Griffith Formulae for Elasticity Systems with unilateral Conditions

Abstract : In the paper we consider the elasticity equations in nonsmooth domains in $R^n, n=2,3$. The domains have a crack whose length may change. At the crack faces, inequality type boundary conditions describing a mutual nonpenetration of the crack faces are prescribed. The derivative of the energy functional with respect to the crack length is obtained. The Griffith formulae are derived in 2D and 3D cases and the other properties of the solutions are established. In two-dimensional case the Rice--Cherepanov's integral over a closed curve is constructed. The path independence of the Rice--Cherepanov's integral is shown.
Type de document :
Rapport
[Research Report] RR-3447, INRIA. 1998, pp.22
Liste complète des métadonnées

https://hal.inria.fr/inria-00073243
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:18:36
Dernière modification le : samedi 17 septembre 2016 - 01:06:54
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:39:26

Fichiers

Identifiants

  • HAL Id : inria-00073243, version 1

Collections

Citation

Alexander M. Khludnev, Jan Sokolowski. Griffith Formulae for Elasticity Systems with unilateral Conditions. [Research Report] RR-3447, INRIA. 1998, pp.22. 〈inria-00073243〉

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

491