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Abstract: The interest in unstructured meshes for Computational Fluid Dynamics
(CFD) applications appears to be increansingly important in the industrial community.
Industrial applications require the numerical simulation of complex flows (i.e. the
underlying flows exhibit localized high variations of physical quantities) around or
within complex geometries. Unstructured meshes are particularly well suited to these
kinds of simulation due to their ability in accurately discretizing complex computational
domains and, to their flexibility in dynamically refining and derefining, or deforming,
in order to match the underlying flow features. Concerning flow solvers, the main
question appears to be the lack of efficiency demonstrated by unstructured mesh solvers
compared to structured ones. Many efficient methods developed in the structured
context are not easily extensible to unstructured meshes and much research work has
yet to be done in this direction. During the last ten years, several such works have
demonstrated that multigrid principles can yield robust and efficient unstructured mesh
solvers (see for example Lallemand et al.[12], Koobus et al.[13], Carré[1], Mavriplis et
al.[19]-[20]-[21]). In this report, we describe ongoing research activities aiming at the
construction of efficient and robust unstructured multigrid solvers for complex 2D and
3D flow simulations. Both academic and industrial aspects are considered.
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Algorithmes multigrille linéaires paralléles pour
I’accélération de calculs d’écoulements compressibles

Résumé : L’utilisation de maillages non-structurés en Mécanique des Fluides Nu-
mérique (MFN) est aujourd’hui une option largement adoptée par la communauté
industrielle. Dans ce domaine, les applications d’intérét industriel demandent la simu-
lation numérique d’écoulements autour ou a l'intérieur de géomeétries complexes; ces
écoulements sont en général caractérisés par de fortes variations locales des quantités
physiques modélisées. Pour ces raisons, les méthodes de discrétisation spatiale par
éléments finis non-structurés sont particuliérement bien adaptées aux simulations nu-
mériques ciblées. L’un des atouts majeurs des maillages non-structurés réside dans les
possibilités de raffinement/déraffinement dynamique et de déformation dans le cas de
calculs instationnaires en maillages mobiles. Pour ce qui concerne les carcatéristiques
de résolution, la constatation qui s’impose aujourd’hui encore est le manque d’efficacité
des solveurs en maillages non-structurés comparés a leurs homologues structurés (dis-
crétisation par différences finis ou volumes finis en grille réguliére). Souvent, des mé-
thodes efficaces développées dans un contexte structuré ne s’étendent pas facilement
(ou pas du tout) au cas de maillages non-structurés. Au cours de ces dix derniéres an-
nées, plusieurs travaux ont démontré que les stratégies multigrille permettent d’obtenir
des solveurs en maillages non-structurés qui sont efficaces et robustes (voir par exemple
Lallemand et al.[12], Koobus et al.[13], Carré[1], Mavriplis et al.[19]-[20]-|21]). Dans ce
rapport, nous décrivons nos travaux récents dans ce domaine visant & construire des

solveurs multigrille paralléles pour I'accélération de calculs d’écoulements complexes
2D et 3D.

Mots-clés : Ecoulements compressibles - Equations de Navier-Stokes - Maillages
non-structurés - Méthodes multigrille - Calcul Paralléle
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1 Introduction

The present work is concerned with the development and the evaluation of parallel
linear multigrid algorithms for the acceleration of compressible steady flow calculations.
In the first part of this report, we focus our attention on the two-dimensional case. The
starting point consists in an existing flow solver which is based on an averaged form of
the full Navier-Stokes equations coupled to a k — ¢ turbulence model[1]. The spatial
discretization combines finite element and finite volume concepts and is designed on
unstructured triangular meshes. Steady state solutions of the resulting semi-discrete
equations are obtained by using an Euler implicit time advancing strategy which has
the following features : linearization (approximate linearization of the convective fluxes
and exact differentiation of the viscous terms), preconditioning (the Jacobian matrix
is based on a first-order Godunov scheme) and local time stepping and CFL law (a
local time step is computed on each control volume). Each pseudo time step requires
the solution of two sparse linear systems (respectively, for the mean flow variables and
for the variables associated to the turbulence model). A multigrid strategy by volume
agglomeration is introduced in order to allow for an efficient treatment of these two
systems. This multigrid method is based on the use of macro elements (macro control
volumes) type coarse discretizations of the computational domain where the problem
is to be solved on the finest mesh. Starting from the finest mesh, a “greedy” type
coarsening algorithm is applied to generate automatically the coarse discretizations
(see Lallemand et al.[12]).

Parallelism is introduced in the overall flow solver by using a strategy that combines
mesh partitioning techniques and a message passing programming model. The MPI
environment is used for the implementation of the required communication steps. This
means that both the discrete fluxes calculation and the linear systems solution are
performed on a submesh basis ; in particular, for the basic linear multigrid algorithm
which is multiplicative (i.e. the different levels are treated in sequence with inter-
dependencies between the partial results produced on the different levels), this can
be viewed as an intra-level parallelization which concentrates on the smoothing steps
performed on each member of the grid hierarchy. A necessary and important step in
this adaptation was the construction of appropriate data structures for the distribution
of coarse grid calculations. Here, this has been achieved by developing a parallel
variant of the original “greedy” type coarsening algorithm which now includes additional
communication steps for a coherent construction of the communication data structures
on the partitioned coarse grids. The constructed parallel linear multigrid algorithm is
evaluated in details using two test cases : the laminar viscous flow around a NACA0012
airfoil and the turbulent flow around a RAE8220 profile. Numerical and performance
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4 G. Carré, S. Lanteri and L. Fournier

results are presented and discussed for flows calculations that have been performed
on a SGI Power Challenge Array MIMD system and a Pentium/P6 200 Mhz cluster
where the interconnection is realized through a FastEthernet (100 Mbit/s) switch.

The second part of this report is concerned with the implementation and evalua-
tion of a parallel linear multigrid strategy in the N3S-NATUR industrial CFD package.
This activity is supported by a consortium consisting of three end-users of N3S-NATUR
: EDF, SNECMA and RENAULT. N3S-NATUR is dedicated to the numerical simulation
of complex three-dimensional compressible steady or transient flows. It is currently
able to compute laminar or turbulent flows governed by the Navier-Stokes equations.
Turbulence modelling is based on a k£ — € model using wall laws. It can also handle
flows involving one or more different chemical species. The basic spatial approxima-
tion methods and time integration strategies are very similar to those described in
the previous paragraph. Moreover, N3S-NATUR is able to simulate unsteady flows on
deforming meshes (see Nkonga and Guillard [24]). The complete software package has
been ported on several distributed memory MIMD parallel systems (see Lanteri and
Loriot [15]). The potentiality of the multigrid approach will be illustrated on several
representative test cases.

The remaining of the report has the following structure : section 2 is concerned
with the mathematical formulation of the problem in the two-dimensional case and its
discretization in space and time ; section 3 describes the linear multigrid algorithm ;
section 4 is devoted to the parallelization aspects ; section 5 presents and discusses nu-
merical and performance results using two academic test cases around airfoils ; section
6 describes the extension of the present work to the simulation of three-dimensional
flows using the N3S-NATUR industrial CFD package ; finally, 7 draws some conclusion
and future works.

2 Mathematical model and approximation methods

2.1 Mathematical model

In this section we concentrate our attention on the two-dimensional case. We con-
sider the complete compressible Navier-Stokes equations coupled with a two-equations
turbulence model. When the compressible flow is turbulent, an averaged form of the
Navier-Stokes equations is chosen. In that case, the Favre averages are used for the
instantaneous variables except for the pressure and the density for which the Reynolds
averages are used instead. The Reynolds stress, which appears after the statistical
treatment of the equations, is modelled using the Boussinesq assumption ; the lat-

INRIA



Parallel linear multigrid algorithms for compressible flows 5

ter involves an eddy viscosity term defined by a length scale which is related to the
dissipation rate (¢) and to a velocity scale (v/k). In order to close the system and deter-
mine the turbulent quantities, two additional transport equations, initially described
by Launder and Spalding[17] need to be solved. These equations can be written, in a
divergence form, as :

oW OF(W)  OG(W) S(W)
o " or T oy E( dy )
L5 1 (1)
a — ) 9 —S(W)>
R R,
+ o dy + Q(W)

where : W (z,y,t) is the vector of conservative variables while F'(WW) and G(W) denote
the convective fluxes :

P pU pu
pu pu® +p' puv
2 /
| pv . puv _ pv° +p
W= El ’ F(W)_ (E'+p')u ’ G(W)_ (El+pl)?)
pk puk pvk
pe pue PUE
with :
(p=(7— 1%/06
E = pe + E,o(u2 +v?) + pk
< ! 2
p =p+3pk
) 2
E =F + ppk with =—-14——
\ 3(7 - 1)

In the above equations, p is the fluid density, u and v are the z and y velocity
components ; E' and e respectively denote the total energy and the internal energy per
unit of volume ; p' is the pressure. The laminar viscous fluxes R(W) and S(W) are
given by :

0 0
Tex Ty
Ty Tyy
— UTmm+UTm +cx — UTIy+UTyy+cy
R(W) Tt | S (W) ok
For dy
RR n° 3462 O s
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6 G. Carré, S. Lanteri and L. Fournier

where :
_ Oe ok
Ca Oz ﬁ
_ Y p0e ok
“ =p oy B

while R(W) and S(W) stand for the turbulent viscous fluxes :

0 0
L, ,
Toy Toy
R(W)z uTh, +ng + G ’ S'(W)z +v7'%y+cy
akax akﬁy
1 Oe 1 Oe
o Oz o dy

where :

vy Oe 1+ 30k
~Pos o, oz
. yOe 1+30k
© TRoy T o oy

ApE

On the other hand :

ou; Ou;\ 2 0 ,
Tij:M<u+ U,])__%Zdij with u; =u and us =v

ox; ' oz;) 3"9
ou; Ou; 2 Ouy,
t __ 1 J _ -7 R S
Tij = <8xj + &ci) 3 0z %

Finally Q(W) is a source term involving the production term P :

0
0
0
QW) =1 pB(—pe+P)
—pe+ P
€ pe
Cflk Ce, k
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Parallel linear multigrid algorithms for compressible flows 7

where :

2 Ou; Ou; 2 0uy ou;
P=——k5i'— ’ J 2% iq -
[3p J e ((%J + 8:@ 363:k ])] aSEj
¢y =009 , ca=144 |, ¢c=192 , 0.=13 , o =1
Rt = pOUOLO ’ Pt = % ) e — pOUOLO

Mt A Ho

In the above vectors, 7 and 7' respectively represent the laminar and turbulent
stress tensors, u is the molecular viscosity and pu, the turbulent eddy viscosity ; R. and
R; denote the laminar and turbulent Reynolds numbers ; P, and P, denote the laminar
and turbulent Prandtl numbers which are respectively equal to 0.72 and 0.9, and 7 is
the ratio (2)f specific heats of the fluid ; pu is computed from the Sutherland law and

e = cﬂp—. The turbulence model is used in conjunction with wall functions|9] deduced
€

from physical considerations. In fact, the previous turbulence equations are only valid
for high-Reynolds number regions. The usual strategy is to locate the boundary I' of
the computational domain up to a small distance § away from the wall in the turbulent
region (far-wall zone), which gives two positive Dirichlet conditions for k£ and € :

au U2 U3
Uf:/,ba—y , |F:\/—£_ , €|F:k—g (2)
m

Let @ and 7 respectively denote the normal and tangential vector at any point of
the wall I'. The boundary conditions on the body are expressed from :

- a slip condition, applied to the normal velocity : ?ﬁ =0,

- the tangential component of the shear stress which is deduced from the friction
velocity 7, = pu} where :

R. p § u?
Hep 0t g v _Bedpur 4y

V.7 =

1
uy l— log (M) + C] otherwise
K 7

where the constants k and C are set to k = 0.419 and C = 5.445.
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8 G. Carré, S. Lanteri and L. Fournier

2.2 Spatial discretization methods

The spatial approximation is a combination of both finite volume and finite element
methods. The computational domain 2 is assumed to be a bounded polygon and we
introduce the following definitions :

e T, is a triangulation of €2,
e 1, is the total number of vertices in 7,

° (;SiT is the P1 finite element basis function associated with the vertex s; of triangle
T.

We derive a new finite volume partition of €2, called the dual mesh of 7, and made
of the control volumes C; around each vertex s; (see Fig. 1).

Figure 1: Control volume C;

The spatial discretization of Eq. 1 is derived from the combination of a finite
volume scheme applied to the convective terms and a finite element scheme applied to
the diffusive and source terms. Theoretical proofs of the compatibility between these
two formulations can be found in Mer|22]. The semi-discrete system, resulting from
the application of the Green-Ostrogradsky’s formula, can be written as :

INRIA



Parallel linear multigrid algorithms for compressible flows 9

area(Cs) VL + / (F (W), + G (W)n,) do

B (s )

eTsET

S // ( 8£?+S(W)%>d?

T,s;€T

+ 3 //Q )T dT

T,s;€T

(3)

where W1 = W™ — W!. Solving the discrete system consists in finding, at each
new time level ¢"*!, the vector W™ using Eq. 3 where the following approximation
methods are used :

o diffusive and source terms are calculated on each triangle using a classical P1-
Galerkin (centered) formulation,

e convective terms : the flux between two neighboring control volumes C; and Cj, is
calculated through the interface 0C;; (see Fig. 2) using an upwind finite volume
formulation. The contribution for mesh vertex s; is obtained by summing the
elementary fluxes calculated with all neighbors s; :

[FWw o= > [FwPydo+ [ Fovmde ()

s €K(si)aCy; dC;NTy,

where :

( F (W, 7) = F(W)n. + GW)n,
[', = 02 corresponds to solid and farfield boundaries
GCZ-J- = 80, N 80 [G1 g l]] U [ ij) Gz,ij]
K(s;) is the set of neighboring vertices to s;
1/2] / 7do is the normal vector to the interface 0C;;
\ 9C;;

For the mean flow variables, the flux through the 0C;; interface is calculated using
Roe’s[25] numerical flux function :

JE W, 7) do = @ (Wi, W5, 77)
8Cij

RR n° 3462



10 G. Carré, S. Lanteri and L. Fournier

S; e *S;

Figure 2: Interface dC;; separating vertices s; and s;

whereas the flux developed in [16] is used for the turbulent variables. This flux has
first been introduced for solving chemically reactive Riemann problems and has proved
to preserve the positivity of each component. Finally, the Steger and Warming|26|
numerical flux function is used at the farfield boundaries ; to be more precise, upwind-
ing is used in conjunction with a given uniform state W, which is supposed to be
representative of the flow at these boundaries.

The above numerical flux integration is only first order accurate. Second order
spatial accuracy is achieved by using an extension of van Leer’s[28] MUSCL technique to
unstructured meshes ; this approach consists in applying a piecewise linear interpolation
to obtain the states W;; and Wj; at the interface between control volumes C; and Cj :

Wij =W+ = (VW) 55, Wu=W; ——(VW) 55 (5)

T ! T . . . .
where W = (p ,u,v,p, k, e) — in other words, the interpolation is performed
on the physical variables instead of the conservative variables. The approximate nodal

gradient (VW)Z is obtained by averaging the Galerkin gradients computed on each
triangle of Cj :

&7z
(Vi) = & s () e

/ 4z area(Cy) /g,

The construction given by Eq. (5-6) results in a half-upwind (Fromm-like) scheme
which is spatially second order accurate but may present spurious oscillations in the
solutions, expressing a loss of monotony. One way to circumvent this problem is to make

INRIA



Parallel linear multigrid algorithms for compressible flows 11

a compromise between the first order scheme and the second order one by applying slope
limitation procedures. We refer to Fezoui and Dervieux[4] for a detailed description
of the application of several limitation procedures in the context of the present finite
element /finite volume MUSCL method.

2.3 Time integration

It is well known that a global Newton iteration starting from arbitrary initializations
cannot be applied to compressible flows. In order to approach the convergence domain
of a (modified) Newton iteration, an Euler implicit time advancing is constructed with
the following features (see Fezoui and Stoufflet[5]) :

linearization : except for the production part in the source term, the linearization is
obtained by freezing the Jacobian in Roe’s flux difference splitting for convective
terms, and by exact differentiation of diffusion and source terms. Also, the turbu-
lent viscosity p is frozen so that the £ and ¢ variables are coupled to each other
but uncoupled from the mean flow variables. Concerning the wall functions, both
slip and shear stress conditions are linearized|9] ;

preconditioning : it is performed by using first order Godunov scheme because it
is tridiagonal in 1D and better conditioned than the second order one, which
furthermore produces larger matrix bandwidths (pentadiagonal in 1D) ;

local time stepping and CFL law : a local time step is computed on each cell from
the Courant number (denoted by “CFL” in the sequel). The CFL number can be
for instance an increasing function of time taken as the inverse of the non-linear
residual (L, norm), in order to ensure the progressive switch from the unsteady
phase to the asymptotic convergence ;

each time step involves the solution of the two linear systems (mean flow and turbu-
lent variables). Approximate solutions to these systems are obtained by using a
linear multigrid strategy by volume agglomeration which is described in the next
section ;

each calculation is started from a uniform flow and driven to at least a 1075 residual
reduction.

3 The linear multigrid algorithm

The multigrid method adopted here is based on the use of macro elements (macro
control volumes) which form the coarse discretizations of the computational domain. It

RR n° 3462



12 G. Carré, S. Lanteri and L. Fournier

is an extension of the linear multigrid approach developed by Mulder|23] and Lallemand
et al.[12] to accelerate the solution of linear systems.

3.1 Grid coarsening by agglomeration

In [1] and [12] the adopted coarsening algorithm is based on neighboring relations.
Starting from a fine unstructured triangulation, one wants to generate a hierarchy of
coarse levels ; this can be achieved using a “greedy” type coarsening algorithm that
assembles neighboring control volumes of the finest grid (e.g. those having a common
boundary) to build the macro elements of the coarser level, according to the following
steps :

FOR each control volume C; in 2 DO
IF C; has already been included in a group THEN
Consider the next control volume
ELSE
Create a new group containing C;
Put into this group the neighboring control volumes of C;
which do not already belong to another existing group
IF the new created group contains only C; THEN
Destroy this group and put C; in an existing group
containing at least one of the neighbors of C;
ENDIF
ENDIF
GOTO the next control volume
ENDFOR

The main advantage of this method is that it allows an automatic generation of the
coarser discretizations without building any coarse triangulation. However, this strat-
egy is also strongly dependent on the numerotation of mesh vertices in the original fine
mesh (remember that fine mesh vertices are also fine mesh control volumes). Finally,
the present strategy is isotropic in nature and therefore behaves poorly in the presence
of highly stretched meshes.

3.2 Coarse grid approximation for convective terms

We recall that the convective fluxes are integrated between two control volumes of
the finest mesh ; they are computed in the same way on a coarse level, between two
macro elements. However, on the coarse grids, this computation is limited to first

INRIA



Parallel linear multigrid algorithms for compressible flows 13

order accuracy because nodal gradients cannot be evaluated as they are on the finest
mesh. Both conservative variables and normal vectors are interpolated between the
different grids. The coarse grid variables are deduced by transfer operators (defined
later). The normal vectors, linked with each coarse macro control volume, result from
the summation of the finer grid vectors (for the fine mesh control volumes that have a
common boundary with the macro elements) ; as a result, at most one flux is computed
between two macro control volumes.

3.3 Coarse grid approximation for diffusive terms

To evaluate the diffusive laminar and turbulent terms on a coarse level, related basis
functions are needed. We recall here the approach proposed by Koobus et al.[10] (see
also Carré[1]| for more details). In the finite element formulation on the fine grid,
the equations are integrated and assembled by edges (convective terms) and triangles
(diffusive terms and nodal gradients). As triangles do not exist on the coarser grids,
it is necessary to define a new formulation for the calculation of diffusive terms. A
Galerkin approximation for any function f, can be expressed by :

T,y) = Zfz'@'(ﬂ?ay)

where f; is the value of f, at mesh vertex s; = (z;,¥;) and ¢; is the nodal basis
function associated to s; and assembled from the P1 basis functions defined on each
triangle (element) that takes part in the finite element support of s;. The finite element
formulation applied to the diffusive laminar and turbulent terms shows that the general
form of the resulting discrete quantities depends on the integrals :

o= [ ™

where I,m € {1,2}, z; =  and 2, = y. The integrals a;’, are calculated on the fine
grid and assembled by points (case i = j) and edges (case i # j). A summation of
these quantities by neighboring relations on virtual coarse points, or edges connecting
two macro elements, allows to define the coarse grid integrals :

o= [ o

where :

/o= 2 [ G
RR n° 3462



14 G. Carré, S. Lanteri and L. Fournier

Unfortunately, the above coarse grid formulation is not consistent with the standard
finite element formulation of the fine grid approximation. In fact, the resulting coarse
basis functions resulting from a summation of fine grid ones are depicted on the Fig.
3 in a 1D point of view, and it is clear that the coarse grid formulation is not able to
approximate accurately the fine grid problem. Consequently the above formulation is
completed by a correction factor first proposed in [10] for approximately preserving the
consistency between two grids. This factor, multiplying each diffusive flux component,
remains constant for each application and is expressed from :

2
2(N -1 .
N = (7)2 with N = {/N, (7)
(2N —1)
where d is the space dimension and /N, the total number of coarse macro elements.
14 __‘_1_),]_ __q’_J_+1_ @ = "hat" function
\\\ AN ® ="plate" function
\\ j \\ /
ool i b i
N q?“'l §p|+2 N CDJ =0t Py
\ : : N
| 1 s N
\ i 5 K \
0 & & ¥ \fine grid indexes
i-1 i i+1 i+2 i+3
® ® 7 coarse grid indexes
31 J »1

Figure 3: Comparison of 1D basis functions of the fine and coarse grids

3.4 Multigrid solution scheme

In the linear multigrid method (or correction scheme) the corrections of the fine grid
solution are computed on the coarse grids. On the finest grid, we solve partially a
linear system resulting from the linearization of the equations given in section 2. Let
us denote :

(%m[d+@’+\y’+@’+g’)(5Wn+1:q>+q,_|_\j+g (8)
t

where A, is the time increment, ®, U, U and Q respectively represent the convective,
the diffusive (laminar and turbulent) and the source term explicit fluxes. On the other
hand, ®, ¥', ¥' and Q' are the corresponding Jacobian matrices (calculated from the

INRIA
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first order scheme for the convective term). We can rewrite the above linear system as
follows :

MW"y Wt =b | Wt =Wt (9)

where dW ™! corresponds to the approximated solution. Futhermore, we define the
residual R which gives the right-hand side of the linear system to be solved on the
coarse grid :

R=b— M (W")sWnt! (10)

The error term, obtained by the solution of the residual equation (coarse grid sys-
tem) is prolongated to correct the solution on the fine grid. The algorithm consists
in solving M X = b and can be written as (multigrid algorithm for one V-cycle with
Jacobi smoother) :

e X% : o multigrid solution approaching §WW"*! on the fine grid with X°-0,

o X (Ok) : initial solution of the relaxation method for solving the system on Gy, for
k=1,---,N (where N is the number of levels),

Dr+1,, and 7y k41 respectively denote the prolongation and restriction operators
(defined later),

v and v, are the numbers of pre- and post-smoothing,

w is the relaxation factor of the iterative method,

Mij(k) =1+ i is the matrix obtained by the discretization on Gy,

bi(k) is the right hand side of system on Gy,

area(C;)

o | = A,

1d.

Step 1 - initialization : X(Ol) = X (solution obtained at the previous V-cycle)

Step 2 - pre-smoothing and calculation of corrections : for k =1,---, N
0 itk>1
0 _ 3
G { Xe, ifk=1 (1)

The following nodewise 4 x 4 block Jacobi iteration is applied :

RR n° 3462



16 G. Carré, S. Lanteri and L. Fournier

l
X’L(k) - (I + mzl (]C [ Z(k) Zmz](k)X](k):l] y l e 1’ <. Vl

Xify = (1 - w) Xifyy +wXify) (12)

bi(k+1) = Tk,k+1 < i(k) — Z m”(k j(k))

J#t, j=t

where bg1) is the restricted residual from level % to level k + 1 and My T€P-
resents a discretization of the continuous operator on the level k.

Step 3 - post-smoothing and prolongation of corrections : for k=N —1,---,1:
Xiwy = Xi(ry + Prr1uXigh41)

0 _
Xty = Xiw)
Xz(k) = (I +ma) (k bi(y — Zm1J(k)X]l(k)l , L=1,--- 1 (13)

Xifyy = (1= w) Xifyy) +wXify)
Xiwy = Xa(y

where pj11 5 Xg+1 represents the projected correction from level k£ 4 1 to level k

(coarse grid correction).

Step 4 - final update : X;*™! = Xiq)

3.5 Transfer operators

A condition to obtain multigrid efficiency [7] is that the summation of the orders of
the transfer operators is greater than the order of the partial differential equation to
be solved. This condition, developed in [29] and [8], requires in order to solve the
Navier-Stokes equations, that either prolongation or restriction be linear. However, a
linear interpolation is not easily built in an agglomeration context. In our case, we keep
the same order for both restriction and prolongation which is in accordance with the
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previous condition only for the convective approximation, but allows building simple
and diagonally dominant coarse grid matrices.

We define [W;] as the solution on the k™ level, we note the value [Wy] (Zl’“) in the
(Zl’“) system of level k , (I =1,---, Ny).

¢ Restriction operator for [W,] solutions : 73, (j =1,---, Niy1)

> area (Zlk) Wy (Zlk)

[Ti,kﬂ (Wk)] (Z]’?“) _ leU*G)

s (14)
area (Z]- )

where U*(j) denotes the set of the | indexes of ZF zones on the level k with
ZHt = UleUk(j)Zlk. This operator transfers the solution from level k£ to level
k + 1 in order to build only the discretization of the continuous operator on this
level and is not used in the multigrid cycle. It is a weighted approximation of the
level k solution.

e Restriction operator for the right hand side : r7’¢,,. The RHS on level k + 1

is obtained by summation of RHS from level k. It is defined as :

Fila o] (25 = 2 b (2F) (15)

1EUR(j)

e Prolongation operator for the error term : pj ., ,. This operator transfers the
correction eg,1 from level £ + 1 to level k. It is defined by a trivial injection
between the two grids :

[PZH,k (€k+1)] (Z]k) = €k+1 <sz+1) , =1, Ny (16)

e Averaging operator : ;. In [10], it has been found useful to apply an averag-
ing operator to the computed error term. This computation allows to correctly
smooth the total error components before updating the solution. The value of
the weighting coefficient § of the prolongation operator is set to 1, and has been
chosen after several experiments. In this case, the error component is averaged
with its neighboring values and this operation allows to increase the robustness
of the present multigrid method.

Qr (ex) = B averg (ex) + (1 — ) ey (17)
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where :

1
areat

> area(j)er; , areat = Y area(j)ex,
JENk(H)Ui JENk(3)Ui

[averg (ex)]; =

Finally :
]_OZ+17;€€19+1 = Qk-pZ—e—l,k (€k+1)

4 Parallelization strategy

4.1 Basic parallelization strategy

The parallelization strategy adopted for the flow solver combines domain partitioning
techniques and a message-passing programming model. This strategy has been already
successfully applied in the single grid case in 2D|[3] as well as in 3D[14]. The underlying
mesh is assumed to be partitioned into several submeshes, each defining a subdomain.
Basically the same “old” serial code is going to be executed within every subdomain.
Applying this parallelization strategy to the previously described flow solver results in
modifications occuring in the main time-stepping loop in order to take into account
one or several assembly phases of the subdomain results, depending on the order of
the spatial approximation and on the nature of the time advancing procedure (ex-
plicit /implicit). The assembly of the subdomain results can be implemented in one or
several separated modules and optimized for a given machine. This approach enforces
data locality, and therefore is suitable for all parallel hardware architectures.

For the partitioning of the unstructured mesh, two basic strategies can be consid-
ered. The first one is based on the introduction of an overlapping region at subdomain
interfaces and is well suited to the mixed finite volume/element formulation consid-
ered herein. Mesh partitions with overlapping have a main drawback : they incur
redundant, floating-point operations. The second possible strategy is based on non-
overlapping mesh partitions and incur no more redundant floating-point operations.
While updated nodal values are exchanged between the subdomains in overlapping
mesh partitions, partially gathered quantities are exchanged between subdomains in
non-overlapping ones. It has been our experience that both the programming effort and
the performances are maximized when considering non-overlapping mesh partitions|14].
In the present study we will consider one triangle wide overlapping mesh partitions for
second order accurate implicit computations.
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4.2 Parallel coarsening strategy

The parallelization of the linear multigrid solution procedure described in section 3
requires a preliminary step aiming at the construction of appropriate data structures for
the distribution of coarse grid calculations. Here, this has been achieved by developing
a parallel variant of the original “greedy” type coarsening algorithm (see section 3.1)
which now includes additional communication steps for a coherent construction of
the communication data structures on the partitioned coarse grids. The choice of
developping a fully parallel coarsening algorithm rather than building a sequential (and
probably uncoupled) preprocessing tool, was mainly motivated by a potential future
utilization of the resulting solution strategy in the context of deforming or adaptive
meshes.

As stated earlier, the intra-level parallelization is based on the use of overlapping
mesh partitions. The overlapping layer is one triangle wide. In order to build the
additional communication data structures that are required for the parallelization of
coarse grid calculations, we define a notion of submesh property. We consider that a
submesh is the owner of all the mesh vertices it contains except those that are placed on
the exterior side of artificial boundaries. The latter are indeed owned by the neighboring
submeshes. By “owner” we mean that the submesh is responsible for the final update of
the physical value attached to the corresponding vertices. In the parallel agglomeration
strategy, we keep these notions of submesh property and submesh neighborhood ; the
main steps are the following :

FOR each submesh DO IN PARALLEL
Perform standard sequential agglomeration on the owned vertices
Send to neighbors the result of the agglomeration
Receive from neighbors the result of their agglomerations
Reproduce the neighboring agglomerations on the non-owned vertices
Construct appropriate communication data structures

ENDFOR

On Fig. 4 and 5 below, we can observe the conservation of the fine mesh partitioning
and the coherence of the overlapping layer on the agglomerated submeshes.

5 Numerical and performance results

5.1 Parallel performances for steady flow calculations

Performance results are given for 64 bit arithmetic computations. In the following
tables, N, is the number of grids (fine mesh included), N. denotes the number of
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Figure 4: Parallel coarsening strategy : first level
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Agglomerated dual mesh

(second level)

Agglomerated dual mesh
(third level)

Figure 5: Parallel coarsening strategy : second and third levels
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V-cycles used for each linear system solution and N, is the number of processes for
the parallel execution ; “Elapsed” denotes the total elapsed execution time and “CPU”
denotes the total CPU time (taken as the maximum value over the local measures) ;
“Comm” denotes the communication time (local exchange steps at artificial boundaries
and global reduction operations) ; finally, the speedup S(N,) is calculated using the
elapsed execution times. Calculations have been performed on a SGI Power Challenge
array equipped with Mips R10000/180 Mhz processors and on a cluster of Pentium Pro
P6/200 Mhz running the Linux operating system. In the latter case, the same code has
been compiled using the G77 gnu compiler with maximal optimization options. The
cluster nodes are currently interconnected via a 100 Mbit/s FastEthernet switch.
Communications are handled using MPICH (version 1.1.0).

5.1.1 Laminar flow around a NACA0012 airfoil

The test case under consideration is given by the external flow around a NACA0012
airfoil at a freestream Mach number of 0.8, a Reynolds number equal to 73 and an
angle of incidence of 10°. Two embedded triangulations have been constructed ; their
characteristics are summarized in Tab. 1 below. The solution is visualized on Fig. 6
in terms of the steady Mach lines obtained with mesh M1.

Table 1: Characteristics of the NACA0012 meshes

| MESH | # vertices | # triangles | # edges |
M1 48792 96896 145688
M2 194480 387584 582064

Parallel efficiencies : Tab. 2 and 3 compare performance timings for calculations per-
formed using mesh M1. In these tables 1, and v, respectively denote the number of
pre- and post-smoothing steps (Jacobi relaxations) ; the V-cycle has been selected here.
For Ny = 4 and N, = 4 the number of non-linear iterations to steady state is equal to
89 (normalized residual reduced to 1071%) ; for the case N, =5 and N, = 2 this figure
is equal to 88. In Tab. 2 the parallel speed-up is computed relatively to the N, = 2
measure. Tab. 4 and 5 give communication timings for a fixed number of multigrid
cycles and various numbers of levels using mesh M1 ; in these tables, N, denotes the
number of non-linear iterations to steady state. Tab. 6 and 7 compare performance
timings for calculations performed using mesh M2 and with N, = 6 and N, =1 ; the
number of non-linear iterations to steady state is equal to 117 (normalized residual
reduced to 10719).
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Figure 6: Steady Mach lines for the viscous flow around the NACA0012 airfoil

Table 2: Parallel performance results on a FastEthernet Pentium Pro cluster
Calculations with mesh M1 : vy = vy = 2

| N, | N. | N, | Elapsed | CPU | % CPU | S(N,) |
4 4 2 | 2160 sec | 2107 sec 97 1.00
4 4 | 1229 sec | 1167 sec 95 1.75
4 4 6 908 sec | 844 sec 93 2.35
4 4 8 | 705 sec | 628 sec 89 3.05
5 2 2 | 1611 sec | 1570 sec 97 1.00
5 2 4 | 927 sec | 875 sec 94 1.75
5 2 6 | 688 sec | 632 sec 92 2.35
5 2 8 | 540 sec | 475 sec 88 3.00
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Table 3: Parallel performance results on a SGI Power Challenge Array
Calculations with mesh M1 : vy = vy = 2

| Ny | N. | N, | Elapsed | CPU | % CPU | S(N,) |
4 4 1 | 2089 sec | 2075 sec 99 1.00
4 4 2 | 1072 sec | 1065 sec 99 1.95
4 4 4 | 554 sec | 550 sec 99 3.80
4 4 6 426 sec | 422 sec 99 4.90
4 4 8 | 383 sec | 381 sec 99 5.45
5 2 1 | 1462 sec | 1455 sec 99 1.00
5 2 2 | 760 sec | 756 sec 99 1.95
5 2 4 | 392 sec | 389 sec 99 3.75
5 2 6 303 sec | 301 sec 99 4.85
5 2 8 261 sec | 258 sec 99 5.60

Table 4: Communication costs on a FastEthernet Pentium Pro cluster : N, =8
Calculations with mesh M1 : vy = vy = 2

‘ N, ‘ N, ‘ Niter ‘ Elapsed ‘ CPU ‘ % CPU ‘ Comm ‘ % Comm ‘

4 2 128 | 736 sec | 656 sec 89 68 sec 9
5 2 89 540 sec | 475 sec 89 63 sec 12
6 2 &9 550 sec | 492 sec 89 73 sec 13
7 2 89 567 sec | 507 sec 89 87 sec 15
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Table 5: Communication costs on a SGI Power Challenge Array : N, =38
Calculations with mesh M1 : vy = vy = 2

| Ny | Ne | Niter | Elapsed | CPU | % CPU | Comm | % Comm |

4 2 128 | 387 sec | 385 sec 99 30 sec 8
5 2 &9 272 sec | 270 sec 99 25 sec 9
6 2 89 280 sec | 278 sec 99 29 sec 10
7 2 89 283 sec | 280 sec 99 33 sec 12

Table 6: Parallel performance results on a FastEthernet Pentium Pro cluster
Calculations with mesh M2 : vy = v, =4

| N. | N, | Elapsed | CPU | % CPU |
| 1 [ 12 [1944 sec | 1693 sec | 87 |

Ny
6

Table 7: Parallel performance results on a SGI Power Challenge Array
Calculations with mesh M2 : vy = vy =4

| Ny | N. | N, | Elapsed | CPU | % CPU | S(N,) |
6 1 2 | 4184 sec | 4166 sec 99 1.00
6 1 4 | 2186 sec | 2173 sec 99 1.90
6 1 6 | 1650 sec | 1643 sec 99 2.55
6 1 8 | 1384 sec | 1377 sec 99 3.00

The first comment we shall make concerning these results is that the cluster com-
puting approach is a viable alternative to true parallel computing on an integrated
MIMD system. Excellent parallel efficiencies are obtained with mesh M1 for a number
of machines up to 6. We also note that for mesh M2, the CPU utilization is as high as
87% on 12 machines ; unfortunately we have not been able to use less that 12 machines
on this case due to memory requirements.
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On the other hand, the performance results obtained on the SGI Power Chal-
lenge Array are not so satisfying. The parallel speed-up using 8 processors evolves
from 5.6 (mesh M1) to 6.0 (mesh M2) which is a lower improvement than we could
expect by increasing the global problem size by a factor of about 4. This behaviour
can be partially explained by referring to the hardware architecture of the SGI Power
Challenge Array, and more particularly to the interconnection system. The parallel
executions considered here take place within one POWERnode. Therefore, inter-processor
communication steps consist in shared memory read/write operations via the so-called
POWERpath-2 transaction bus. The maximal bandwith sustainable by this system is
1.2 Gb/sec. However, when using mesh M2 and a number of grids N, = 6, the overall
memory requirement is actually exceeding 1.2 Gb which is probably synonym of mem-
ory bandwith saturation. In order to illustrate further our point of view, we report
on a set of complementary results of simulations that have been performed on both
the SGI Power Challenge Array and the SGI Origin 2000 systems. In our case, the
SGI Origin 2000 system is based on Mips R10000/195 Mhz processors with 4 Mb of
cache memory (instead of 2 Mb on the Mips R10000/180 Mhz used in the SGI Power
Challenge Array). Mesh M2 has been used : for N, =1 (i.e. single grid algorithm)
we perform 12 Jacobi relaxations for each linear system solution ; for Ng € [2,6] we
perform one V-cycle with 4 pre- and post-smoothing steps (i.e. v, = vy = 4). Cal-
culations have been done on for 4 and 8 processors for the two parallel systems and
timings have been measured for 20 time steps. Fig. 7 below depicts the efficiency curve
(the efficiency is computed as S(NN,)/p where the parallel speed-up is relative to the
elapsed time on 4 processors). On the SGI Power Challenge Array the efficiency is
rather low but stable accross the number of levels in the multigrid hierarchy (between
79% and 81%). On the SGI Origin 2000 a superlinear speed-up is observed for each
value of N, and the efficiency is decreasing (from 127% for N, = 1 to 110% for N, = 6)
which is more in accordance with the results of Tab. 5 that were obtained using the
coarser mesh M1.

Multigrid versus single grid : we are interested here in comparing the single grid and
the multigrid approaches when solving the steady laminar viscous flow under consider-
ation using mesh M2. Concerning the single grid algorithm, the objective is to choose
appropriate values for the number of relaxation steps and the tolerance on the linear
residual so that a good compromise is obtained between the number of non-linear it-
erations (pseudo time steps) to convergence and the corresponding elapsed time. For
both algorithms, the time step is calculated using to the law CFL=min(500 x 4t, 10%)
where it denotes the non-linear iteration. Tab. 8 compares results of various simula-
tions performed on a 12 nodes Pentium Pro cluster. In this table, co means that the
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Figure 7: Parallel efficiencies between 4 and 8 processors

number of fine mesh Jacobi relaxations (v;) or the number of multigrid V-cycles (INV.)
has been set to an arbitrary large value such that the linear resolution is driven until
the prescribed residual reduction (¢) is obtained ; 4 and v, denote the number of pre-
and post-smothing steps (Jacobi relaxations) when using the multigrid algorithm. We
observe that the non-linear convergence of the single grid is optimal when driving the
linear resolution to a two decade reduction of the normalized linear residual. How-
ever the corresponding elpased time is minimized when fixing the number of fine mesh
relaxations to 400. On the other hand, one V-cycle with 4 pre- and post-smoothing
steps is sufficient for an optimal convergence of the multigrid algorithm. Comparing
the two entries of Tab. 8 corresponding to the case e = 1071, it is seen that the multi-
grid algorithm yields a non-linear convergence in 117 time steps instead of 125 time
steps for the single grid algorithm. This clearly shows that for the same level of linear
convergence, the non-linear solutions obtained with the two algorithms at a particular
time step, are not strictly equivalent ; in particular, the increment /W™ (see Eq. (9))
resulting from the multigrid algorithm is bringing improvements on both the high and
low frequency components of the error which in turns contribute to a higher quality
physical solution. We conclude this section by noting that the multigrid algorithm
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Table 8: Simulations on a FastEthernet Pentium Pro cluster : N, =12
Comparison of multigrid and single grid algorithms using mesh M2

|N,|N.|vi — vi/va] € |Niue | Elapsed | CPU [ % CPU |
1 - 00 1071 125 | 9h 28 mn | 8 h 24 mn 88
1 - 00 1072 | 117 |9h 40 mn | 8 h 48 mn 91
1 - 350 1070 | 178 |9h 10 mn | 8 h 17 mn 90
1 - 400 107 | 157 |9h 06 mn | 8 h 14 mn 90
1| - 450 1070 | 142 | 9h 28 mn | 8 h 20 mn 88
6 | o0 4/4 10-Y | 117 57 mn 50 mn 88
6 | © 4/4 1072 116 |1 h 56 mn | 1h42 mn 88
6 1 4/4 10710 | 117 33 mn 29 mn 87

is about 16 times faster than the single grid algorithm on the present test case and
considering a large probleme size (about 0.76 million unknown).

5.1.2 Turbulent flow around a RAE2822 airfoil

The next test case consists in the turbulent flow over a RAE2822. This flow is defined
by a freestream Mach number of 0.73, a Reynolds number of 6.5 x 10°, and an incidence
angle of 2.79 degrees. Two embedded C type triangulations have been constructed ;
their characteristics are summarized in Tab. 9 below. A zoom of mesh MT2 near the
airfoil is shown on Fig. 8. The solution is visualized on Fig. 10 in terms of the steady
Mach lines obtained with mesh MT2. Fig. 11 compares computed surface pressure with
available experimental measurements. The steady flow is obtained using the multigrid
algorithm based on the F-cycle with Ny, = 4 and v; = v, = 3 for mesh MT1, and
N, =5 and v, = 1, = 4 for mesh MT?2. In each case the number of cycles [V, is fixed to
2. The time step is calculated using to the law CFL=min(2 X it, 800) where it denotes
the non-linear iteration. The non-linear convergence is shown on Fig. 9 in terms of the
total energy normalized residual. Performance results are given in Tab. 10.
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Figure 8: Zoom on the mesh near the RAE2822 airfoil

Table 9: Characteristics of the RAE2822 meshes

‘ MESH ‘ # vertices ‘ # triangles ‘ # edges ‘
MT1 8220 16000 24220
MT2 32440 64000 96440
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Figure 9: Non-linear convergence for the turbulent around the RAE2822 airfoil

Table 10: Parallel performance results on a SGI Power Challenge Array
Turbulent flow around the RAE2822 airfoil

| MESH | N, | N. | N, | Elapsed | CPU | % CPU | S(N,) |
MT1 4 2 1 499 sec | 496 sec 99 1.00
292 sec | 290 sec 99 1.70
188 sec | 186 sec 99 2.65
168 sec | 168 sec 99 3.00
3352 sec | 3333 sec 99 1.00
1811 sec | 1810 sec 99 1.85
685 sec | 680 sec 99 5.90
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Figure 10: Steady Mach lines for the turbulent flow around the RAE2822 airfoil
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Figure 11: Comparison of computed surface pressure with experimental measurements
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6 Multigrid for industrial applications

6.1 The N3S-NATUR solver

The work described here is concerned with the implementation and evaluation of a
parallel linear multigrid strategy in the N3S-NATUR industrial CFD package. The
N3S-NATUR software package is the object of an ongoing coordinated effort to develop
a parallel solver dedicated to the numerical simulation of industrial three-dimensional
compressible steady or transient flows. This activity is supported by a consortium con-
sisting of three indutrial partners which are end-users and co-developers of N3S-NATUR
(EDF, SNECMA and RENAULT), two software companies (SIMULOG and METRAFLU)
and two research institutions (ECOLE CENTRALE DE LYON and INRIA). The version
V1.2 of N3S-NATUR is characterized by the following features (see [2] for more details) :

a) physical features : N3S-NATUR is currently able to compute laminar or turbulent
flows governed by the Navier-Stokes equations. Turbulence modelling is based
on a two equations £ — ¢ model coupled with special wall boundary conditions
to simulate boundary layers. Multi-component flows can be simulated with a
modelling of the molecular diffusion. N3S-NATUR can handle 2D and 3D arbitrary
complex geometries and is able to compute both confined and external flows.
This software is particularly well suited to strong shocks evaluation such as those
found in aeronautics, and behaves very well for a wide range of Mach numbers
(0.1 < M < 17.0).

b) boundary conditions : several types of boundary conditions can be considered includ-
ing periodicity between parallel or non parallel faces, wall boundary conditions
(slip condition, wall law, thermal exchange), inflow and outflow conditions, com-
patibility relations (for inflow and outflow).

c) numerical features : the Navier-Stokes equations are solved in conservative form.
The discretization in space relies on a mixed finite volume (for the convective
terms) /finite element (for the diffusive terms) formulation as the one described
in section 2. The convective terms are computed using an approximate Riemann
solver (Roe’s or van Leer’s method for perfect gases, modified Roe’s solver for real
gases, preconditioned Roe-Turkel’s solver for low Mach number flows) and the
MUSCL (Monotonic Upstream Scheme for Conservation Law) technique is used
for the extension to second order accuracy. Unsteady flows based on deforming
meshes can be handled thanks to an appropriate calculation of the convective
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terms. Explicit or linearized implicit time integration techniques are available
with (for each case) the possibility to choose between first or second order in time
accuracy. Jacobi and Gauss-Seidel relaxations are implemented for the solution
of the linear systems resulting from the implicit time integration scheme.

The parallelization of N3S-NATUR is described in details in Lanteri and Loriot[15].
The adopted strategy combines mesh partitioning techniques and a message-passing
programming model. The MS3D[18] tool is used to partition the mesh and generate the
appropriate input files (local data structures for submesh topology and data exchange
at submesh interfaces). The parallelization of the multigrid part is based on the use
of one tetrahedra wide partitions and extends the work described in section 4. The
communication steps are implemented using MPI.

There are two practical situations in the N3S-NATUR solver that call for the solution
of large sparse linear systems : the linearized implicit time integration scheme (a max-
imum of three systems are obtained in this case, one for the mean flow variables, one
for the turbulent variables and one for the chemical species) and the mesh deforma-
tion procedure (a pseudo structural method is used to determine the new coordinate
positions for internal vertices given a prescribed position of the boundary vertices). In
this study, the linear multigrid strategy by volume agglomeration described in section
3 is introduced in N3S-NATUR in order to allow for an efficient treatment of all these
systems.

6.2 Applications

The implementation of the linear multigrid algorithm in N3S-NATUR has been done
and validated for steady laminar flows; ongoing efforts concern the extension of this
methodology to steady and unsteady turbulent flows. We present here preliminary
results of the application of this methodology to the classical test case of the Euler
flow around an ONERA M6 wing at a free stream Mach number of 0.84 and an angle
of attack equal to 3.06°. The underlying tetrahedral mesh contains 115351 vertices,
643392 tetrahedra and 774774 edges. The CFL number has been fixed to 10°. The
calculation is started from a uniform flow. The single grid implicit algorithm has been
tested for the following situations : 60 (case C1), 70 (case C2) and 75 (case C3) Jacobi
relaxations are performed at each time step. For the multigrid algorithm, 3 coarse
levels have been constructed (i.e. N, = 4) and a constant number of N, = 2 V-cycles,
with 14y = 2 pre-smoothing and v, = 3 post-smoothing steps, has been used at each
time step. The non-linear convergence curves corresponding to these four situations
are visualized on Fig. 12. These curves show that the single grid case C3 leads to a
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non-linear convergence similar to the one obtained when using the multigrid algorithm.
We will therefore retain the case C3 for further comparisons of the two algorithms.

Calculations have been peformed on a SGI Origin 2000 system. Performance re-
sults are given in Tab. 11 where the parallel speed-up S(NN,) is calculated using the
total elapsed time, relatively to the case N, = 2; G(NN,) denotes the overall gain be-
tween the multigrid and the single grid algorithms. For N, = 8, we observe a 10%
degradation of the parallel speed-up (and of the overall gain between the two algo-
rithms) which is attributed to the redundant arithmetic operations incurred by the
partitioning strategy selected here. This behavior is consistent with what was experi-
mented using a simplified kernel extracted from N3S-MUSCL, the previous generation of
the N3S-NATUR software (see Lanteri[14| for more details). We finally note that the gain
between the two algorithms is well below what was obtained in the two-dimensional
case (3 instead of 16). This figure is nevertheless satisfying knowing that the flow un-
der consideration is relatively simple and that the equivalent 2D size of the underlying
mesh is 1153513 = 2370 vertices.
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Figure 12: Non-linear convergence for the Euler flow around an ONERA M6 wing
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Table 11: Parallel performance results on a SGI Origin 2000

Euler flow around an ONERA M6 wing

N, || Elapsed CPU S(N,) || Elapsed | CPU | S(N,) | G(N,)
C3 C3 C3 MG MG MG

2 || 10260 sec | 10210 sec | 1.00 3092 sec | 3076 sec | 1.00 3.3

4 4555 sec | 4530 sec 2.25 1586 sec | 1578 sec | 1.95 3.0

8 2078 sec | 2066 sec 5.00 680 sec | 675 sec 4.55 3.0

7 Conclusion and future works

Parallel computing offers the opportunity to simulate compressible flows of increasing
physical complexity, around or withing complex geometries. However, designing robust
and efficient solvers on unstructured finite element meshes is still a challenging objective
that should not be neglected to the profit of simple solution methods exhibiting high
level of parallel efficiency.

The objective of the work presented in this paper is to develop a flow solution
technique that offers a good compromise between parallel and numerical efficiency.
The proposed solver is built around two main components :

e a widely adopted strategy for the SPMD parallelization of finite element type
calculations. This strategy maximizes the parallel efficiency of the resulting solver
by explicitly enforcing data locality through domain partitioning techniques (see
for example [14]). Moreover, by using standard message passing environments
such as PVM or MPI, the portability of the solver is also guaranteed;

e a multigrid acceleration technique for the solution of large sparse linear systems
arising from linearized implicit time integration techniques or dynamic mesh de-
formation procedures. A multigrid by volume agglomeration strategy has been
selected which has already proven its efficiency on several problems (see for ex-
ample Lallemand et al.[12], Koobus et al.[13], Carré[1], Mavriplis et al.[21]). Its
main advantage relies in the fact that the multigrid hierarchy can be automati-
cally generated using the sole data given by the finest discretization of the com-
putational domain. This aspect is of particular importance in the context of the
SPMD parallelization strategy considered in this study : the problem of generat-
ing local data structures for coarse grid topologies and data exchange at submesh
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interfaces is treated in parallel without resorting to an appropriate (multi-mesh)
partitioning technique.

The resulting parallel flow solver has been extensively tested and evaluated in the
two-dimensional case. Its application to three-dimensional problems is currently done
in the context of the N3S-NATUR industrial CFD package; preliminary results have been
presented here for steady Euler flows. In addition to the extension of this methodology
to steady and unsteady turbulent flows and its application to problems of interest to
the involved end-users, an ongoing research work is concerned with the analysis of an
additive multigrid variant which is based on a residual/correction filtering technique
inspired from the work of Tuminaro|27]|, which aims at minimizing the degradation of
the parallel efficiency when switching the calculation to the coarsest levels.
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