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Nouveaux éléments finis mixtes pour la résolution numérique de
problemes de propagation transitoires

Résumé : Nous présentons la construction et ’analyse d’une nouvelle famille d’éléments finis mixtes quadran-
gulaires (2D) ou cubiques (3D), qui conduisent & des schémas explicites (condensation de masse) pour approcher
les équations des ondes acoustiques ou élastiques dans des milieux anisotropes. Des estimations d’erreur non
classiques ont été obtenues pour ce nouvel élément.

Mots-clé :  éléments finis mixtes, condensation de masse, ondes anisotropes
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1 Introduction

This work falls in the more general framework of developing efficient numerical methods for approximating the
equations of linear elastodynamics in complex media such as anisotropic heterogeneous media with cracks of
arbitrary shapes. The main application of these studies is the non destructive testing. It consists in detecting
the existence of cracks in a medium by studying the diffraction of a known incident wave by this medium. In
the case we are interested in, the incident wave is a time pulse, which justifies a direct computation in the time
domain.

The characteristics of this problem (large scale computations, complex geometries for the cracks, unbounded
domains) and our ambition to construct an efficient method lead us to adopt the following criteria.

In order to facilitate the implementation and promote the speed of calculation we want to use regular meshes,
squares in 2D and cubes in 3D. One can naturally think that this choice is restrictive and in contradiction with
the fact that we want to take into account cracks of complex geometries.

In fact to deal with cracks we intend to use the fictitious domain method (cf. [21], [8]). Such a method
allows us to work with uniform meshes independently of the geometry of the crack, the boundary condition
being taken into account via the introduction of a Lagrange multiplier. Namely in the case of a crack in an
elastic medium the boundary condition is a free surface condition, that means, the normal stress is zero on the
crack : in order to consider this condition as an equality constant, we are led in a natural way, to the mixed
velocity-stress formulation for elastodynamics. Then the Lagrange multiplier can be interpreted as the jump of
the velocity through the crack.

In most examples the dimensions of the cracks are very small compared to the scale of the problem, which
means that we have to model the elastic wave propagation in an unbounded domain. To do so we plan to
use a new absorbing layer model, inspired by the Perfectly Matched Absorbing Layer (P.M.L) introduced by
Berenger [5] for the 2D Maxwell problem. This model has astonishing properties : the reflection coefficient at the
interface between the layer and the free medium is zero whatever are the frequency and the angle of incidence.
The extension of this model to elastodynamics is natural when using the mixed velocity-stress formulation.

These considerations lead us to find an efficient approximation of the time domain mixed velocity-stress
formulation. In particular for stability reasons (conservation of energy), we have decided to use a discretisation
procedure in space based on a variational formulation of the velocity stress system, which is a first order
hyperbolic system. At this stage, our main requirement is to define a spatial discretisation which allows the
obtention of an explicit time discretisation scheme (mass-lumping).

Several mixed finite element methods are proposed in the literature especially for plane elasticity. We refer
for example to PEER’S element introduced by D. N .Arnold, F. Brezzi and J. Douglas [1] and more recently
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4 E. Bécache, P. Joly and C. Tsogka

to the work of R. Stenberg [19] and M. Morley [14]. One of the well known difficulties for mixed elements in
elasticity consist in taking into account the symmetry of the stress tensor. The method used in ([1], [19], [14])
consist in working with a space of non necessarily symmetric tensors and imposing the symmetry in a weak
way. Namely, the symmetry is enforced via the introduction of a Lagrange multiplier. Although these methods
are very interesting for the plane elasticity problem, we did not retain them as they lead to an implicit scheme.

That is why we have constructed an original mixed finite element (inspired from the second Nédelec’s family
[16]) using spaces of symmetric tensors for the stress [3]. These spaces will fit our objectives.

The analysis of this new mixed finite element involves two main difficulties. The first one is due to the fact
that the classical assumptions to get error estimates are not satisfied by this element, because, compared to
classical approximations, we have enriched the approximate stress space but not the velocity one. The second
difficulty in the analysis is linked to the symmetry of the stress tensor.

In this paper, we focus on the first difficulty. We present the new mixed finite element in the case of a model
problem : the anisotropic wave equation. This equation can be seen as a simplified model for elastic waves in
anisotropic media. We shall see that this simple case already poses new interesting theoretical questions we
intend to solve here.

More precisely, in section 2, we will explain why the discretisation of this problem with the classical R1j
mixed finite elements introduced by Raviart and Thomas in [17] does not lead to an explicit scheme and we
will propose instead the use of a new mixed finite element. We first present the lowest order element in section
2.2, and then the extension to higher orders (2.3). Section 3 is concerned by the mixed approximation of the
elliptic problem which is nothing but the stationary problem associated to the evolution problem of section 2.
This analysis will be used to study an elliptic projection operator that will be useful for the analysis of the
approximation of the evolution problem. We shall show in section 3.1 why the analysis of the new element
does not fit the classical theory. That is why we develop in section 3.2 a new abstract theory leading to new
error estimates. In section 3.3 we show that our new mixed finite elements enter this new framework and error
estimates are given. Section 4 is devoted to relate the error estimates on the time domain solution to the error
estimates obtained in the previous section on the elliptic problem. This essentially relies on energy estimates.
Finally, section 5 presents the extension of the element to the 3D case.

In the present paper we have chosen to present the new element in the simplified case of the anisotropic
wave equation in order to deal only with the first difficulty concerning mass lumping, some of the results we
expose here have been announced in [4]. We will show in a next paper how we can generalize the family of the
finite elements presented here in order to treat both difficulties (achieve mass lumping and take into account
the symmetry of the stress tensor) at the same time.

2 Presentation of the new mixed finite elements

2.1 Position of the model problem : the anisotropic wave equation
Let © be a bounded domain of IR?, A(z) is a positive definite symmetric matrix satisfying :
(1) A@) €-E>alg? a>0, YEeRY, pp. z€Q.

We consider the scalar evolution problem

Find u :[0,T] — Hy(Q) such that :

) 0u
W —div (Ail(m)vu) = f} f € CO(OJTJLz(Q))
with the initial conditions
u(t=0)=wug € H' ; %(tzO):ul er?

Defining now

p=A"1(z)Vu

_ou
BT

INRIA
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and replacing it in (2) yields

ov

E—dlvp:f
(3) o
AL gy =
e Vv

with initial conditions
(4) p(0) =po = A (2) Vg ; v(0) = vo = w
A mixed formulation associated to equations (3) is given by :

Find (p,v) : [0,T] = X x M = H(div ;) x L?(Q) such that :

(5) %a(p, q) +b(v,q) =0 Vge X
& w,w) = bw,p) = (fw) Vwe M,
where
(ap.0) = [40) p-qds Vip.g) € X x X
(6) < b(w,q):/w divgder V(w,q)e M xX
\(f;w)z/fwdrc Yw € M.

The bilinear form a(-,-) (resp. b(-,-)) is continuous on H x H(H = (L?(Q))?) (resp. on X x M). The bilinear
form a(-,-) (resp. b(-,-)) thus defines a linear continuous operator A : H — H' by (Ap,q) gz = a(p, q) (resp.
B: M — X' by (Bw,q) x:yp = b(w,q). They satisfy the following properties (see for instance [7]) :

(1)  The continuous inf-sup condition
Je>0/YweM, 3qge X /bw,q)>clwl,y,llaly

(i)  The coercivity of the form a(-,-) on V(= KerB)

Ja>0/VpeV ={qgeX/bw,q) =0, YweM}, app) >eclplx-

In the following, we only consider the semi-discretisation in space of this problem, keeping in mind our main
motivation which is the possibility to do mass lumping.

2.2 Presentation of the Q% — (), finite element in the lowest order

We suppose now that 2 is a union of rectangles in such a way that we can consider a regular mesh (7;) with
squares elements (K') of edge h > 0. We introduce the following approximation spaces :

X = {gn € X/ VK € Th, gn|x € X}

(8)
Mh:{wheM/ VK € Ty, wh|k e]\Zf}

where X (resp. M) denotes a finite dimensional space of vector (resp. scalar) functions. The discrete problem
associated to (5), (4) is
Find (pn,vs) : [0,T] — Xp X M}, such that :

d
9) aa(Pm(Ih) +b(vh,qn) =0 Van € Xp

d
%(?}h,wh) —b(wn,pr) = (f,wn) Ywp € My,

RR n° 3445



6 E. Bécache, P. Joly and C. Tsogka

with initial conditions
pr(0) =pon 5 va(0) =v1n
The usual choice consists in taking for X the lowest order Raviart Thomas element :
X = RTjp) = Py x Py
and for M piecewise constants :
(10) M= Qo
We remind here that P is the space of polynomials of degree < k and Py, ., is defined by :
Pk, = p(@1,22) | plwr,m2) = > ayzia]
1<k1,j<ks

Let us explain now why this choice does not lead to an explicit scheme when one considers the evolution problem
of anisotropic waves corresponding to (9). We introduce here By, = {Ti}f\;ll, By, = {¢z~}f\;21 the bases of X, and
My, respectively (N; = dimXp, and Ny = dimM},) and [P] = (P, ..., Pyn,), [U] = (Ui, ...,Un,) the coordinates
of pn, up, in the bases By,, By,. In these bases, problem (9) can be written in the following form :

( Find (P,U) € L2(0,T; (RM)) x L2(0,T; (R™?)) such that :

dP

M,— +CTU =
) pdt+CU 0
dU
M,— —-CP=F
“dt ¢

+ initial conditions

with :

(4) (Mp)i; = (ATiaTj)(L2(Q))2 , 1<4,j< M
(@) (Mu)ij = (i ¢5)12(q) > 1<4,j <Ny

(iti) (Clij = (95, divT;) 2y, 1<i< Ny, 1<G< N
()  (F)j =(f, i) 120 1<j <Ny

CT denotes the transpose of C. If we use a centered finite difference approximation for the time discretisation,
the solution at each time step is obtained by inverting the mass matrices M, and M,. Although they are
symmetric and sparse, this inversion can become costly (for large systems) and we prefer to avoid it. In that
order, we want to reduce them to diagonal (or block diagonal) matrices by using a mass lumping technique (see
[13], [20]). This consists in using adequate quadrature formulas to approximate the integrals in (11 (i), (ii)).
One can remark that M}, being chosen discontinuous, the matrix M, does not really need to be mass lumped
(it is already diagonal here) so we focus our attention on the mass lumping of M.
Let now (7;) be the RTjg) basis functions (see figure 1) and consider the integral

(12) a(Te, ) = / Ar, - mydx = Z/ AT, - Tpdzx
Q r YK€ET,

INRIA
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Figure 1: Two bases functions of RTjg

If we use the following quadrature formula :

N
| #@)iz = mes(x) Y wir (04
K =1
with (M;)i=1,... v the quadrature points and (w;);=1,... v the associated weights to approximate (12), we obtain :
/ A1, - pdz = mes(K) ZwiATa(Mi) - 15 (M)
K i

This would lead to a diagonal matrix if
(13) Aro(M;) -1 (M;) =0 Va#b

Consider the element K with the local enumeration (see figure 2) and (7;)i=1,...,4 the local BT} basis functions
(associated to the wedges (A;)i=1,...,4 of the element K).

"\

[

—1 —1

-

Figure 2: Local basis functions in RTy

For the isotropic wave equation (A = Id) formula (13) reduces to
(14) %a(Mz)%b(Mz) =0 Va;éb, a,bzl,...,4
For two orthogonal edges, the associated basis functions are already orthogonal ((72j4+1,7;) = O where the

indexes are defined modulo 4).

RR n° 3445
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Let us now consider the lowest order Gauss-Lobatto quadrature formula, using the summits of the element
K as quadrature points,

4
(15) [tz =" S s
i=1

it is easy to check that (14) is satisfied (since 7; = 0 on A;y2). On the contrary for the anisotropic wave
equation, this does not work any more, since for two orthogonal edges, functions A7, and 7, are not orthogonal
any more. In fact, in this case, there exists no quadrature formula that satisfies (13) with the RTjq basis
functions. .

The alternative solution that we propose consists in changing the approximation space X. Let

(16) X=QixQ

this element was initially introduced by Nédelec in [16].We will call this choice (16) combined with (10) the
Q%Y — Qq element.

A A
1 Ll

5—rtr

Figure 3: The @1 X Q; element

The quadrature formula (15) satisfies now (13) with the new basis functions: the key point is that the
quadrature points coincide with the degrees of freedom M; and the new basis functions satisfy :

Ti(Mj) = 6

For more details on quadrature formulae and mass lumping techniques we refer on the work of G. Cohen, P.
Joly and N. Tordjman for the acoustic wave equation ([20], [12]), to P. Monk, G. Cohen [13] and A. Elmkies
[11] for Maxwell’s equations.

Remark 1 The mass matriz a(pn,qn) is block diagonal, and after an inversion of local (4 x 4) matrices we
obtain the explicit scheme.

Before the analysis, let us show how this element can easily be extended to higher orders.

2.3 Extension to higher orders and mass lumping

The natural generalization of the lowest order element, presented in the previous section, consists in taking :

Xn={gn € X /VK € Tp,, qnlx € Qr+1 X Qrt1}
(17)
Mh:{whEM/ VKETh, wh|K EQk}

and we will call it the Qgﬂfl — @1, element. This choice still satisfies our requirement with respect to mass
lumping. We focus here on the mixed finite elements corresponding to k¥ = 1,2, that we use in practice.
Presentation of the degrees of freedom in the reference element ([0, 1] x [0,1]) :

INRIA
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A A A
wpt = O
Y, ° °
Y, —* 4» %»
A ° °
Yy —-‘» —4» 4—»
& x x S

Figure 4: Degrees of freedom in the Q4% — @, element

A A
ErE.

Y

-
T

o+
i

I u

X1 X3 X3

Figure 5: Degrees of freedom in the Q4% — Q2 element

with
1
fork=1 af =47 =0, af=y5 =5, a5=y5=1
5—/5
fork=2  2{=yl=0, a=yi= v5
10
5+5
Th =yh = , 2=yt =1
10
and
fork=1 .Z']_:yl: , $2_y2=
6 6
5—+/15 1
fork=2 af=y'="F—, sp=9i=3

10

5++15
T3=Ys =g

The basis function ); ; associated to the degree of freedom of coordinates (z;,y;) is given by :

RR n° 3445
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k42 k+2
@—=) [[ G—w)

1=1 t=1

1#4 L#3

for Qr41, Ai,j: k42 k-|—2J
II @-=) [ wi-w)

1=1 t=1

1#4 L#3

We can remark for example, in figure (6) that for £ = 1 we have 3 types of basis functions associated to py,

7 P . 7] 7 7 7 7
, o, S . .
’ 4 . ’ 7 ’ ’ s
e P . . . . v
L, . s s s s s s L, P . 7|
, , ’ . ’ s s s , . ’ 4
, , ’ ’ ’ ’ ’ ’ L, , ’ ’
, s ’ /) ’ ’ ’ . ’ 4
, . L . . , , 4 ,
’ ’ s s s ’ ’ ’ , Vi ’ L
, ’ s ’ ’ ’ s ’ . ’ ’ ,
. ’ ’ ’ ’ ’ ’ ’ . ’ 4 ,
7z 7z 7 4 7 7z 7z 7z 4 ’
7 7 7 7 7 7 /| 7 4 ’ 4
’ ’ ’ ’ 2 ’ ’ v v s . ,
’ ’ ’ ,——P ’ ’ ’ ’ ’ , .
e 4 7z 7z 4 e 7z 7 // 7 7
,
at 1 ’ ’
A -
. , . L7 g L’ 7 p
4 ‘_» 7z
/| 7 ’| I 7
- .7 7 S I 0,00
. ’ ’ ’ s ’ , s
p s ’ ’ v ’ 4 ’
’ s 4 ’ ’ ’
7 / 4 4 ’ ’ 7z 4
’ 7 4 e ’ 4 7
7 / / 4 ’ 7z 7
R
v 4 ’ s . s ’ s
’ s s . ’ s ’
’ ’ ’ ’ . ’ ’ ’
4 7 7z 7z 7 7z 7z
4 7 7 7 7 7 7 /|
4 s ’ ’ s ’ ’ v
S 4 , , 7z ,
7’ 7’ 7’ // 7’ 7’ 7’ 7’
Figure 6: Support of Q)2 basis functions for py,

and 1 type of basis functions for u (see figure 7)

Figure 7: Support of ()1 basis functions for uy,

Following the approach of P. Monk, G. Cohen and N. Tordjman (c.f [13], [20]), we approximate the integrals
in (11(i), (ii)) by adequate quadrature formulas, for which the position of the quadrature points coincide with
the position of the degrees of freedom. For our elements it consist in :

a) using the Gauss-Lobatto quadrature formulas for the approximation of the M, matrix. The resulting matrix
is now block diagonal. Each block is associated to one quadrature point and its dimension is equal to the
number of degrees of freedom at this point (the “worst” case concerns the summits of the elements K,
where the dimension of the local block is 4 x 4).

b) using the Gauss-Legendre quadrature formula for the approximation of the M, matrix, the resulting matrix
is diagonal.

Remark 2 One can remark that My, being chosen discontinuous, the matrix M, does not really need to be mass
lumped (it is always block diagonal).
INRIA
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Remark 3 The generalization of the previous techniques to higher orders (k > 3) can be done without great
difficulties, using higher order Gauss Lobatto and Gauss Legendre quadrature formulas [9].

Remark 4 The Raviart Thomas k-order approximation consists in the choice
X*T = RTyy = Peyak X Pegyr and M = Qy
It is clear that the new approzimate space Xp, contains the space X ,fT. Thus we have enriched the p-approximation,
while keeping the same v-approximate space.
3 Analysis of the new mixed finite element for an elliptic problem

Following [6], we will study in this section the mixed approximation of the elliptic problem which is in fact
the stationary problem associated to the evolution problem (5). Actually, we give in paragraph 3.2 an abstract
result for a class of elliptic problems posed in a more general framework and show in paragraph 3.3 that the
model problem enters this framework. This analysis will be used in paragraph 3.4 to study an elliptic projection
operator that will be useful for the analysis of the approximation of the evolution problem done in section 4.

3.1 The elliptic problem

The elliptic problem we consider here is :
Find u € H;(Q) such that :
(18)
—div (A7 (2)Vu) = f , feL*(N)
We know that (18) admits a unique solution u € H}(f2) and there exists ¢ > 0 such that :
(19) lull i) < e 1fllp2(q)
As for the time dependent problem, we define
(20) p=A'(z)Vu
and this gives
(21) —divp=f
The mixed formulation associated to equations (20), (21) is :
Find (p,u) € X x M = H(div ;) x L*(Q) such that :

(22) a(p,q) +b(u,q) =0 Vge X

b(w, p) =—(f,w) Ywe M,

where a(-,-) and b(-,-) are defined by (6) and satisfy properties (7). As it is proven in [7] there exist a unique
solution (p,u) in X x M of problem (22) where u is also the solution of the initial problem (18) (in fact the
abstract result yields the uniqueness of u only in M/ Ker B!, but it is easy to check that for the divergence
operator KerB? = {0}). For the approximation of this problem, we again consider the finite dimensional spaces
Xp, and M}, defined by (8). The discrete problem associated to (22) is :

Find (pp,un) € Xp x My, such that :
(23) a(pn, qn) + b(un,qn) =0 Van € Xp

b(wn, pr) = —(f,wn) Ywp € My,

RR n° 3445



12 E. Bécache, P. Joly and C. Tsogka

The elliptic problem (22) and its approximation (23) have been studied by several authors, see for example
[17], [7] and we know that it admits a unique solution (pp,up) in Xp x M}y, with the convergence property :

(24) (phauh) - (pa U) € XxM

when the following assumptions are satisfied :

(7)  The uniform discrete inf-sup condition

de > 0 independent of A such that

Vwy € Mp, 3 gn € Xn/ b(wn,qn) > cllwnlly llanllx
) (4¢)  The coercivity of the form a(-,-) on V(= KerBp,)

Ja > 0 independent of h such that

V pr € Vi = {qn € X1/ blwn,qn) =0, Y wy € My}, a(pn,pr) > a|pallx -

These assumptions are satisfied by the lowest order Raviart Thomas element [17]. With our new choice for
X it is easy to verify that property (25-1) is still true but we no more satisfy the second relation of (25). Indeed,
consider for example the function f :

(—h,h) (0,h) (h,h)

K2 —’Kl

(—h,0) (0,0) (h,0)

Figure 8: The function ﬁ

we have

A h W) and |k, = h h

We can easily see that f—;l € Vi, and
a(fn, fh)h:‘OO

2
Inllx =03

so that we can not expect to verify (25-ii). We will prove although (see section 3) that this choice gives a good
approximate solution and we will show a new convergence result.

Remark 5 In order to preserve (25-ii) one could change the approximation space M. The natural choice is :
M=P

the key point is that the divergence operator sends Q1 X Q1 in Py. We have eliminated this choice because it is
rather expensive in terms of calculation time and memory requests.

INRIA
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3.2 An abstract result

The first point in our new theory is that we need to introduce a third Hilbert space. More precisely let M, X, H
be three Hilbert spaces with :

(26) XCH and [y<l|lx
The reader can have in mind that, for our application we shall have :

H = (L*(Q))?, X = H(div,Q) and M = L*(Q)
Take a(-,-) et b(-,-) two continuous bilinear forms in H x H and M x X verifying :

(@) Je>0/ YweM, Iqe X /bwq) > clwly ke 5 lalx
(27)
(i) 3a>0/ VpeV={geX/bw,q) =0, Ywe M}, a(p,p)>allplk

From the continuity of the bilinear form a(-,-) we know that there exists an operator A in £L(H) such that :
a(p,q) = (Ap,q)n Vp,q € Hx H
We can also define operators B : X — M' and Bt : M — X' such that :
(Bp,w) pprar = (P, Btw>XXx, = b(w,p) Y(p,w)€ X x M
we then define the kernel of B and B! as follows :
Ker B={pe X /blw,p)=0, Vvwe M} (=V)
Ker B! = {w € M / b(w,p) =0, Vp € X}
We shall identify the quotient space M/Ker B with the orthogonal complement of Ker B!
M/Ker B! = (KerB')* = {w e M/ (v,w)y =0,Yv € M}
We are interested in the numerical approximation of the solution (p,u) of the following problem :

Find (p,u) € X x M such that :
(28) a(p,q) +b(u,q) =0 Vge X

b(w,p) =—(f,w) YweM.
with f € M', the dual space of M. Under these assumptions, we have the classical result (see [7]) :

Theorem 1 For all f € ImB, problem (28) has a unique solution (p,u) in X x (M/Ker B?). Moreover, one
has the bound

lullpr/Ker e + PIx < ClFllar

Suppose X, C X and M} C M finite dimension approximation spaces. We consider then the approximate
problem :

Find (pp,un) € Xp x M}, such that
(29) a(Ph,qn) +b(un,qn) =0 Yan € Xp,

b(wh,Pn) =—{(f,wn) Ywy € M},
We set :
Vi(f) = {an € X1/ b(wn,qn) = —(f, wn), Ywp, € My}

Vh = Vh(O) = Ker Bh

we make the following hypothesis :
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(HO) VfeTm B, Vi(f) #0
(H1) Orthogonal decomposition of Xp:

Xp=Xp®X; (ph=p;+0py) , X, CVy
V(ph,ph) € X x Xp (Ph,PR)E =0

(H2) “Strong” discrete uniform inf-sup condition :

there exists a constant ¢ > 0, independent of h, such that
Vwy, €My, g €X] [ blwn, i) 2 cllwnllyyker 52 951

(H3) “Weak” coercivity :

there exists a constant « > 0, independent of h, such that
2 2
Vo € Vh, alpn,pn) > o (Il + Bl )

(H4) Approximation properties :

lim inf p—gilly =0 VpeX
Jim, nf . llp = gillx P

li inf — = M.
hgr%]w:reth||u wrllyy =0 Vue

We can introduce as in the case of the continuous problem operator By from X to M} defined from :
(Bhph7wh)M’><M = b(ph,'wh) Vph € Xh, Ywy, € My,

(pn, Bwn) x5 = b(0r, wh) Vpu € X, Ywn € My,
We then define :
KerBh = {ph € Xh/ b(ph,wh) = 0, th € Mh} = Vh

KerBj} = {wy € My, [ b(pn, wn) =0, Vpn € X}

Remark 6 It may be more convenient to characterize hypothesis (H0O) with one of the following equivalent
statement :

(HO) — (i1) Vpe X, Ipy € Xy, such that b(p — pp,wp) =0, Yw, € My,
(30)
(HO) — (iii) Ker Bt = Ker BN M), C Ker B

Remark 7 We call hypothesis (H2) “strong” as we suppose the existence of a g, in X instead of Xy, which
would be the classical assumption, more precisely we have X 7Cé Xp. On the contrary hypothesis (H3) is
“weaker” in the sense that forall p, € X; NV, orpp, € Xp NV, = X7,
2 2 2
Ipillx + Pkl < llpnllx

In the abstract case, this condition is not clearly weaker for all pn, € Vi. In our application, however, it is easy
to check that this would be still true for any pp € V.

INRIA
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Theorem 2 With the hypothesis (H0) to (H4), problem (29) admits a unique solution:
(pn = p§ + D}, un) € Xp x (My/Ker B})
and we have the following convergence result :
e (pi,un) — (pu) MmXxM
o =0 in H.

More precisely, we obtain the error estimates :

Phlg + P = Pillx + v = wnllpr/xer Bt < C{ inf |lp—aqpllx + inf |lu—wally + inf [Ap— ZZ||H} .
gy €EX5 w €eX;

i
hEMp 27,

Proof: First note that hypothesis (HO) and non-uniform discrete coercivity on the kernel Ker By, i.e.,

(31) Jan > 0, Ypr € Vi a(phypr) > an ||pull%

ensure existence and uniqueness of the solution (pn,us) of the discrete problem (29) in Xj x (Mp/Ker BY).
Since in finite dimension all the norms are equivalent, the non-uniform discrete coercivity on the kernel Ker By,
(31) is a consequence of (H3).

Take qp, any element of V},(f), we also have py, € V,,(f) (second equation of (29)) thus :

(Pr —aqn) € Vi
We can write
(32) a(ph = @, Ph — qn) = a(p — @, Ph — qn) + a(ph — P, Ph — qn)
Taking the difference between the first equation of the continuous(28) and the discrete(29) problem we have:
(33) a(ph — p,ph — qn) = b(uw — wh, pr — qn)  Ywp € Mp.
Using (H1) in (33), we can write, with obvious notations :
(34) a(pn = p,Pr = an) = b(w — w, P}, — i) + b(w, Pj — @4)

(we have used the fact that b(ws,p}, —¢}) = 0, since X} C V), then by (28) we get :

a(ph — 0, pn — qn) = b(u — wn,ph — q;) — a(p, P, — ah)
(35)
=b(u —wn,p}, —qp) — (Ap, D), — @)

We chose now :

an = g5 € Vy () = Va(f) N X}
(36)

=0
from (32) through (35) and (36) we obtain

a(ph — @, Ph — @4) = a(p — @4, Pr — @4) + b(w — wa, ph, — a;) — (Ap, p},)
or by using the orthogonality of X} and X (HI)
(37) a(Ph = GhsPh = G4) = a(P = G5, Ph — Gi) + b(w — wh, Ph = G3) — (Ap — 23, Ph)u Y 2, € Xj;
Further, from inequality
pn = ailg < P — aillx + |Phlg
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and (H1), (37) leads to :
s 5112 72 s s s
ollph, — aull’x + 1Ph) < llall1p = ailg (lpk — gillx + (PRl g)

+ bl v — whllar l1P% — gillx +[Ap — 2l g |Phlg -

We deduce the existence of a constance C' depending on f, p, ||la||, ||bl|, and « such that
IPh = gillx + [Phle < C(Ip = Ghlg + llv = wallas + AP = 25| 5) V(4 wn, 23) € Vi(f) x Ma x X5

which gives

— i <(1+C inf —qs + inf ||lu—w + inf |Ap— 2} )

llp ph“x <( ) (q;e () llp Qh”x Lo, | h”M ZZE’»'f;' p h|H
A <C inf —q + inf ||lu—w + inf |Ap— 2} .

Pk g = <qZ€ ;(f)”P anllx wnCH, I AlY; ZZGXZ| P—2ply

To conclude let us recall that the inf-sup condition (H2) implies (cf. [7]):

inf —gilly <ca inf |lp—qillx -
q;ev,;(f)“p hllx q;;ex;” wllx

Finally, it remains to prove estimates for [[u — un|| 5 /xer pt - Let us subtract the first equation of (29) from the
first equation of (28). We get

a(p — Pr,qn) +b(v — un,qn) =0 Vgp € Xp,
so that for any wy in Mj, it comes
b(un — wh,qn) = a(p — pn,qn) + b(w — wn,qn) Yan € Xy
choosing now g, = g; implies
b(un — wh, q4) = a(p — pr, q5) + b(u — wr, q;) Vg, € Xj

Using this and the inf-sup condition we have

]_ b(uh—wh7QZ)
llun, — wall A S PP
M /Ker By, c G eX; ||q'}i||X
1 ~ Pry83) + b(u — wn, G
<1 s a(p Ph,qh)‘s" (u — wh, 43)
Cgexs llg5 ll x

IA

1
_ Ulall lp = pall g + 11l 1w = wallp)

it follows from the triangle inequality

o=l g < €' { 0t = wnllg + 5l + o =il | 2

Remark 8 One could easily remark that the space X} satisfies all assumptions (H0) to (H4), why not replacing
then Xy, = X} ? In fact we should imagine the case, in which whether we can not characterize the space X, or
we prefer the use of Xy, (that is in particular our case for the evolution problem, where we prefer the use of X}
in order to achieve mass lumping).

3.3 Application to the model problem
We have in the case of problem (22)

o H=(L?(Q))?

o X = H(div,9Q)

o M=IL%%)

The operator B is in this case the divergence operator which is surjective from X into M which means that
Ker Bt = 0. From remark 6 it follows that hypothesis (HO) is equivalent to the surjectivity of By from X}, into
My}, This is true for the classical Raviart Thomas approximations [17], i.e., By, is surjective from X ,’fT into My,
Since the new space X, contains the space X7, as noticed in remark 4, it is straightforward to check (HO),
therefore Ker B} = 0.
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3.3.1 Approximation with the lowest order finite element Q" — @,

Let us begin by checking the hypothesis (H1). We take as approximation spaces :
Xn={an € X /| VK € Tp, qn|lx € Q1 X @1}
My ={wpbe M/ VK € Tp, wp|k € Qo}
We define now X as the lowest order Raviart-Thomas element (cf. [17]) RT} :
X; ={wn € X/ VK € Ty, wy € RT}g)} C X.

In order to describe its orthogonal X, we denote as illustrated in figure 9

(i,j+1 * (i+1,j+1)

G +)

Figure 9: The RTjy element

(4,7) the node of 7, with coordinates (ih, jh),

1
- i+ E’j) the horizontal side joining the nodes (i,7) and (i + 1, j),

1
(1,5 + 5) the vertical side joining the nodes (4,7) and (4,5 + 1).
The base functions ‘;i,H%’ <Z;i+%,j € RTjo) can be written as:

Pij+1 0

Pijry = > Bity =
0 Pivl

where ¢i’j+% € Py and ¢i+%’j € Py; and defined by :

(Tit1 — ) (Yiy1 — )
¢i,j+% = T7 ¢i+%,j = T

It is then easy to prove the following Lemma :

Lemma 1 The space X| = (Xﬁ)L can be generated from the functions :

0
-+ (x_$i+%) Pir}i »
Vivt = and ¥; iy 3 =
0 (?/ - yj+%) it}
where z;, 1 = (i + )h and Yirr =0+ )h. Moreover X} C Vj,.
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Using now the well known properties of X7 — M, (cf. [17], [18], [7]) hypothesis (H2) and (H4) are trivial, only
(H3) needs to be checked.

Lemma 2 For all py, in V,, we have :

a(onson) > o (Il + IBi[% )
a being defined from (1).

Proof: From (1) we get:

alpn, ) > allpnlly = o (g5 15 + 175 17)
Remark now that p;, € V}, implies p}, € V, N Xj,. Hence it follows (cf. [7]):
(¢) divp;, € My,
(i) (div pj,wp) =0 Ywy € M.
Recalling (i) we can take
wp, = div pj,
n (i), which gives:
div pj = 0.

The claim is thus proved.O
We can apply now Theorem 2 to the approximation problem (23), and by using the usual interpolation
results (cf. [18]) we obtain : (here we have Ker B}, = 0)

Theorem 3 The problem (23) admits a unique solution:
(ph;un) € Xp X Mh.

which satisfies:

o (pi,ur) — (p,u) in H(div,Q) x L*(Q)

o pi -0 in L*(Q).
Further if we assume the solution to be more regular, (p,u) € H'(div,Q) x H*(Q) , we get:

IPEll> + P = Phll rdiv ) + Il = unll2 < Ch(Julgy + |plgs + [div plgs + | Ap|g1)

where |.| ;1 denotes the usual semi norm in H' ().

Remark 9 Let us now consider the case of isotropic waves equation, which corresponds in taking A(z) in (18)
as a diagonal matriz(Aqg(x)). It is then easy to prove the following : the approximate problem

( Find (pn,un) € X1, x My, such that
(38) {  @da(Ph,qn) +b(un,qn) =0 Yan € Xp
. b(wh, pn) = —(f,wp) Ywp € Mp.

admits a unique solution (p, = p}, + p},, up) with p, =0 and (p},up) the solution of the following problem :

( Find (p§,up) € X; x My, such that

S aa(Ph,an) +b(un,q;) =0 Vg, € Xj,
INRIA
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where aq(-,-) is given by (6) after replacing A(z) by Aq(z).
Noting that in this particular case we have :

ad(ph,qr) =0 Vg € Xj,

aq(Ph,qn) =0 Vgj € X
and using the fact that
Xy CVy
we can decompose (38) in two independent problems in X} and X| :

Find (p;,, up) € X§ x My, such that
aa(Ph-an) + b(un, q5) =0 Vg; € Xj,

b(wn, py,) =—(f,wn) Ywp € Mp.
and

Find (p},) € X}, such that
(39)
ad(ph,qr) =0 Vg, € Xj

It is obvious then from (89) that

p, =0

This remark is no longer true when A(z) is not diagonal.

3.3.2 Approximation with higher order finite elements, Qgiﬁ’l — Qg
We have seen in section 2.3 that the natural generalization of the lowest order element consists in taking :
X =Xt = Q41 X Qry1 and M = My, = Qy

which leads us to introduce the spaces :

Xpn={qn € X /| VK € T, qn|lx € Xy}
(40) (17)
My ={w, € M| VK € Ty, wy|x € My}

We are going to show that we can apply the abstract theory of section 3.2 to these spaces, the main difficulty
lying in the construction of an orthogonal decomposition of X}, such that assumptions (HO) to (H4) are satisfied.
In fact we shall deduce such a global decomposition from a local decomposition of the space X, considered as a
subspace of L2(K), where K is a single element.First we recall the definition of the Raviart-Thomas space RTy,
as :

BTy = Pey1,k X Prk+1
which obviously satisfies

Let us define ¥ (K) as the orthogonal complement in X; of RTjy (for the inner product L*(K)):

U (K) = {¢ eX/ /K'zM)dm =0, Vg e RT[k]}
Note that :
dim¥,(K) = 2(k + 2)

The main property of the space ¥ is the following :
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Lemma 3 For any ¢ in ¥y, and v in My, one has :

(41) /Kdiv'zp-vdx:0

Proof :

For simplicity we shall take in the proof the reference element K = [0,1] x [0, 1].

(i) We begin by a characterization of $. Let us introduce oy, as the polynomial of one variable of degree k + 1
such that :

Pyi1 = P @ [o]

Equivalently, o}, is defined, up to multiplicative constant by :

1
/ or(z)p(z)dz =0 Vp € Py
0

o € Pry1, o, #0

Then we claim that :

N

=10

p2(@2)ok (1)

p1(z1)or(z2)
, (P1,p2) € Pry1 X Prga

Indeed, as dim¥ = 2(k + 2), it is sufficient to check that ¥ is orthogonal to RTjy). To see that, we first remark
that (see [17]) RTj) is generated by vector fields of the form

71(21)q1(72)

¢($1,CL’2) = |: ] with (T1,7'2) S Pk+1 X Pk+1, (ql,qQ) € P, x Py,

Tz($2)92($1)
Let us consider

p1(z1)ok(z2)

(42) P(xy,T2) = l ] with  (p1,p2) € Pry1 X Pry

p2(z2)ok (1)

we have :

1 1
(¥ k) = (/ 71 (z1)p1 (21 dwl) (/ or(z2)q (22 d$2)
0 0

1 1
+ (/ ok (71)g2(21 dfCl) (/ To(@2)p2 (T2 d$2)
0 0

As (q1,¢2) are in Py, by definition of o, we obtain

1 1

/ o (z2)q1 (z2)dz2 =/ or(z1)g2(z1)dzy = 0= (¢,9)r2(x) = 0
0 0
(ii) To prove (41) we first use Green’s formula :
1 1
/ divipvdz = —/ ¥ - Vodz +/ (¥ - n)vdy
0 0 oK

If v belongs to Qk41, Vv belongs to RTj;. There for, since ¢ belongs to '

1
/ divyp v dx = / (¥ - n)vdy
0 oK

Let us decompose 0K as :

aK=T1UT2UT3UT4
INRIA
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according to figure 10.

I3

Ty K 1y
T

Figure 10: The edges of K.

Then we check that :

V1< <4, Vo€ R [ (v mady =0

T;

where Ry (T;) is the set of polynomials of degree k with respect to the abcisse along T;. Let us consider for
instance j = 1, and assume that 1 is given by (42), then

/T1(¢-n)qd7 - _ </01 Uk(wl)q(m)) p2(0) =0

To conclude, it suffices to remark that if v belongs to Q41 then v|Tj belongs to Ry (T}). This result suggest to
define :

(43) X; = {pn € H(div; ) / VK € T, prlxc € BTy}
and

Xi =A{pn € H(div; ) / VK € Tp, pplk € Wi}
We can now show the main result of this section
Theorem 4 One has the decomposition

X=X, o X}

and assumptions (HO) to (Hj) are satisfied.
Proof: (HO0), (H3) and (H4) are classical properties of the Raviart-Thomas approximation spaces [17]. (H1)

and (H2) are straightforward consequences (decomposing the integrals over 2 as the sum of the integrals over
elements K) of the definition of ¥ and Lemma 3.

Remark 10 For k = 0 we obtain the orthogonal decomposition of X, described in section 3.3.1 that we resume
in figure 11.
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@ — — — le Q]_

[T o = Q,
[T1T]

/

/

Figure 11: Orthogonal decomposition of @1 x Q1

In the same way we can resume the orthogonal decomposition of Xy for any k in figure 12

Figure 12: Orthogonal decomposition of Q41

We can apply now Theorem 1 to the approximation problem (23), and by using the usual interpolation
results (cf. [18]) in X} — M}, defined by (17), (43) we obtain :

Theorem 5 The problem (23) admits a unique solution:
(Ph;un) € Xp X M.
which satisfies:
o (pi,up) — (p,u) in H(div,Q) x L*(Q)

7 0 in L2(0).
* Pn - in L*(2) INRIA
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Further if we assume that the solution (p,u) of (22) is such that (p,u) € (H™())?> x (H™(Q)) and divp €
H™(Q) for m =k + 1, then we get the error estimate :

(44 bl + P = Phlaaiy ) + lu = unllzs <€ B™ (fulgm + |plgm + |div plgm + [ Apl )
where |.| ym denotes the usual semi norm in H™ ().
Remark 11 In order to expect the error bound (44), one has to suppose that the coefficients A;; of A are

sufficiently regular, for instance A;; € C™.

3.4 Application to the elliptic projection operator

We come back to the abstract framework described in section 3.2. We consider the problem : find (py, up) such
that

a(p — Ph,qn) + b(u — U, qn) =0 Vg, € Xp
(45)

b(wh, P — Ph) =0 Vwy € My,
We set

D(B")={w e M/ bw,q) <C(w)|lglly, Ve X} ={we M/ B'we H}
For w € D(B?), we have
b(wJQ) = (Btw7(I)H7 V q € X

Let us introduce a notation :

llp = Brlll = llp — By’ llx + 1By |l =
(46)
I, w) = Tn(p, )] || = [[lp — Palll + llu — wnllar
It is straightforward, by application of the abstract result, to get the interpolation estimates :

Theorem 6 We make hypothesis (HO) to (H4).

(i) Forall (p,u) € X x M, problem (45) admits a unique solution

I (p,u) = (B + By Un) € Xp x (Mn/Ker B})

(i) Forall (p,u) € X x D(B?),there exists a constant C independent of h such that
Il [ w) = Ta(p, w)] || < C Na(p,u)
where

B'u — 2} ||

Ni(p,u) = inf [p—qpllx +

inf — inf
4, €X; whlth l wh”M—i_zsngi

h

which shows in particular that |||p — Dul|| and ||u — Up||m tend to zero.

Proof of theorem 6 : (i) The existence and uniqueness still comes from hypothesis (H0) and (H3) (with
f = Bp which is of course in I'm B).

(ii) The proof of this point is a minor modification of the proof of theorem 2. The only difference concerns
the treatment of term b(u,p} —¢r) in (34). In order to get the error estimate, it is necessary to relate this term
to the H-scalar product. In the proof of theorem 2, this was done using the first continuous equation which
implies that b(u, p} — q7) = —a(p,p} — ¢4) = —(Ap, p} — ¢%.) - Now we assume that u € D(B?) so we have

b(uap; - q;) = (Btuapz - QZ)H

The result is thus obtained by replacing —Ap with Btu. O
RR n° 3445



E. Bécache, P. Joly and C. Tsogka

4 Error estimates for the evolution problem

Let us now come back to the initial evolution problem (5), (4) and see how we can relate the error estimates to
the one obtained for the elliptic problem (22). Although we have constructed this element in order to be able to
do mass lumping, we analyze the error for the discrete problem without mass lumping. Of course, when doing
mass lumping, one should add to this error the quadrature error due to the numerical integration (see [20], [2]).

4.1 From error estimates for the elliptic problem to error estimates for the evo-
lution problem

In this part, we use the same notations and hypothesis as in section 3.2, and we consider the evolution problem

( Find (p,v) : [0,7] — X x M such that :

Golp,q)+bvg) =0 VgeX
(47) < p
Cw)=bwp) = (hw) Vwed,

L p(0) =po; v(0) =
or equivalently in an operator form, if we assume enough regularity on the solution in time :

( Find (p,v) € (C1(0,T; H)n C°0,T; X)) x C1(0,T; M) such that :

A%JFB% =0 in X'
(48) { p
d—:—Bp =f in M,

L p(0) =po ; v(0) =g

In the following, we use the notation C"™" = C™(0,T; H) N C"(0,T; X).
Suppose X, C X and M, C M finite dimension approximation spaces. We consider then the approximate
problem :

( Find (pn,vs) : [0,T] = X1 X M}, such that :

d
%a(ph,qh) + b(vn, qn) =0 Vg, € Xp,
(49) $

d
a(vh;wh) — b(wn, pr) = (f,wn) Ywn € My,

L p1(0) =po.n 5 vr(0) = vo,n

From the classical theory of ODE’s, we have the following result :

Theorem 7 If f € C°(0,T; Mp), then problem (49) has a unique solution (pp,vs) € C1(0,T; X1)xC*(0,T; My)
Moreover, we make hypotheses (HO) to (H4), in particular X} admits the following orthogonal decomposition
Xn =X ®Xj,

Following [8], [10] we introduce the elliptic operator defined in (45). By application of theorem 6, we get the
following interpolation results :

Lemma 4 Let (p,v) be the solution of (48) and assume that (p,v) € C1'° x C1(0,T; M), then
(i) There exists a primitive of v, u € C*(0,T; M) , satisfying,

(50) dt ’
Apo + Btu(0) =0
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This primitive is unique up to a constant element of Ker B,
(i) Vt € [0,T), problem (45) admits a unique solution Iy (p,u)(t) = (Pn,@n)(t) € Xp x (My/Ker B}) and
there exists a constant C independent of h such that

(51) | [(p, u) = i (p,w)] (B)]| < C Ni(p,u)(t)
where Ny, is defined by,

Nu(p,u)(t) = inf |lp(t) — gillx + inf [lu(t) —wallar + nf (IAp(t) = #;llm

aiexX; wn, X

which shows in particular that |||p — pr||| end ||u — Up||p tend to zero uniformly in time (t € [0,T]) (|| [[]|| and
[I|-]l| are defined in (46)) .

(iii) In the same way, if (p,u) € C*¥(0,T; X) x C*¥(0,T; M), k > 1, there exists a constant C independent of
h such that
(52) | [(8Fp, Bfu) — T (8 p, Ofw)] (B)|| < C N (8¢, Ofw) (2)
dkg

where we used the notation &fg = Tk

Remark 12 Operators I, and Bf commute, and in particular we will set in the following :
(53) o =00 (@n) = (9w,
Proof of lemma 4 :

(i) We set fo = —Bpp € Im B. From hypothesis (27), we know that there is a unique (pp,up) € X X
(M /Ker Bt) such that

a(p07 q) + b(“o: q) =0 Vq €X
b(’w,po) = —(f(],’UJ) Vw € M7

which means that, po being fixed, there is a unique ug € (M/Ker B?) such that Apy + Blug = 0. Now we define
u as

u(t) = ug + /Ot v(s)ds
It is clear that w € C1(0,7; M) and is the unique solution of (50).
(ii) Let u € C*(0,T; M) be the primitive of v, plugging this into the first equation of (48) gives
%(Ap + B'u) = 0 = (Ap + B'u)(t) = Apo + B'u(0) =0
thus (p,u) € C*(0,T; X) x C'(0,T; M) satisfies

a(p,q) +b(u,q) =0, Vge X

so we have u € D(B?) and B'u = —Ap. Applying theorem 6, we get the existence and uniqueness of the elliptic
projection, for ¢ fixed, and also the error estimate (51).

(iii) If (p,u) is sufficiently regular in time, we can differentiate with respect to ¢ and get
Adfp+ B'0fu =10
We apply again theorem 6 to get (52).0

We now give the main result :
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Theorem 8 We make hypothesis (H0) to (H4). Let (p,v) be the solution of (48) and (pp,vy) the solution of
the approximate problem (49) with the following initial conditions :

(54) (o,ns vo,n) = IIa(po , vo)
e If (p,v) € C?(0,T; X) x C*(0,T; M), we have the following convergence result : Vt € [0,T],
lp = pilla(®) = 05 Iphlla(®) — 05 Jlv—vala(t) — 0
More precisely, we obtain the error estimates :

i
lp— Bl () + Il (t) < C (Nh O+ [ N (020.00) (s)ds)
(55) ‘

¢
lv—vnllm(t) <C (Nh (O1p,v) (t) +/0 N (87 p, Orv) (S)dé’)

e In addition, if (p,v) € C3(0,T; X) x C%(0,T; M), and (pn,vr) € C?(0,T; Xp) x C?(0,T; My), we have the
following convergence result in norm X : ¥Vt € [0,T], ||p — p;||x(t) — 0. More precisely :

i
(56)  llp—pillx(®) <C (Nh(p,U)(t) + N (97p, 0v) (1) +/0 (Nh (07p, 0rv) (s) + N (87p, 0}v) (s)) d8>

In order to prove theorem 8 we need the following lemma :

Lemma 5 Let (p,v) be the solution of (48) and (pp,vr) the solution of the approzimate problem (49) with the
ingtial conditions (54). Let Iy (p,u) = (p,,° + b)), un) the elliptic projection defined in lemma 4, and vy, defined
in (63). We set by, = v — Uy,

(i) If (p,v) € C*° x C*(0,T; M), there exists a constant C, independent of h such that Vt € [0,T]

1
(57) 1Py — phlla (8) + [1pn" — Pl () + 0h — vnllm(t) < C / 16ebnlla(s) ds
0

(i) Moreover if (p,v) € C%! x C2(0,T; M) and (pn,vr,) € C%(0,T;Xp) x C2(0,T; My,), there exists a constant
Cs, independent of h such that Vt € [0,T

t

(58) 192 = llx(®) < Ca {100ulr )+ [ (108 0(s) + 10 0ulan(s) s}
0

Proof of Lemma 5 :

e Estimation (57) : we begin by rewriting equations (47) with the test functions ¢ = ¢, € X, C X and
w = wp, € My C M and we subtract it from (49) :

d

EG(P —DPh,qn) +b(v —vp,qn) =0, Van € Xn
E(v—vh,wh) —b(wh,p—pr) =0, VYwy, € My,
(P —Ph)(o) =DPo —DPo,h ; (11 - vh)(o) = Vo — Vo,h

Introducing the elliptic projection Il (p,u) = (Pp,Un), we split the error between the approximate solution and
the exact solution into two parts :

{ (p—pn)t) = (p—Dr)(t) + (Pr — pu)(t)

(v=wp)t) = (v—="1p)() + (Vn — va)(2)

and we choose as approximate initial conditions the elliptic projection of the exact initial condition, (54), so
that at time ¢ = 0 we have

(59)

(ﬁh —Ph)(o) =0; Up— Uh(o) =0
INRIA
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Using now the error decomposition (59) we obtain :

a(8:(Ph — Pn)an) + b(@n — vy an) = —a(By(p — ), an) — b(v — Th,qn) Van € Xp
(60)
(O¢(Vh — vn),wn) — b(wh, Dh —Pr) = —(0:(v — Un), wn) + b(wh,p —Dr) Ywy € My,

Differentiating the first equation of (45) (written for (p,u)) with respect to ¢ we see that

a(0¢(p — Pn),qn) + b(v —Vh,qn) =0 Vg, € Xj,

b(wh,p — Dh) =0 VYw, € My,
that we plug into (60) to get
o a(0¢(Pr — pn)> an) + b(Uh —vn @) =0 Van € Xp,
o (0¢(Vn — vn), wn) — b(wn,Ph — pr) = —(9¢(v —Vp), wn) Vwp € My,

Further by taking ¢, = pr — pr, wn = U, — vy, in (60) and by adding the two equations, we get :

(62) a(0y(Ph — Pr),Pn — Pn) + (0t(Vh — vn), Vh — vn) = —(0¢(v — V),V — vp)
Next set
1, . ~ ~
En(t) = 5 (a(Prh — Ph, P — Pr) + (Un — Vh, O — 1)) (1)

Since for some constant C' > 0, we have

-~ ~ 1/2
EY2(t) > C (16 — pall% (@) + [9n — val30(9) "

It follows that

dE,"”

(63) 7t

(t) < C'l10e(v — ) llna (t) = C'|0ebnllae (2)
where we set 6, = v — Up, and from the choice (54) for the initial conditions
Er(0) =0

It is then easy to see that (63) leads to (57) (from the orthogonality X; L X7, |lanll% = lgiI% + g%,
Vg, € Xp) .

¢ Estimation (58) : to get the estimate on the X norm, we recall that forall n; € X} we have 5 = n + 72
with 5, € KerBy, and 1, € (KerBy)™* so

a5 = Nl + lln2ll%

(recalling that ||n1||x = |lm|lg Ym € KerBy). We set np, = pp, — pp, the term |91 || g is already estimated from
the inequality (57), therefore in order to get the second inequality (58) we only need to estimate ||nz2||x. To do
so, we start from reminding that the inf-sup condition (hypothesis (H2)) is equivalent to :

there exists a constant C' > 0, independent of h, such that

(64) b(wp, q;
h>q
vaexs s YRGS oo,

wneMy ||Wnllm

we also know that ||na||x = ||9}]lx/KerB,- Thus by taking g = n in (64) we get

sup M) ¢ |

wneM, ||Wnllm
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using now the second equation of (61) we obtain

(65) I2llx < C" {110 (v = Bn)llar + 1100(Dn — va)llna}

Till now, we only have used the C' regularity of the solution. In order to bound ||8;(Ds — vp)|| s, we need C?.
Indeed, we want to apply (57) replacing v, by O;v, U, by O:vy and so on... More precisely, we have

(66) 180 — on) () < C / 1626n [ ar(s) ds

Finally, combining (65), (66) we get

t
Imllx(6) < € {naﬁshnM(t) + [ 122l ds}

and the proof is achieved.O
Proof of Theorem 8. We combine results given in lemma 4 and in lemma 5.
e Estimates in norms H and M :

We have

(67) Ip = vl + IPhlla < (lp = Brller + 1Ph Nl ) + (PR — pille + 1Ph — phlla)

The first term in the right hand side is bounded by |||[p — Px||| and thus by || [(p,u) — IIn(p,w)]||. Assuming
that (p,v) € C*° x C1(0,T; M), it can be estimated by (cf (51))

(68) [[lp = Ball| () < C Ni(p, u)(t)

The second term is estimated using (57) of lemma 5. This requires to estimate ||0;0p||ar. For this, we use (52),
for k = 2, which requires (p,v) € C%(0,T;X) x C1(0,T; M). We get

(69) 18¢(v = Tn)llar(s) < C N (97 p, 0¢v) (s)
(67), (68) and (69) lead to the first inequality of (55). Now, for v, we write :
lv = vrllar < ||v = Vrllar + [[On — vallar
We apply (52), for k =1 and get
lv—"hllar < C Np (ep,v)

Using again estimate (57) for bounding ||Un — va||a, we easily get the second inequality of (55).

e Estimate in norm X :

lp = pillx < llp = Phllx + 1P — phllx

The first term is again bounded by |||p — ||| and can be estimated from (51) of lemma 4. For the second term,
we now use (58) of lemma 5 which requires (p,v) € C>' xC2%(0,T; M) and (pp,vs) € C?(0,T; X1)xC%(0,T; My,).
In the right hand side of (58) appears the second derivative of v — . We thus use estimate (52), for k = 3,
which requires (p,v) € C3(0,T; X) x C2(0,T; M) and we get (56). O

4.2 Application to the approximation of the anisotropic wave equation with the
. d
new finite element, Q% — Q%
We come back to the original problem described in section 2. We consider the approximate spaces given in (17).
From section 3.3 we know that the ngf_’l — @i, element enters the abstract framework. It is then straightforward
to apply theorem 8 and we get :
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Theorem 9 Let (p,v) be the solution of (5), (4) and u € C*(0,T; M) the primitive of v, satisfying at intial
time

du
i v ; B'u(0) = —Apg

Let (p,un) be the solution of the approximate problem (9) with initial conditions :
(Po,h;vo,n) = In(po , vo)
e Convergence in L? norm :
(i) If (p,v) € C%(0,T;X) x C1(0,T; M), forall t € [0,T)
lp = pilla(t) = 05 1Pl (t) = 05 [lv—wvnlla(t) =0
(ii) Further, if we assume that the solution (p,u) € C?(0,T; H**!(div,Q)) x C%(0,T; H**+(Q)),
lp = pilla (®) + 15l 2 (8) + [lv — vallae () < Cr(B)R
with C1(t) = O(I|pllc2(0,4 5+ (div,)) + APl c2 (0,650 +1 () + ullo20,4 541 (02)))-
e Convergence in H(div) norm :
(ii) If (p,v) € C3(0,T; X) x C%(0,T; M), forall t € [0, T
lp = prllx(t) = 0
(iv) Further, if we assume that the solution (p,u) € C3(0,T; H**1(div,Q)) x C3(0,T; H*+1(Q2)),
lp = Pillx(2) < Co(t)h*

with C2(t) = O(||pllcs(0,;m++1 (div,0)) + |APl 030,110 +1(0)) + [lullos(o,6,m0+1(0)))

Proof of theorem 9 : We apply theorem 8 which relates the errors to quantities as N, (0 p, 6lu), i.e., to the
error due to the approximation of space H(div,)) with the Raviart-Thomas RTj} space in norm L? and in
norm H(div) and due to the approximation of space L%(Q) with the Q¥ discontinuous elements. O

5 Extension in 3D

We will present in this section the new finite element in 3D, only in the lowest order, the extension to higher
orders being similar to the 2D case.

Let © be a bounded domain of IR® and consider a regular mesh (73) of Q with cubic elements (K) of edge
h > 0. We introduce the approximation spaces X, C X (= H(div,Q)) and My C M (= L%*(Q)) defined by (8)
with :

X=Q1XQ1XQ1
M = Qo

Our aim now is to obtain error estimates for the approximation problem (23) by applying the abstract Theorem
1 as in the 2D case. Defining first X} as the lowest order (RTjo)) element :

Xy, ={an € X | VK € T, qn|k € P1,0,0(K) X Po,1,0(K) X Po,0,1(K)}

introduced by Nedelec in [15], we see that we can use the well known properties of X; — M}, (cf. [7], [15]), in
order to obtain the same error estimates as in Theorem 2. The only point which is not trivial is the orthogonal
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decomposition of Xj.
In order to describe the space X = (X;)* we denote as illustrated in figure (13),

(¢i,j+%,k+% ) ¢i+é,j,k+% ) ¢i+%,j+%,k)

the base functions in RTjg).

.

0]

i k+1) i+12,],K+/2

(i,

(i+1,j,k+1)

4

4

(,j+1k+1

—

(R,J' +I2, k412 P Ai+1,j,k)

(j+1K) (i+1,j+1,k)

0

1+12,j4/2 K

Figure 13: The base functions in RTg).

Which can be written in the following form

i+ d okt 0 0

Dija ket = 0 s Piy gkt = | Pirtik+r | Cirlgrin= 0
0 0 Girt ot

+§,]+§,k

It is then easy to prove that the space X; can be generated by the following functions :

¢z’,j+%,k+%(y - yi+%)(z - Zk+%)

Vijrihtd = 0 :
0
0
¢i+%,j,k+§ = ¢i+%,j,k+%(m - $i+%)(z - zk+%) )
0
0
Vipdjtih = 0
¢i+%,j+§,k($ - $i+%)(y - yj+%)

Moreover we have X} C Vj,.

Conclusion

We have presented in this paper a family of mixed finite elements leading to an explicit time discretisation
scheme for the anisotropic wave equation. The generalization of these elements to the linear elastodynamic
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problem involves a main difficulty concerning the symmetry of the stress tensor. An answer to this problem
will be given in a next paper, where inspired from the work that we have presented here, we will describe
the construction of a new family of mixed finite elements for linear elasticity, leading also to an explicit time
discretisation scheme.
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