I—%

D" =D | e+ ey ey~ )y
At 2 N oh

n+% n+%

OO — O | ODE + o )d o)

At J 2 B oh ’

12,52 i2,] 12,52
z\n+1 T\n z\n+1 z\n n+3 _ n+i
vy i%,5% (vy)i%,j% e (Uy)i%,ﬁ * (Uy)i%,j% _ (%y)il, b (%y)z’,jl
At iz 2 - oh
1 1
W, — 0 WD DY (o) = (o)
12,52 12,j2 + v 12,52 12,2 _ 12 12,J
At i3 2 oh ’

RR n~ 3471



12 F. Collino and C. Tsogka

i2,j i2,j 12,7
¢ \t3 (T n—g ¢ \"t3 e\
( mw)i%a] 7 12,j +dw i%’J + 7 i%a] (A + 2 )(vm)zl’] (vz)?ﬂ
At it 2 a H h
_I_l 1 +l 1
(%yw).% > — (0¥ )n; : (0¥ )nl P+ (oY) ? ()" 1 = (o)™ 1
12,) 12,] +dy 12,] 72 7 :)\ 12,‘]2 12,1 2
At 7 2 h ’
+3 + +
(Uyy)j% ]2 = (U;y)j% ; +( 51,)1"% ]2
z \" 3 (T n—g c \+3 PN
vy i2,j 7 it +d° (Jy it oy i1, (%)21,1 — (”z):f]
At i 2 N h
+1 _ +1 _1
(Ugy)é > — (o} )n; : (0¥,) 12+ (05 )nl : ()" 1 —(vy)y 1
12,3 12,3 dv 12,J 12,7 —()\+2M) 12,32 12,5 2
At J 2 h ’
nt+y _ g \nt3 y n+3
(azy)i,j% - (U$y)i"7% + (a-zy)z’ é
+l _1 +1 _1
(O—:fy)n - (Uﬁy) s (U;fy).n.f + (Ugy)n Iy () 1 —(vy)™ 1 1
) Lt L ge K biP o R i2,52
At ¢ 2 h
y n—l—% _ y n—% y n+% y n—%
o)t ~ OBt g PR e - )
At It 2 h

where we used the notation ¥ =i + k and j* = j + k.
The previous system of equations corresponds to the PML model in the corners, where we need a damping in
both directions. For the computation of the solution inside the PML layers in the z direction we use the same
system of equations with d¥ = 0, while for PML layers in the y direction we take d* = 0. We present in Figure
6 the values of d® and d¥ for the different PML layers.

y
[LCITIMImAEES ..
= =\ PMLy: &
% support of E‘ E iﬁii,}’d 0
E initial datas % X
= -
g5 L LMD

Figure 6: PML layers.

4.2 The finite-element scheme

For this scheme, the velocity is approximated by piecewise constant functions and the stress tensor o by @1
functions with some particular continuity properties :

® 0,y is continuous in both directions : it is approximated by @1 continuous functions.

e 0., is continuous only in the z direction : it is approximated by (); functions continuous in z and
discontinuous in y direction.

INRIA
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e 0y, is continuous only in the y direction : it is approximated by (); functions continuous in y and
discontinuous in x direction.

We present in Figure 7 the mixed finite element used.

|
— —»

Aopd L

v
|
[

|
|

¥
o

| |
- —
Q

<

Figure 7: The finite element

On a regular grid, the velocity v = (v;,v,) is computed at the points (i%,j%) and the stress tensor at the
points (i,5). We consider the general case of an anisotropic elastic material described by the elasticity matrix
C, and we denote by A the inverse of C

a1 ai2 ais

-1
A=C"=| a12 a2 a3
ai3 a23 ass

The numerical scheme can then be written in the following way (see [4] for details). For the first equation of
system (12) we have

i2,52 % i 1 +1 +1 +3 +3
i2,j X 292 m ((U;Lz);’jz _ (Uh ):LJ ? 4 (ggw);,jﬁ - (agm)zjlz
n—I—%

+l _|_l _|_l
+(Uzy)i,j1 - (Uzy)?,j ? + (Uzy):l,fl - (Uzy)?lj)

1 1
L1 11 41 41 +1 +1
i%,52 iz _ L ((Uzy);,f _ (U:E’y)::j 7y (Uzy)?l’j% _ (Uzy):’:j12

At 20h
+l +l +l _|_l
Hopint = o)y + (g )it = (@55

The second equation of system (12) results in the following 5 x 5 local system, coupling the five degrees of
freedom associated to o at each vertex (see Figure 7).

OUHER
2y 5] —_ -1 X —1 Yy
t
where .
— h b d g
Y= [waﬂ Ozx> Tyy» Uyyaawy]
[ 2a11 O a2 a2 2613 |
0 211 a12 a2 2a13
1
Ap = 5| M2 G2 2a2 0 2a33
ai2 a2 O 2a02  2a923
L 2&13 2a13 2a23 2(123 4(133 |
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and
B} [Bl, B3, 0,0, B ]
Bz= E[O; 07 BZ?«}JJ BZIJ’ Bg]
with
Bl = @)y ;3 — )iy 3
Bf = (a)y oy~ (0)y -y
9. 9,
Yy — n _ n
B; = (”y)i%’]% (vy)i% i3
B}f = (vy)i”_% A (vy):‘_% %
I, 9.
By = (Uy):%,j% - (Uy)l"_%ﬁ + (vy)?%,f% - (”y)z"_%’j_%
Bf = (Uz)?%ﬁ - (Uz):.l%’j_l + (Uz)z"_%’]% - (Uz)j—%’]—%

In the case of an isotropic elastic material the matrix A;l is given by

[a ¢ b b O
c a b b 0
A7'=1b b a ¢ 0
b b ¢c a 0
| 0 0 0 0 d |
with
(19) a:%, b:%, c:z(%gu),d:g.

We can write now the PML model associated to this scheme, using the same technique as for the Virieux scheme

(v2)?y o = 2)7 4+ )7 o

12,52 12,j 12,52
vE n+l pE) v n+1
( w)i%,]% ( ”)i%,j% e ( w)z2’]2 +( ),%,j% _ 1 (((Th )n+% ey )n+2 + (o )n+% (o )n+%)
At it 2 20h \\" 7)1t i it T \aali
v+l _ (yn y
R R L R PR ntl wtl nid nil
At Ta 2 = 2h (0ay)io® = (Oay)ij * + (Tay)p i — (Oay)y
IR R A
z\n+1 z\n z\n+l1 z\n
(vy i3 gt (vy)i%’j% o (Uy)i%,j% +(vy)z%,ﬁ 1 nt ntd 41 nt1
Al tay 2 —m((azy)zlj (0oy)i; * + (Oay)p ji — (Oay); )
PR AT AL ) py)tl AL
S I B 1 I BT S g B e
At 3 ) 20h yy/i,51 yy/ij yy/it 5t yy/it,j
and
nt3 s\ t3 y\* 32
Bt =)+ (X)),
n+ n—3 n-l— n—
et -t et
At ! 2 S
n+ 1 n n+41
(Ey)z,‘] : _( y) ] : +dy (Ey) 2 + (Ey) ,] i — M’ZlBy
At ¢ 2
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5 Dispersion Analysis

In this section we will study the properties of the discrete PML model for elastodynamics in terms of a numerical
dispersion analysis, that is a plane wave analysis. We present this analysis only for the finite-element scheme.
We consider the case of an homogeneous isotropic elastic medium characterized by the Lamé coefficients A, p
and the density p. The PML layer is in the 2 — direction (Figure 1) and we consider the case of a infinite layer.
We look for plane wave solutions of the form

)y = (@) e st oy
i2,j2 i
(vé)éji = (@;)i%e*iky(j%)h+iw(n+%)At’ I=1, ||
2,52
(U;L,zl)ZJ — (A;L,ml)iefzkyjh+mmAt7 I=1, ”
(00a)7; = (853 )ie™ Hudhtional, I=1, |
(03355 = (@33 )ie™ MM THnst, =L, |
(o307 = (G5 )ieT I TEonst, =L, |
(U;y)zrfj — (A:lzy)ie—z'kyjh+iu.)nA137 I=1, ”
and we set
("A}w)i% = (Algl)zé + (ﬁi)z% ) (TA)y)i% = (ﬁﬂ)z% + (’ﬁ;‘ It
(60)i =GR + (631 5 (85.)i = (6% + (620
6= @ENi+ (G5 ) 5 69 = 63N+ (63
(&zy)z = (A:ﬂy)’t + (&i_y)l
Plugging these expression into the discrete scheme, gives
At (Gay)it + (Gay)i
ip — Ay Oay)it T Gay)i
At ('Uz-)i% Y . 2Qh )
Cib 1y, = itz (Ghadn = (OLe):
At P s 20h
20h
ﬂ(1‘;”) . =—A ()i + (63
ét v/ih Y 20h
i2 (b1) 1 =cos kyh\ (Bay)it — (Gay)i ,
At i2 2 oh
At I {)z 1 +(’Dz)_l
(A L= A 12 12
Ci, . kb (0y).1 — (9y) _1
0 = os (1 ) S DT
A (Dy) 1 + (Dy) _1
Ktt(&g’z”)i — —bAy%
g((5'h’J_)' = <ae_ikyh/2 + ceikyh/2) (@z)z’% B (@z)i—%
At Ut h
%(&g,wll)i = —bAyM
t h
Ci (biy _ (. ikyh)2 —ikyh/2 (6””)1'% — (ﬁ””)r%
E(UW )i = (ae +ce ) 3 ,
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and
Ar 4 a(ﬁy)z% +c(’f)y)i_%
A_t(oy&”)z = —Ay A
Gi ~d, L kyh (TA)w)Z% - (ﬁw)z_%
A—t(tfm’, )i = 2bcos (%) -
Ay, (0y),3 +aldy) 1
AT = —4y -
Ci kb (02) 1 — (02) 1
Tt sg,ly, y i3 i3
At(O'yy )z 2b cos (—2 ) Z ,

where a, b, c are given by (19) and A, A, and Cj are defined by

A, = 2isin (“’TN) A, = 2isin (%)
A A
C; = 2isin (th) +d; Atcos (th), l

After some tedious calculations, we can rewrite the previous system of equations with 9, ¥y
unknowns. We obtain

.1
1,12

A
At?

+(Jz+ccos(kyh) (V)3 — (02) 3 _
QDZ% thil

k h Uy).3 — (0y) 1
—Ay%COS (L) <( vt =~ )y +

N B2\
(vw)z% = _A2

2 212Dy

(20)

with

Let us consider now the case of a medium with a unique infinite layer for which
4 = 0 ifi<0 o0
T deo ifi>0 T deo

if i <0
ifi>0,

.1
72

as the only
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d 1 remaining undetermined yet, and let us look for particular solution of the form

P wave
V), = J;e—ikm(i%)h " Rppd'z;eikm(i%)h

12

R
+Ry,dlett=(2 for i7 <0

N ~ 5oL ~ 5ol
(V)3 = Tppdpe=*e(h 4 T, dye= k=20 for i3 > 0

S wave
(IA/)Z_% = j;e—z'km(i%)h +Rssd*:eikm(i%)h
- . L1 1
+R,pdhet= (M for  + 5 <0
A ~ = .1 o
(V)3 = Tapdge =20 4 T dethelh for i3 > 0,
where
(), = | Ot
i2 (vy)i%

— —_—
Rpp Tps
R

32 <12 12 32 52

e
i

Figure 8: Schematic view on the plane waves solution in a single layer discrete model

The equations (20) are satisfied for i? # 0 if k, and k, are solutions of the two relations of dispersion (22)
(free medium) and (23) (lossy medium).

(22) X_tz-ﬁz-:i-lgll I?lz--ﬁw-
A2 | 95 | B2 | Ko Koo || Uz |’
(23) X Top | 1| Eu Ko |[ 6]
At2_®w_ h2 K12 KQQ _ﬁw_,

with )
K = V2X,(1—4aX,) + ViX,(1 - BX,)

Koy = V2X,(1 - 4aX,) + V2X,(1 - BX,)
K = (V2 - VA /XX, (1 - X,)(1 - X,)

X, = sin? (wTAt), X, = sin? (k;h)

kyh (V2 —2V2)
i Y _ s —
Xy—sm (T)’Q_Z)LIT’/B_

1
4
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18 F. Collino and C. Tsogka

and

K = v == (1 —4aX,) +V2X,(1 - X,)

K22=VX(1—4aX')+V2 (1~ BX,)

\/XX 1-%,)1-X,)

T = sin? kwh 5 2isin (“5) + do, At cos (”TM)
e ’ 21 sm(“At)

Now, the system of equations at i =0 gives the value of the reflection coefficients R, (resp. R,s) and Rps(resp.
R,,). We have used the software MAPLE to compute its Taylor expansion with respect to the discretization
step and we obtain

doo - 2d1 7'-0
Ry = ———2 (1-2r} (V2 + V7)) —~h + O(h?)
4w Vp
doo — 2d1
o Rpo = —— 2 (3 23(V +V2)) kyh+ O(4?)
2
doo - 2d% T0
Ry = ——= (1= 2rri(V; + V) vt O(h?)
deo —2d1
Rsp = Tz ( 2T1(V2+V2) _1_2T2)k h+0(h2)
with

k2 V2 1
_ [ 2 21,2 _ Y _ s _
rog = Afw?=V2k2, ri = —=, r9= >, r3=—.
p Vy» 2 VPQ’ s

From relations (24), we can easily remark that the best choice for d% consists in taking

deo

d -

[

In that case, the first order terms in (24) disappear and we obtain that the reflection coefficients are roughly
proportional to de(de +iw)h?. Two consequences can be deduced from this result. First the numerical scheme
is consistent with the continuous PML model : the spurious reflection for a given value of d, is only due to
the dispersion of the numerical scheme. Let us remark that the second order accuracy is recovered in the h?
dependency of the reflection coefficients. Then, from a more practical point of view, this dispersion analysis
implies that we can not use a value of d, too large for a given discretization step.

In the case of a finite length layer with a given number of nodes, the layer is characterized by

(d%7 d%: ---7dm—%)7
(d1, doy ..., dy,),

we are then led to find a trade off between choosing the d,, 1 ’s too weak (which would imply a strong reflection
due to the Dirichlet boundary condition) or too large (which would imply spurious reflections due to the
dispersion). A partial answer to this problem is to use a smooth profile for d(z), (di+% =d(h(i+ %)), as is done
in the classical layers models, [17]. An alternative is to determine the best coefficients for d(z) by minimizing
the numerical reflection coefficients as is done in [10] for the Helmholtz equation.

6 Numerical Results

In the following examples, we simulate elastic wave propagation in a 2-D unbounded medium. We will present
several results including the case of heterogeneous, anisotropic elastic media. In order to show the generality
of the method we give some numerical results for both schemes : the Virieux finite-differences scheme and the
finite-elements scheme. A more complete analysis is presented for the finite-element scheme, namely the discrete
reflection coefficients are computed as a function of the incident angle. Let us first set some notation and give
the characteristics of the numerical examples that will follow. We consider an unbounded domain 2 in 2D,
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occupied by an elastic material and we suppose that the initial condition (or the source) is supported in a part
of Q. The material will be characterized by its wave velocities V;, (pressure) and V; (share) in the isotropic case
and by its elasticity matrix C' in the anisotropic case. In order to solve numerically the elastodynamic problem
in Q we define a bounded domain D of a simple geometry (here it will be a square), containing the support of
the initial data, with absorbing layers (PML) on all four boundaries. For the discretisation of the problem we
take a regular grid of D composed by N x N square elements of edge h = 1/N. The time step is then computed
following the CFL condition for each scheme, more precisely we take :

[ ] At:—
V2y,

for the Virieux scheme,

o At = % for the finite-elements scheme.
P

For our numerical experiments we use an explosive source located at the point S = (zf, z5), that is

f(z,t) = F(t)g(r)

with
F(t) = —2m2 f2(t — to)e~™ Fo(i=10)* if ¢ < 2ty
0 if t > 2tg
(25) t 1 f Vs 1 is the central frequenc
=, = — ntral frequency,
0 To 0 h Ny q y

Ny is the number of points per S wave length,

and §(r) is a radial function :
(26) g - a2 Ba r ’ r

with 1p, the characteristic function of B, the disk of center S and and radius a. In the absorbing layers we use
the following model for the damping parameter d(x)

73\ 2
() = do ()
where & is the length of the layer and do is a function of the theoretical reflection coefficient (R = RJ) (see

relation (17) for 8 = 0)
1 3V,
do =1 —|=2.
0= 08 (R) 26
We first present some results in an homogeneous isotropic medium.

6.1 Homogeneous, isotropic elastic medium-Virieux scheme

We consider here an elastic medium with V}, = 2000m/s, V, = 1400m/s. The characteristics of the discretization

are
N =200, h=0.15m, S = (7.5m,7.5m),
Ny =20, § =10k and R = 0.001.

We first present some snapshots of the solution on the normal scale in Figure 9. We can remark in the snapshots
presented on Figure 9 that we can see no reflection when the results are presented on the normal scale. If we
want to see some reflection we have to magnify the results. In this example the reflection coefficient is about
0.1% as we remark by magnifying the results by a factor 200 (see Figure 10).
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-2

t=2.76ms t = 5.53ms t =8.35ms

t=11.1ms t=13.8ms t =16.7ms

Figure 9: Snapshots of 2-D elastic finite-differences simulations, using the PML absorbing layer model. The
snapshots are the norm of the velocity |[v|| = \/v} + v?

Figure 10: The snapshot at ¢t = 13.8ms magnified here by a factor 200.

6.2 Heterogeneous, isotropic elastic medium-Virieux scheme

We consider an heterogeneous elastic medium, the interface is parallel to the z; axis and located in the middle
of the frame (see Figure 11). The wave velocities in the two media are V) = 2000m/s, V,! = 1400m/s (the
upper medium), sz = 1000m /s, V2 = 700m/s (the lower medium). All the other parameters are the same as
in section 6.1 where we take V, = (V' +V.?)/2 for the computation of fo (equation 25) and V}, = V! to compute
At. The source is now located in the lower medium near the interface (at point(15m,16.2m)). We present some
snapshots of the solution on the normal scale on Figure 11. The reflection coefficient for this example is about
0.1% as we can see on Figure 12.
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Figure 11: Snapshots of 2-D elastic finite-differences simulations, using the PML absorbing layer model. The
snapshots are the norm of the velocity |[v|| = \/v} + v2.

Figure 12: Snapshot of 2-D elastic finite-differences simulations, using the PML absorbing layer model. We
represent here the norm of the velocity at time ¢t = 16.7ms, (1) is magnified by a factor 100 and (2) by a factor
1000.

6.3 Heterogeneous, isotropic elastic medium. Finite-element scheme

The heterogeneous elastic medium considered here is characterized by the velocity model presented on Figure
max Vj,

13, we have = 2.1 and V,, = 1.6V;. For the discretization we take V, and V; piecewise constants (one

min Vj,
value per element).
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The Vp velocity model

Vp (m/s)

[ above 1365
1300 - 1365
1235 - 1300
1170- 1235
1105 - 1170
1040 - 1105
975- 1040
910- 975
845- 910
780- 845
715- 780

below 715

LR

axVp

nVp

Figure 13: The velocity model for the heterogeneous medium, o

=2.1and V, = 1.6V,.

The size of the grid is 200 x 200, h = 0.15m, Ny = 10 and the source is located at the point (15m,3m). We
present, on Figure 14, three experiments with different sizes of the absorbing layer, namely, in the first we take
6 =5h — R =0.01, in the second § = 10h — R = 0.001 and finally § = 20h — R = 0.0001.

@)

t = 3.55ms t="T.1ms t = 10.65ms

Figure 14: Snapshots of 2-D elastic finite-elements simulations, using the PML absorbing layer model with
8 = 5h. The snapshots are the norm of the velocity |[v|| = /v? + v
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5h 10h 20h

4
t=17.75ms

Figure 15: Snapshots of 2-D elastic finite-elements simulations, using the PML absorbing layer model with
6 = b5h, 6 = 10h and 6 = 20h. All snapshots are magnified by a factor of 10.

on Figure 15 we present the snapshots of the solution magnified by a factor of 10. We remind that the
reflection coefficients depend on the length of the layer, more precisely we have :

e A reflection of about 1% for § = 5h,
e a reflection of about 0.1% for § = 10h,
e and a reflection of about 0.01% for § = 20h.

These reflection coeflicients which are theoretical are confirmed by the numerical examples.

6.4 Homogeneous, anisotropic elastic medium. Finite-element scheme

In this example we consider an anisotropic elastic solid, the apatite. We want to point out that in the case
of anisotropic elastic materials only lower order absorbing boundary conditions are known and they are quite
difficult to implement [2]. On the contrary the generalization of the PML model to the anisotropic case is
straightforward and there are no supplementary difficulties for the implementation. Moreover the results are
very satisfactory as we can see in the following Figures.

The characteristics of the problem are : N = 200, ~ = 0.15m, N, = 10 and the source is located at the center
of the frame S = (15m, 15m). We present on Figure 16 three experiments, corresponding to: § = 5h— R = 0.01,
6 = 10h — R = 0.001 and 6 = 20h — R = 0.0001. We can see on Figure 16 that there is no reflection when the
results are presented on the normal scale as it was already the case for an homogeneous medium. However, we
can see some reflection by magnifying these results as shown on Figure 17. The reflection coefficients obtained
numerically are close to the theoretical one, more precisely we obtain :

e A reflection of about 1% for § = 5h,

e a reflection of about 0.1% for § = 10h,
RR n~° 3471
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t=13.2ms t = 16.5ms

Figure 16: Snapshots of 2-D elastic finite-elements simulations, using the PML absorbing layer model with
8 = 5h. The snapshots are the norm of the velocity ||v|| = \/v} + v?

S5h 10h 20h

N\ VAN Z1\

t =16.9ms

Figure 17: Snapshots of 2-D elastic finite-elements simulations, using the PML absorbing layer model with
8 = 5h, § = 10h and § = 20h. The snapshots are the norm of the velocity |[v|]| = \/v? + v magnified by a
factor 10.

e and a reflection of about 0.02% for § = 20h.

6.5 Reflection Coefficients

In this section we present reflection coefficients computed using numerical simulations. We consider an homoge-
neous isotropic elastic solid (V, = 5.710m/s, V; = 2.93m/s) and we use the finite-element scheme for the space
discretization.
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............................................

Figure 18: Geometry for computing reflection coefficients.

Figure 18 shows the geometry of the problem consisting of two computational domains D; and D,. To
compute the reflection coefficient we consider the solution at points near the upper boundary of D; as shown
on Figure 18. Denoting by (Uy);(resp. (Uz);) the velocity at point M; in Dj(resp. D2) we take

. diV(UQ)i - diV(Ul)i

()09 = T2
1) AR
(Rae)(0) = R

That is the expression for the reflection coefficients in the case of a pure P-wave source. In the same way we

can define
_ curl(Us) — curl(Uy)

(Rss)(6:) = curl(Ty)
_ div(Us) — div(U)
(Rsp)(6:) = jiV(U2) -

in the case of a pure S wave source. For our examples we use a P-wave source function described by (25,26)
with N = 16. For this source function the rotational of the velocity is smaller then the divergence by a factor
10719 so that the reflection coefficient R, is negligible.

Remark 3 Relation 27 is used to compute reflection coefficients at each time step, to obtain results presented
on Figure 19 we integrate over time.

The grid size is 400 x 200 for D1, 400 x 300 for Dy and h = 0.5m for both domains. The source is located at
point (200, 80) of the grid. As we can see on Figure 18 the domain is surrounded by absorbing layers, in which
we take

(28) d(z) = do (%)4

where 6 is the length of the layer and dy is given by

1\|4V,
do = |log = )| 22 .
’ ‘Og(R) 26
We present three experiments with § = 5h — R = 1074, § = 10h — R = 1076 and § = 20h — R = 1078, To

examine the performance of the PML model, comparisons with the 1st, 2nd and 3rd order Higdons absorbing
boundary conditions are presented.
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Reflection Coefficients

Rep (d8)

: T T //7777/\// —~— ~/
20— — /
,/\/

-140- — PML10
ML 20

-160—

-180 T T T T T
0 10 20 30 40 50 60 70 80
Incidence Angle (degree)

Figure 19: Comparison of R,, for the Higdon ABC’s and PML.

Remark 4 The reflection coefficients for the absorbing boundary conditions proposed by Higdon are the theo-
retical ones. We obtain them by applying an operator of the form

H (ﬂi% +V,,6%> .
For the example we have taken
e Form=1:p3 =1,
o Form=2: 01 =1, 3 =V,/Vs(=1.95),
o Form=2: 01 =1, =15 and B3 =V, /Vs(= 1.95).

As we can see on Figure 6.5 for almost all angles of incidence the PML absorbing layer model gives better results
then the absorbing boundary conditions of first and second order and this even for the 5h length absorbing layer.
Compared to the third order absorbing condition the PML layers of 10h and 20h are substantially better except
near the 60° degree angle. We want to point out that in this example we compare the reflection coeflicients
provided by the continuous Higdon model to the one given by the discrete PML model. It is known that the
Higdon reflection coefficients increase when discretization is used.

The numerical results presented in sections 6.1, 6.2, 6.3, 6.4 and 6.5 show the generality of the PML model
which can be easily applied in several numerical schemes and gives satisfactory results even in the case of
anisotropic heterogeneous elastic media. The reflection coefficients are near the theoretical ones for all the
presented experiments, so we can resume the following : For the considered models of the damping factor the
reflection coefficients are about 1% for a 5h PML layer length, below 0.2% for a 10h PML layer length and
below 0.1% for a 20h PML layer length for all experiments. In practice one should choose the length of the layer
as a function of the scale of the problem and the requested reflection coefficient. In the numerical examples that
we have presented the scale of the problems was about 15 wavelengths of P-wave (),) in each direction, in this
case a PML layer with 6 = 5h (that is about 0.5 A,) is sufficient and gives better results than the second order
absorbing condition. However, for larger scale computations the numerical dispersion will be more important
and thus a PML layer with § = 5h would probably not give the expected results. Thus for large scale problems
one should consider a PML layer with § > 10h. We want to point out, that even in this case the additional cost
remains modest, given that the layer only represents a small portion of the total grid. Let us finally remark
that the PML model can be easily extended to the case of Rayleigh waves. (Experimental results not shown in
this paper have demonstrated a good absorbtion of Rayleigh waves).

7 Conclusions

We have presented in this paper a generalization of the PML absorbing layer model for the elastodynamic
problem in the case of heterogeneous, anisotropic media. The implementation of this model was presented in
the 2D case but it can be straightforwardly extended to the 3D case. The superiority of this model compared
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to the absorbing boundary conditions proposed by Higdon was shown by numerical results in the case of an
isotropic homogeneous medium. Moreover we have shown by several numerical examples the efficiency of this
model : remarkable results even in the case of heterogeneous, anisotropic media. Finaly we want to point out
the ease of the generalization and the implementation of this model in the case of an anisotropic elastic medium
in comparison with the complexity of the respective absorbing boundary conditions.
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