Skip to Main content Skip to Navigation
Reports

Asymptotics of the Perron Eigenvalue and Eigenvector Using Max-Algebra

Abstract : We consider the asymptotics of the Perron eigenvalue and eigenvector of irreducible nonnegative matrices whose entries have a geometric dependance in a large parameter. The first term of the asymptotic expansion of these spectral elements is solution of a spectral problem in a semifield of jets, which generalizes the max-algebra. We state a «Perron-Frobenius theorem» in this semifield, which allows us to characterize the first term of this expansion in some non-singular cases. The general case involves an aggregation procedure à la Wentzell-Freidlin.
Document type :
Reports
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download

https://hal.inria.fr/inria-00073240
Contributor : Rapport de Recherche Inria <>
Submitted on : Wednesday, May 24, 2006 - 12:18:14 PM
Last modification on : Friday, May 25, 2018 - 12:02:05 PM
Long-term archiving on: : Sunday, April 4, 2010 - 11:39:17 PM

Identifiers

  • HAL Id : inria-00073240, version 1

Collections

Citation

Marianne Akian, Ravindra Bapat, Stéphane Gaubert. Asymptotics of the Perron Eigenvalue and Eigenvector Using Max-Algebra. [Research Report] RR-3450, INRIA. 1998. ⟨inria-00073240⟩

Share

Metrics

Record views

440

Files downloads

532