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Estimateurs d’erreurs ponderés pour les équations de
Navier-Stokes incompressibles

Résumé : Nous présentons ’application des estimateurs d’erreurs a posteriori pon-
dérés aux équations de Navier-Stokes incompressibles. En utilsant les informations
d’un probléme dual approprié, nous développons un estimateur pour le contréle de
la valeur d’une fonctionnelle donnée de la solution, comme par exemple la trainée
ou la portance d'un corps submergé dans un fluide. Nous considerons ici un bench-
mark “écoulement autour d’un cylindre” ainsi qu’un écoulement dans un domaine
non-borné.

Mots-clés : Adaptivité, Eléments Finis, CFD
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1. INTRODUCTION

This paper describes the application of weighted a posteriori error estimators to
finite element discretizations of the stationary incompressible Navier-Stokes equa-
tions. The general idea of a posteriori error estimates is the control of discretization
errors produced by numerical methods. However, in many engineering applications
the question arises in which norm the error should be measured. Numerical sim-
ulations are often done to approximate certain quantities as drag or lift forces. It
has therefore been proposed in [4]| to derive a posteriori error estimates directly for
these physical quantities, which are considered as functionals on the space of solu-
tions. The general approach presented therein and further analyzed in [3] relies on
the concept of a posteriori estimates via duality arguments developed by Eriksson,
Johnson and their coworkers, [9], [12] and the literature cited there.

We consider two applications to two-dimensional flow around a cylinder. The first
is a benchmark for incompressible flow solvers which was designed to compare the
performance of different numerical approaches. We concentrate on the simplest test
case proposed, a stationary flow at low Reynolds number. We demonstrate that our
approach leads to automatic construction of efficient meshes. Concerning the quan-
titative behavior of the estimator, it turns out that at least the order of magnitude
can be predicted.

The second example is again the computation of a flow around a cross-section of a
circular cylinder, but in an unbounded domain. Uniform flow is supposed at infinity.
In this case, there is an analytical solution for the Stokes equations. We perform
computations for different Reynolds number in order to investigate the behavior of
the estimator with respect to the nonlinearity.

The discretization uses continuous bilinear finite element spaces for both velocity and
pressure. Stability is achieved by introduction of certain local stabilization terms as
proposed for example in [11]. The generalization to other finite elements is however
straight-forward.

The following section is devoted to the derivation of the estimator. Its purpose is
to outline the mechanism of error control for a stabilized finite element method.
Additional complications occuring in the test cases considered, as the approximation
of curved boundaries, are treated seperately.

RR n° 3458
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2. N R RO C

In this section, we sketch the derivation of the weighted a posteriori error estimator.
The exposition is on a general level in order to make the mechanism of error control
transparent. First, we describe a general stabilized finite element discretization.

et us assume, that we want to discretize the partial differential equation on
a bounded domain , with appropriate boundary conditions. For the
incompressible Navier- Stokes equatlons the vector of unknowns, , consists

of the velocity field and the pressure . The operator is

, where is the normalized viscosity. We denote by the semilinear form
of the corresponding variational equation, defined on a space , and suppose that
it admits an unique solution. For the incompressible Navier-Stokes equations with
homogeneous boundary conditions, we have and, denoting
the test function by ,

The discretization uses a conforming finite element space built from a quasi-
uniform triangulation with elements  of size , see for example | |. This
implies that the domain is piecewise polygonal and that boundary conditions are
in the finite element space. For the case that these conditions are not met, see the
modifications in the next section.

To simplify reading, we introduce the following notations for element-wise scalar
products

and

where is a set of local stabilization parameter depending on , for the
choice of this parameter see for example [11]. With these notations, the discretization
reads

2.1

Here denotes a partial differential operator, which is chosen in order to enhance the
stability of the discrete bilinear form. Note that this discretization is automatically
consistent. There are different possible choices for . For a east-Squares method
one takes , or a variant of this, [11]. The subgrid method [1 | and [1 |
leads to . In the numerical computations presented below, we take
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In the following, we will abbreviate the nonlinear bilinear form on the left of 2.1
by , since it depends on the mesh size. Its derivative with respect to the first
argument at will be denoted by

If we assume the continuous solution to be locally more regular that is in our case

and , we get the following alerkin property of
the error
2.2
where denotes the tangential bilinear form.

Note that 2.2 gives a precise characterization of the discretization.

Next, we derive the a posteriori error estimator with respect to a given functional
defined on the space of solutions. For simplicity, we will suppose linear. This
functional may be thought of as the drag coefficient or a point value of the solution.
ut we can also derive an estimator for a global norm as the -norm of the velocities
for example by setting . Following [3] and [15], we define
the dual solution by the equation

2.3

Since the involved bilinear form involves higher order derivatives, existency and
uniqueness of 2.3 have to be verified carefully, see [15].

Choosing and using 2.2 , we get the following error representation
2.4
jump
where denotes an arbitrary approximation of and the last term expresses

possible jumps over element edges due to discontinuities of the normal derivatives
of the velocities or discontinuity of the pressure, see the exact form below . Note
that up to here, we have an exact expression for the error. The introduction of
only serves for the following localization

ro osto he o owing generi esti tes ho ds

2.5 with

RR n° 3458
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jump nd

roo 'This follows directly from 2.4 by applying the Cauchy-Schwartz inequality
on each element. O

Now, we give the detailed form of the estimator for the incompressible Navier-Stokes
equations with the stabilization operator  chosen as above. The estimator for
different stabilization methods is similar.

ro osto or the st 11 ed nite ee ent ethod with ontinuous pressure
ppro i tion we h e denoting the du so ution

2.

with

For a discussion on how an estimator like 2.5 can be sharp, we refer to [3]. We
note however, that is has the optimal order in terms of powers of global mesh size
parameter. This can be seen by local interpolation. If we know the dual solution to

be in , which holds true for  -error control of the velocites for instance, we
could estimate , where . Together with
the fact that the residuals behave for linear finite elements, we immediately get
that the estimator behaves like . The other terms can be treated similarly.

The estimate 2. is not computable, since it needs the dual solution . In principle,
there are three possibilities

Use Cauchy-Schwartz to liberate the estimator from the presence of . This
needs a global priori estimate for the dual equation.

Use precise  priori knowledge of the structure of the dual solution in order to
replace the weights by analytical quantities.

Approximate the weights numerically by solving a discrete dual problem.
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The first option is the one usually chosen in a posteriori error analysis for finite
elements, see for example [2 |. It relies on the possibility of a sharp estimate of the
dual solution. In the present case of Navier-Stokes equations this is a difficult task.
Even if such  priori estimates are available, the estimator may be inefficient, if the
dual solution respectively its derivatives has a strong inhomogeneous behavior, see
the numerical computations below.

The second possibility requires an even sharper knowledge of the mathematical struc-
ture of the dual problem. This obviously limits its range of applications. In the case of
a global norm for a singularly perturbed convection-diffusion or convection-reaction
equation, the approach of Shishkin [19] can be interpreted in this way.

The third option has been proposed in [4]. eside the more technical questions of
what interpolation operator should be used this determines the precise form of the
residuals in 2. and how the weights should be approximated, there are
two basic numerical approximations

The dual problem has to be discretized.

For nonlinear problems, the dependence of the dual equation on the exact
solution has to be eliminated. This is done by linearizing around  instead
of linearizing around the mean between and

In order to limit the numerical cost of the estimator, it has been proposed in [4] to
use the same mesh for the discretization of 2.3 as for the primal approximation. As
shown by numerical examples for a linear model problem, the qu ntit ti e behavior
of the estimator depends heavily on this approximation. Solving the dual problem
by quadratic finite elements leads in simple cases to an asymptotically exact esti-
mator for a linear primal approximation on the same mesh, see [3]. In general, for
a linear problem, we expect that the accuracy of the estimator can be enhanced by
increasing the accuracy of the dual problem. In this paper we limit ourselves to a
cheap estimator and solve the dual equations with linear finite elements on the same
mesh.

The second approximation is a linearization error. The bilinear form on the left of
2.3 uses both information from the discrete solution  and the continuous solution
. Replacing by  leads to a perturbed dual solution . The difference satisfies

2.

In order to derive an a priori estimate from 2. we have to linearize around and
neglect the stabilization terms in order to get a bilinear form independent of . ut

RR n° 3458
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more important, we have to make restrictive assumptions on the nonlinearity of the
problem in order to estimate the terms on the right hand side.

We see from 2. that the linearization error is quadratic with respect to the error.
We could therefore hope that it is neglectible for fine meshes. See the last section
for numerical results on the behavior of the simple estimator with respect to the
nonlinearity.

We summarize the adaptive algorithm to be used in the numerical computations as
follows

Choose a coarse mesh
Do the following iteration
1. Compute on
2. Compute on
3. Evaluate an approximation of the estimator
4. Construct a new mesh

Here is the following approximation for the estimator. We replace the weights

in 2.5 by , where is the quadratic interpolation operator on a
patch of elements, see [3].

is obtained by solving the discrete dual equations, which read for the incompress-
ible Navier-Stokes equations

where as before . The left hand side corresponds to the operator to be
inverted in each Newton step for the primal equations.

For construction of the new mesh we use hierarchical refinement or de-refinement .
The decision of when a cell has to be refined is either done by an ordering algorithm
similar to the one described in [8] or by an optimization strategy proposed in [5].

3. NC R

As first example, we consider the computation of the pressure drop, the drag and lift
coefficients in the viscous incompressible stationary flow around a cylinder in 2D.
This is part of a set of benchmark problems discussed in [18].

Due to the curved boundary of the domain, additional error sources arise. We gen-
eralize the estimator derived before to this situation.
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3.1. escr to ot e roblem The benchmarks requires the computation of a
viscid incompressible flow in a channel around a cylinder. The geometry is shown in
Figure 1. The governing equations are the two-dimensional stationary Navier-Stokes
equations

3.8 in
for the velocity and the pressure density on the bounded region
described in Figure 1. At the boundary , the usual no-slip condition is posed

along rigid parts together with Poiseuille inflow and free-stream outflow conditions
at inlets and outlets, respectively,

3.9

The quantities to be computed are the pressure difference between the front point
and back point of the cylinder,

3.1

as well as the drag and lift coefficients

3.11 —
denoting the tangential component of ,  the diameter of the cylinder and
the mean velocity . The Reynolds number is , so that the flow is

stationary. With respect to the estimator derived in the previous section, we have

U=Vv=0
() — —
0.16m U=v=0
outlet
0.15m
iO.lm
inlet y
0.15m U=v=0
(0,0) - ] X
- 2.2m g
I UR

to consider three additional sources of errors. First, the inflow profile is a quadratic

RR n° 3458
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function and therefore not included in the space of linear finite elements. Second,
the computational domain contains a curved boundary, leading to an approximation
error of the boundary.  ore precisely, the discretization uses a triangulation covering
a domain strictly larger than . For the sake of readability, we do not carry out
all the necessary modifications. We only remark, that the integrals defining the dual
equation 2.3 will be defined on the larger domain . Functions defined on  will
be supposed to be prolongated to the larger domain. This will be discussed below.
The third additional contribution comes from the stabilization terms near the curved
boundary.

efore deriving the additional terms of the estimator, we cite a lemma from [1] which
is also useful for the computation of the drag and lift forces.

emma et the tensor s tis
with hen or n ritrr e tor there ho ds
3.12

Taking into account the boundary approximation, the complete estimator has the
form

ro osto orthe en h 1k on gur tion we h e the o owing esti te
3.13
where  denotes the esti  tor in 2. nd the ddition ter s re gi en
where 1s the dis rete ound r un tion nd

with de ned in 2.

roo  We only sketch the derivation of the estimator. The different boundary errors
are considered separately.



eighted rror sti  tors orthe n o pressi e ier- tokes qu tions 11

For the inflow error, we remark that the alerkin relation 2.2 still holds, but we

may not immediately choose in 2.3 . We can however apply the preceding
lemma with and , noting that the lemma also holds for
a right hand side not necessarily in , but which involves only values with a fixed

distance from the boundary. The boundary integral in 3.12 then gives an additional
error contribution which reads

and can be estimated by

The curved boundary leads to a perturbed alerkin equation 2.2 , which now reads
for

again due to the lemma. n the other hand we may choose as test function
in 2.3 ,since is prolongated by zero. The additional term is thus bounded by

Finally, due to the curved boundary, the stabilization produces another inconsistency
leading to an additional perturbation of 2.2 . It has the form

We estimate the last term by . O

Next we define the functionals for the three test computations. For the pressure
difference, point evaluation is not well defined on the pressure space although we
expect the pressure difference to be perfectly well defined . As shown in [3], such
a singular functional we expect a behavior as for the weights, where denotes
the distance from the point of evaluation , should be stronger regularized than just
a projection on the actual mesh. We therefore use the following functional

with and T , the prescribed tolerance.

For the evaluation of the drag- and lift forces, we employ the abuska- iller trick
[1]. Instead of using the boundary integrals in 3.11 we use the following evaluation

RR n° 3458
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where as before and is defined as follows. We prolongate the directional
vectors and on the boundary of the discrete domain to a discrete vector
field . This can be done since the directional vectors are traces of functions
from the finite element space. We then set . Note

that the definition of does not depend on the choice of this prolongation, since the
difference of two different prolongations lies in the space of the discrete test functions.
As shown in [13] for the case of polygonal boundaries, this definition leads to second
order accuracy with respect to a global mesh size. For this, the authors propose a
modified dual problem, which uses the directional vectors as inhomogeneous Dirichlet
boundary conditions instead of the right hand side in 2.3 . Following this, we define
the dual solution by on and

3.14

We then get an an estimator similar to the one before

ro osto orthedr g nd it oe ient weh e

where in nd s eore nd gi en

roo  We start by splitting the error as follows

Neglecting the inflow error, the second term equals

and can be estimated as before by . The inflow error leads to the same modification
as before and can be estimated by . For the first term we denote by the solution
of the dual problem on the domain

The consistency of the stabilization allows us to estimate the first term on the right
by  and for the second term we use again the lemma yielding

which is estimated by . O
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The additional terms of the estimator for the boundary approximations still contains
the continuous dual and primal solutions. In order to obtain a computable estimator,
we approxamte them as before by replacing the continuous solutions by the computed
discrete ones. We further mention that the estimation of the boundary terms is a
rather crude one. ut this will be sufficient for the present purpose.

I UR Dual solutions for , and

3.2. om utat o al results We shortly describe the numerical approach used
for the following computations. The discretization uses isoparametric bilinear finite
elements for both velocities and pressure. Numerical integration is always done using

auss quadrature with four points. The original elerkin formulation is stabilized as
explained before. For ease of local mesh refinement we allow elements with hanging
nodes. A proper definition of the finite element functions leads to discrete spaces
which are still conforming. For more details and a description of a multigrid solver
on the hierarchy of spaces created by the mesh adaptation algorithm we refer to [2].

First we give a comparison of the quality of the meshes generated by the weighted
estimator with some of the results given in [18]. We only compare with the apparently
most accurate results produced by different second order methods. The reference

RR n° 3458
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values given in [18] are , and
In order to compare the quality of the solutions, we need more accurate

results. These are obtained by various adaptive computations on different grids
with different adaptation strategies and also different types of evaluations of the
functionals. Some of the results of these computations are given below. The most
reliable values, which we take as reference, are found to be

and . For the comparison with the other results, we accept a
solution if it has an error less than in the drag, in the lift and in the
pressure difference leading to a range
and . This choice of the tolerance is motlvated by the results
of the benchmark. This accuracy may appear rather excessive, but the test case is
quite simple in comparison to real life applications.

In order to construct meshes which are well adapted to all three quantities required
by the benchmark, we solve the three dual problems on the actual mesh and sum
up the corresponding estimators. There is of course a certain ambiguity since it is
not the sum of the absolute values of the errors which we want to estimate. We
simply choose to weight the three estimators by an estimation of the corresponding
quantities. This leads to an estimation of the sum of the relative errors. In Table 1

ref N

4 294255 8| .15 19
a | 294912 | 5.584 .1 A1
9a |24 558 3| .1 A1 5
1 2415518 .15 19
this| 1 8 |55818 | .1 A1

Comparison of results for the benchmark

we give the most economical acceptable solutions from [18] compared to the present
algorithm.

We see from Table 1 that there is an important gain of a factor about 25 in the
number of unknowns for the required precision.

This can be explained by the local mesh refinement produced by the weighted es-
timator. In fact, as shown in Figure 2, the dual solution for each of the computed
quantities has a local behavior. Note that it would be rather difficult to guess the
correct distribution of the weights priori. Each of the dual solution has a different
behaviour which leads to a different grid refinement for the corresponding function,
as shown in Figure 3.



eighted rror sti  tors orthe n o pressi e ier- tokes qu tions 15

I UR Typical grids for and

Now we present in more detail the computations done to find the reference values.
At the same time we illustrate the quantitative behavior of the estimator.

3.2.1. o put tiono In order to increase the reliability of the computed values,
we perform computations using two different coarse meshes, shown in Figure 4. While
the first one uses a very simple mesh, the second one uses a better approximation of
the curved boundary. In Table 2, we give the results for the drag coefficient. The

1T

E

11

I UR Coarse grids 1 and 2

local refinement is based on a generous algorithm which alway refines larger patches
of elements. As for the subsequent Tables, is number of unknowns, denotes the
highest level of refinement in the mesh and is the value of the estimator.

Next, we present results obtained on grid2 with a more flexible refinement strategy.
Table 3 contains two informations. First, the behavior of the estimator is given.
oth the value of the estimator and the estimated error are given. Furthermore,

RR n° 3458
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N N
4128 be- 2| 5. 1222 321 4| 2e 2|5.113
945 2.5e- 2 | 5.58413 53 2.5e- 2| 5.583 2
225 8 |8.9e- 3|5.581 228 8. e 35589
4113 9|4.5e- 3558 5 49 8| 8|3.2e- 3|5.58 48
1 44|1 |1. e 3|5.58 13 9 48 9/1. e 35581
248352 | 11| .8e- 4| 5.5 984 214 52 | 11| .be- 4|55 9 3
4251 |12|3. e 45598 381 92|11 (3. e 4|559 3
Computations for on grids 1 and 2

the quantity

N

denotes the efficiency index defined by

. Second, we also list
the value of the drag coefficient computed by the boundary integral,

984
2244
43 8

8
9444
22548
41952
81 84
149232
1 18

5. 58
5.59431
5.5898
5.585

5.583 9
5.58151
5.58 51
5.58 5
5.5 982
5599

5.5 19
5.384 2
5.42 95
5.449 5
5.5 251
5.525

5.54

5.5559
9.5 38
5.5 198

1.1e-
3.1e-
1.8e-
8. e-

.de-
2.5e-
1.2e-

2e-

de-
4. e-

=k R WWwWww NN

Estimator for

.58

.53

.85
.82
.84
.85

.89

43
b1

.49
.53
.b2
.b4
.53
.54
.59

In order to compare the two different ways of evaluation, we suppose that the error

can be written as
the values of

. In both cases, the constant
in the second case are given. For a second order method in two

dimensions we expect a value of
be seen from Table 3, the evaluation of the drag via volume integrals is second order
in this sense, even on highly locally refined meshes. The superiority with respect to

is also evident.

3.2.2.

o put tion o

and for a first order method

is estimated and

. As can

Table 4 contains the results for the lift coefficient. The

contributions of the pressure and viscous forces are listed separately

and
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We also indicate the work spent on the solution of the primal and dual
equations, and , measured in computation time per unknown. This number is
normalized by the primal computation on the first mesh.

N
22 8| 4]|1. 2] . 1318 91 .4 1.3e- 2| .19
58| 5|11 2| .11 82 418 | 2. e- 3| .14
14 1 1.2 2 11 528 | . 543 | 8e- 4| .12
53 4 8112 .3 1 5 3 .33 | 18e- 4| .18
14289 9115 | 4 1 4 1] . 43| 4e- 5] .25
489 48 |11 |1 1 3 53 41 |18e- 5| .2

Estimator for

3.2.3. o put tion o The results for the pressure difference are presented in
Table 5. For this quantity the refinement is much sharper as can be seen from the
higher number of levels with respect to the preceding cases. This is explained by
singularities in the dual solution. It can also be seen, that the estimator is less
reliable in this case.

N
284 4| 119 2| .13331 . 1534 |3.e 3| .12
9 A1 85 133 2 . 15215 | 1.4e- 3| .21
132 8| .11 541 | .132488 | . 14948 |4.1e- 4| . 5
4929 |1 11 53 132344 | . 14814 | 1.2e- 4| . 9
8§ 1 | 11| .11 529 | .132313| .14 84| 2e- 5| .14
1581 12 .11 524 | .1322 .14 3 |32 5| .12
28128 | 13| .11 522 | .13224 .14 2511 e 5| .12

Computation for

We close this section with a comparison of the errors of the three quantities on three
different grids generated by the different estimators. For this, we choose in each case
a mesh with about 25 elements. This shows that the meshes are well adapted
exactly to the quantity they are designed for.

RR n° 3458
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| N[ ]
228 22 e 3(1.13e-1|4. 2e- 3
2 9 48 e- 312.35e- 2|2, e 3
28 (13 324e- 2 (5. e 1|24 e 4

Relative errors on grids generated by the estimator

4. N ON NUN OUND D O IN

In this section we consider the computation of the drag coefficient for the cut of a
circular cylinder in an unbounded domain. The cylinder is immerged in a uniform
flow field. The case of the Stokes equations admits an analytical solution, which
shows that the drag depends linearly on the viscosity. For the Navier-Sokes equations
no analytical solution is known and the design of approximative formulae for the
drag coefficient in dependance of the Reynolds number has been the subject of many
studies, see [21].

We use this example to investigate the behavior of the estimator for different Reynolds
numbers.

I UR esh with zoom for

We model the unbounded domain by choosing a large box as computational domain.
The size of the box is taken 2  times larger than the cross section of the cylinder in
order to avoid influence from the artificial boundaries. The estimator should indicate
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I UR oom of grids for and

whether this is justified. Small weights near the artificial boundary mean that there
is no influence on the drag computation.

As we can see from Figure 5, the estimator leads to a grid refinement near the
cylinder. Relatively few elements are used to cover the field far from the obstacle.
This is true for all the computations performed in the range from up to

, Figure shows meshes for the extreme values. However, the generated
meshes are quite different depending on the Reynolds number. For high viscosity,
the refinement is concentrated symmetrically around the cylinder, whereas for higher
Reynolds number the refinement is much flatter and the adaptive procedure leads to
a resolution of the recirculation zone. For a Reynolds number above the critical value

, the flow tends to be unstable and the velocity profile is still not uniform
at the outlet. ut this does not harm the computation of the drag coefficient, as can
be seen from the dual solution, see Figure

For higher Reynolds numbers, the dual solution becomes concentrated on a thin
layer in front of the obstacle. This is because convection is in opposite direction in
the dual equations. Nevertheless, the higher weights at this place do not lead to
refinement, since the flow is uniform at a certain distance in front of the cylinder and
consequently the residual are very small at this place.

In Table , we present some computational results for different Reynolds numbers.
Whereas convergence is from below for high viscosity, this situation is reversed in the
high Reynolds case. Comparing the efficiency of the estimator for a given number of
elements, we see that the estimator tends to underestimate the error for increasing
Reynolds numbers. The highest Reynolds number case in Table corresponds to an

RR n° 3458
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I UR Dual solutions for and , scaled by a

factor of 1

N N
11328 | 2| 5. e 31. 142 | 1 11328 | 2| 1l.1e 5.859 1
192 2| 4| 1.2e- 1 |32. 341 | .2 1923 41 1. e 2 |[59122| 2
33 54 5.8e- 2 |32. 4 2 32 42 5.e- 3 |59143| 3
555 3.1e- 2 | 32. 53 A1 55422 2. e 3 |59153| .2
945 2.e- 2 |32.53 9459 8| 1. e 3 |5.9158
12315 | 8| 1.5e- 2 [32. 51 1231 2| 8| 1.2e- 3 |5.9159
11328 | 2| 2.3e- 1 | 1.8154 11328 | 2| 2. e 1 |1.3355| 1.
1929 | 4 9e-3 | 1. 5 1932 4| 91e-3 |1.189 ] 2.
32892 Jde- 4 | 1. 584 33 12 9e- 4 9952 | .2
55818 | 8 | 2. e- 4 | 1. 58 528| 8| 2 e 4 994 | 1.5
93912 | 9| 1.4e- 4 | 1. 589 94938 | 9| 1. e 4 .995
12192 | 9| 1. e 4 | 1. 59 1231 8|1 Ae- 5 995

unstable flow, since we know that the formation of the
starts at approximately
, the highest value for which we could achieve convergence. This clearly

of

Results for different Reynolds numbers

an-

arman vortex street
, see [21]. The results are similar even in the case

shows that instabilities cannot be predicted by our relatively cheap estimator. In
order to improve the behavior of the estimator, one would need better information
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about the continuous solution. For example, one could compute a more accurate
solution  and substitute it in place of in the definition of the dual problem 2.3 .
Unfortunately, this makes the estimator more expansive than the original problem.

The mesh refinement used in the computations for Table is based on the optimiza-
tion strategy proposed in [5]. For a given number  of unknowns we try to minimize
the value of the estimator. In each adaptation step , we increase the maximally
allowed number of unknowns by a given factor. bviously, this leads to qualita-
tively different meshes with respect to the Reynolds number, see Figure . For the
highest Reynolds number we get for 1 levels of refinement, whereas for
low Reynolds we only have 8 levels.

We close this section by a comparison of the computed drag coefficient with the
formula of Sucker and auer see [21] page 183 , which seems to be in good agreement
with experimental data for a wide range of Reynolds numbers.

A we can see from Figure 8, the numerical values are very close to the curve generated

by the formula up to . eyond this value, the computed drag coefficient is
smaller.
S
I UR Comparison between Computation and Formula

5. ONC U ION

We have outlined a general approach to a posteriori error control in finite elements.
The application to the incompressible Navier-Stokes equations showed that the use
of the weighted error estimator presented leads to automatic generation of efficient
meshes.

RR n° 3458
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The strength of our method being the possibility of handling different error measures,
we expect a wide range of applications in engineering computations. Applications of
this approach to elasto-plasticity can be found in [1 | and to reactive flow problems
in| ]

Although the order of magnitude of the error can be predicted, accurate quantitative
error estimation or even asymptotic exactness seems not be achievable by means
of the cheap estimator used here. A more precise estimator can however be derived
on the basis of the dual weighted approach.

In order to improve the efficiency of the numerical computations, it would also be
of interest to derive stopping criteria for the different iterations implied to solve the
discrete equations. This could also be done on the basis of the a posteriori estimator
as proposed in [14] for control of the multi-grid iteration error for a model problem.

Finally, the presented approach can be immediately applied to non-stationary prob-
lems. Since the dual equations are backward in time, this affords a loop over the
whole time interval. Therefore, the situation is similar to time-dependent optimal
control problems and the design of an efficient algorithm is not evident.
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