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Abstract: This paper describes a method to upgrade projective reconstruction to affine
and to metric reconstructions using rigid general or planar motions of a stereo rig. We make
clear the algebraic relationships between projective reconstruction, the plane at infinity
(affine reconstruction), camera calibration, and metric reconstruction when a 3-D scene is
observed with a moving stereo rig. Based on an in-depth algebraic analysis we show that
all the computations can be carried out using standard linear resolution methods. We carry
out a theoretical error analysis which quantify the relative importance of the accuracies of
projective-to-affine conversion and affine-to-Euclidean conversion. Extensive experiments
performed with calibrated and natural data confirm the theoretical error analysis and are
consistent with a sensitivity analysis performed with simulated data.

Key-words:  self-calibration, projective reconstruction, metric reconstruction, rigid mo-
tion, stereo vision, affine calibration, epipolar geometry.
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Calibration stéréo avec des mouvements rigides

Résumé : Cet article présente une méthode qui permet de convertir une reconstruction
projective en une reconstruction affine ou en une reconstruction métrique utilisant les mou-
vements rigides d’une téte stéréo. Nous rendons explicite les relations algébriques existant
entre une reconstruction projective, le plan & linfini, la calibration d’une caméra et une
reconstruction métrique lorsque la scéne tri-dimensionnelle est observée avec une téte stéréo
en mouvement. Sur la base de cette analyse nous sommes capables de montrer que tous
les calculs peuvent étre faits avec des techniques de résolution linéaire. Nous analysons
Perreur et quantifions I'importance relative de la calibration affine par rapport & la calibra-
tion métrique. De nombreuses expériences effectuées avec des données simulées, calibrées et
naturelles confirment ‘analyse de I’erreur et sont cohérentes avec une analyse de sensibilité
au bruit.

Mots-clé : auto-calibration, reconstructio projective, reconstruction métrique, mouvement
rigide, vision stéréo, calibration affine, géométrie épipolaire.
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1 Introduction, background, and contribution

In this paper we address the following problem: An uncalibrated stereo rig observes an
unknown 3-D scene while it performs a set of rigid motions. A 3-D Euclidean reconstruction
of the scene is desired. In the general case, 3-D structure can be recovered only up to a 3-D
projective transformation. However, if the stereo rig undergoes rigid motions, the projective
ambiguity can be reduced to affine or to Euclidean. It is well known that the process of
converting projective reconstruction into Euclidean reconstruction is equivalent to camera
calibration.

The relationship between projective, affine, metric spaces and camera calibration has
been thoroughly investigated both in the case of a moving unique camera and of a moving
stereo rig. The Kruppa equations [18], [7], [16], [12] consists of a system of polynomial
equations relating the intrinsic camera parameters to the epipolar geometry between two
views taken with the camera. However, solving the Kruppa equations requires non-linear
resolution methods. An alternative solution consists to, first, recover affine structure and,
second, solve for camera calibration using the affine structure. This stratified approach [8]
can be applied to a single camera in motion [9], [17] or to a stereo rig in motion [24], [6].

Affine calibration amounts to recover the position of the plane at infinity or, equivalently,
the infinite homography between two views [22]. In practice this may be done using three
classes of methods:

(i) special camera motions such as pure translations of a stereo rig [19], [21], rotations
around the camera’s center of projection [10], [20], planar motions of a stereo rig [2],
[3] or of a single camera [1];

(ii) exploiting special scene structure such as parallel lines, or

(iii) wusing fized entities under rigid motion [24].

In this paper we investigate linear algebraic methods for recovering metric structure, af-
fine calibration, and intrinsic camera parameters with an uncalibrated stereo rig, by perfor-
ming a set of rigid motions. More precisely, let P, and P, be two projective reconstructions
of the same set of 3-D points obtained with an uncalibrated stereo rig before and after a
rigid motion. Each one of these two reconstructions has a projective basis associated with
it and hence they are related by a 4x4 collineation H;» which is related to the rigid motion
D1 by ([24], [6]):

H12 ~ H;lEDlgHPE (1)

where “~" designates projective equality (defined up to a scale factor) and Hpg is a 4x4
collineation allowing the projective reconstruction to be upgraded to an Euclidean one. It
will be shown that this collineation encapsulates affine calibration of the stereo rig and
the intrinsic parameters of the left camera. If a 3-D point M has projective coordinates
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4 Radu Horaud, Gabriella Csurka, and David Demirdjian

M, € P, and M, € Py then My ~ H12M;. The Euclidean coordinates of the same point
are Ny ~Hpp M and Ny ~ Hpg M5 with Ny ~ D3N .

Zisserman et al. [24] showed that the plane at infinity can be recovered from one ei-
genvector of matrix Hy,' and that intrinsic parameters of the left or right cameras can be
recovered from three wvirtual image points that are fixed under Euclidean motion. Their
method necessitates the computation of the epipolar geometries associated with the left and
right camera motions in addition to the epipolar geometry associated with the stereo rig
itself. The method described in this paper only needs the epipolar geometry of the stereo
rig.

Devernay and Faugeras [6] showed that one possible factorization of His in eq. (1) is
such that Hpg becomes a lower triangular matrix and the fourth row vector of this matrix
is the plane at infinity. The authors propose a non-linear minimization method to directly
estimate Euclidean upgrading, i.e., the entries of Hpg, from point correspondences between
two stereo image pairs (before and after the motion). The method of Devernay and Faugeras
gives interesting algebraic insights, although the algebraic properties associated with Hpg
are not used in practice. Moreover, the intrinsic camera parameters do not appear explicitly.
In practice it is sometimes useful to assume that some of the intrinsic camera parameters
are known (such as image skew) but this type of constraint cannot be used with [6].

This paper has the following contributions. We show that with an appropriate choice
for the Cartesian reference frame associated with the rigid motion, the matrix Hppg is
parameterized by the plane at infinity and by the intrinsic parameters of the left camera.
So, the homography Hpp in eq. (1) directly encapsulates projective to Euclidean upgrading,
affine calibration and left-camera calibration. This particular parameterization of Hpg
allows for an error analysis which determines the relative importance of affine calibration
and metric calibration as well as the relative importance of the various intrinsic camera
parameters. This error analysis reveals that the error generated by the projective-to-affine
upgrade is considerably larger than the errors associated with projective reconstruction and
with the affine-to-Euclidean upgrade. Therefore, projective-to-affine calibration must be
thoroughly studied.

The advantage of using a moving stereo rig rather than a moving single camera is that
the plane at infinity is an eigenvector of Hy,' or of H;,. We show that for a sequence of
general rigid motions the corresponding collineations have a common eigenvector associated
with the double eigenvalue 1. This eigenvector is the plane at infinity of the stereo rig and
therefore it is an intrinsic property of the rig. We extend this result to a sequence of distinct
planar motions.

This property allows us to estimate the plane at infinity from any number of motions
(general, planar, or a combination of both), the eigenvector being the common root of a
set of linear equations. Once this eigenvector (the plane at infinity) has been recovered, the
parameterization of Hys in terms of Hpp and D15 provides a simple algebraic expression for
the infinite homography between the images associated with the left camera before and after
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a motion. This means that, unlike the Kruppa equations and unlike the method described
in [24] it is not necessary to determine the epipolar geometry associated with the left (or
right) camera motion.

We describe extensive experiments done with simulated data, calibrated data, and real
data. The noise sensitivity analysis performed with simulated data allows to determine the
optimal experimental conditions under which the method is expected to yield reliable camera
calibration and metric reconstruction. The experiments performed with calibrated data
allows to compare this self-calibration method with more classical off-calibration methods
where the 3-D Euclidean geometry of the calibrating object is known in advance. The results
obtained with natural data confirm both the error analysis and the noise sensitivity analysis,
namely that some calibration parameters are more critical than others and that image point
localization with sub-pixel accuracy is crucial.

Aside from the theoretical contributions cited above which make self-calibration of a
stereo rig to be very attractive, there is another major advantage of a camera pair over a
single camera. When a single camera moves the epipolar geometry between the first, second,
third positions an so forth changes with camera motion and therefore a new fundamental
matrix has to be estimated each time a new camera motion is performed. When a stereo rig
moves the epipolar geometry between the left and right cameras of the stereo pair remains
unchanged. Therefore one can use all the image pairs available along a sequence to estimate
the same fundamental matrix. Moreover, the stereo rig motion can compensate for flat
scenes which are known to be an important source of numerical instability in fundamental
matrix estimation.

1.1 Paper organization

The remainder of the paper is organized as follows. Section 2 recalls the projective geometry
associated with a stereo rig: projective reconstruction in a sensor-centered projective basis.
Section 3 analyses in detail the algebraic properties of an uncalibrated stereo rig undergoing
rigid motion or, equivalently, a moving rigid scene being observed by a stereo rig. Section 4
establishes a parameterization for the projective to Euclidean upgrade transformation (pro-
position 1) and describes how to compute the plane at infinity of a stereo rig either from
a sequence of general motions (corollary 1.1) or from a sequence of distinct planar motions
(corollary 1.2). It is shown that the infinite homography associated with the left (or right)
camera motion can be obtained in closed form. Section 5 provides an algebraic expression for
the metric reconstruction error as a function of projective reconstruction, affine calibration,
and metric calibration. Implementation, simulations and experimental results are described
in detail in section 6. Finally section 7 provides a discussion and directions for future work.
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2 Preliminaries

2.1 Notations

Throughout the paper matrices are typeset in boldface (H, P, I), vectors in slanted boldface
(m, M), and scalars in italic. It is important two distinguish between homogeneous 4-
vectors which are designated by upper case letters and homogeneous 3-vectors which are
designated by lower case letters. A 4-vector will often be designated as the concatenation of

a 3-vector with a scalar: A = ( Z ) 3-vectors will sometime be designated by over-lined

lower case letters (@). H' is the transpose of H.

2.2 Camera models

A pinhole camera projects a point M from the 3-D projective space onto a point 1 of the
2-D projective plane. This projection can be written as a 3x4 homogeneous matrix P of
rank equal to 3:

m~PM (2)

The equal sign designates the projective equality — equality up to a scale factor. If we restrict
the 3-D projective space to the Euclidean space, then it is well known that P can be written
as (the origin and orientation of the Euclidean frame is arbitrarily chosen):

Pr~K(R t)~(KR Kt) 3)

If we choose the standard camera frame as the 3-D Euclidean frame (the origin is the center
of projection, the xy-plane is parallel to the image plane and the z-axis points towards the
visible scene), the rotation matrix R is equal to the identity matrix and the translation
vector t is the null vector. The projection matrix becomes:

The most general form for the matrix of intrinsic parameters K is an upper triangular matrix
defined by 5 parameters:

a rTa ug
K= 0 ka v (5)
0 0 1

where « is the horizontal scale factor, k is the ratio between the vertical and horizontal
scale factors, ra is the image skew and uy and vy are the image coordinates of the center of
projection.

It will be useful to consider camera models with a reduced set of intrinsic parameters,
as follows:
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o four-parameter camera where either r =0or k=1

e three-parameter camere with r = 0 and k=1

In practice the scale factor can be obtained from the cameras’ and frame grabbers’ technical
sheets. In general it is not equal to 1 but the image coordinates can be rescaled such that
we get k= 1.

2.3 The geometry of a stereo rig
A stereo rig is composed of two cameras fixed together. Let P and P’ be the projection
matrices of the left and right cameras. We can write these 3x4 matrices as:
P~(P p)
P~ ( P p' )
It is useful to recall the expressions of the infinite homography between the left and right

images as well as the left and right epipoles:
1

H,~PP (6)

and
e ~ —Hp'+p (7
e ~ —Hyp+p (8)

In the uncalibrated case and without loss of generality the two projection matrices
can be written as:

P
P’

1R

(L o) )
(7 ») (10

1R

In the calibrated (Euclidean) case one can use the following projection matrices (K’
is the matrix of right camera intrinsic parameters and R and ¢ describe the orientation and
position of the right camera frame with respect to the left camera frame):

Pp ~ (K 0)

P, ~ (KR K't) (11)
With these expressions for P and P’ we obtain the following parameterizations:
H, ~ KRK' (12)
e ~ —-KR'"t (13)
e ~ K't (14)
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2.4 Projective reconstruction with a stereo rig

Given a stereo rig with two projection matrices P and P’, it is possible to compute the 3-D
projective coordinates of a point M from the equations ym = PM and p'm' = P'M,
where m and m' are the projections of M onto the left and right images and p and p' are
two unknown scale factors:

!

P m O M
(0 & )| s )=0 (13
7

Matrices P and P’ can be estimated from point matches without any camera calibration:
Indeed, given at least 8 left-right image point correspondences, one can estimate the fun-
damental matrix which encapsulates the epipolar geometry for a pair of uncalibrated views
[23], [11]. Several authors proved that the two projection matrices can be obtained from the

epipolar geometry up to a 4-parameter projective mapping [17]:

P ~ (I 0) (16)
P~ (H; ae€) (17)

with
H,~H, +eéea' (18)

where Hy, and e’ were defined above, a is an arbitrary 3-vector and a is an arbitrary scale
factor. It will be shown below that the 4-vector AT = (a' @) has a simple but important
geometric interpretation.

2.5 Projective basis associated with a stereo rig

Equation (15) allows one to compute the projective coordinates of a 3-D point M in a
sensor-centered projective basis. A projective basis is defined by 5 points in general position
and let us make explicit the physical positions of these points. We show that these points
are determined from P and P’ defined above (equations (16) and (17)) and therefore they
are linked to the stereo camera pair, Figure 1.

The first point is the center of projection of the left camera, denoted by C and defined
as the null vector of the projection matrix:

PC~0

We obtain: C~ (0 0 0 1 )T. The second point is the center of projection of the right
camera whose projection onto the left camera is the left epipole:

PC' ~e= e
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A
C':( c,e>

C' is the null vector of the projection matrix P’: PC' = 0 from which we get:

We obtain:

M e+ce =0

With e’ ~ H,e we obtain ¢/ = —1 and finally we get:
I —€
o= (%)

The three remaining points can be chosen to lie in the space plane associated with the
plane homography H,. In theory, there is a 3-parameter family of plane homographies
satisfying the same epipolar geometry, i.e., H, 4+ e/v " for any 3-vector v. In practice one
can choose one such vector and without loss of generality we take v = 0. Let A;, A,
and Aj be three points belonging to the space plane 7. Clearly the left-image and right-

image projections of these points must simultaneously satisfy PA; ~ a;, P'A; ~ a!, and
a; ~ H,a;. Finally we obtain the following projective basis:

(1) an(5) a=(5) 4=(5) e=(7)

Moreover, if the left image points a;, as, as, and —e are given the coordinates of the
canonical basis of the projective plane, we obtain the canonical basis of the projective space,
(0001), (1000), (0100), (0010), and (1111).

3 Rigid motion

3.1 Sensor motion

The projective basis just defined is physically attached to the camera pair. If the camera
pair undergoes a 3-D rigid motion (the cameras are rigidly attached to each other and their
internal parameters remain unchanged) then the projective basis undergoes a rigid motion
as well. We consider two positions of the sensor, i.e., the stereo pair, position 1 and position
2, before and after such a motion. The projective coordinates of a 3-D point M are related
to its Euclidean coordinates by the formula:

Nz' ~ HPEM,

where M ; and N; are respectively, the projective and Euclidean homogeneous coordinates
of the same point M when the stereo pair is in position ¢. Since the stereo camera pair
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