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Abstract: We study the minimum time problem to go from one given point on the plane to
another with given initial and final tangent angles, curvatures and absolute values of speed,
the paths joining these given points being C' and along them the derivative of the curvature
and acceleration remaining bounded by two constants B and A respectively (we denote by
uy (by u2) the control of acceleration (of the derivative of the curvature respectively)).

After the application of the Maximum Principal of Pontryagin and after the study of
all possible forms of concatenation of arcs of curves of any extremal path we obtain the
following results:

1) any general optimal path is a C'-jonction of line segments in one and the
same direction ¢ (uz = 0; ¢ € [0,27] and it is defined by the initial and final
conditions) and of arcs of curves with linear curvature (us = £B);

2) along any general optimal path the point moves with piecewise-linear ab-
solute value of the speed (u; = £A);

3) any optimal path contains at most one line segment;

4) if for some optimal path the point moves along the line segment in the
direction ¢ +7 ( mod (27)), then this optimal path contains an infinite number of
concatenated arcs of curves with linear curvature (us = £B) which accumulate
towards each endpoint of the line segment.
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Le mouvement plan avec deux contréles bornés —
I’accélération et la dérivée de la courbure

Résumé : Nous considérons le probléme de temps minimal pour aller d’un point donné
a un autre sur le plan, les angles tangents, les courbures et les valeurs absolues de vitesse
étant donnés, les courbes joignant ces points étant C! et le long d’eux la dérivée de la
courbure et laccélération étant bornées par deux constantes B et A respectivement (on
désigne par u; (par ug) la fonction de contrdle de laccélération (celle de la dérivée de la
courbure respectivement)).

Aprés Iapplication du Principe de Maximum de Pontryagine et aprés ’étude des formes
possibles de jonction d’arcs de courbe d’une trajectoire extrémale, on obtient les résultats
suivants:

1) une trajectoire optimale générale est une C*-jonction de segments de droite
de la méme direction ¢ (ug = 0; ¢ € [0,27] et ¢ est défini par les conditions
initiales et finales) et d’arcs de courbe avec la courbure linéaire (uy = £B);

2) le long de chaque trajectoire optimale générale le point bouge avec la
vitesse linéaire par morceaux (uq = £A);

3) la courbe optimale contient au plus un segment de droite;

4) si pour une coubre optimale le point bouge le long du segment de droite
vers la direction ¢ + 7 (mod(27)), alors cette trajectoire optimale contient un
nombre infini d’arcs joints de courbe avec la courbure linéaire (us = +£B) qui
s’accumulent vers chaque bout du segment de droite.

Mots-clés : robot mobile, chemin (sous)optimal, principe du maximum de Pontryagine



The planar motion with two bounded controls — the acceleration and the derivative of the curvature 1

1 Introduction

We study the minimum time problem to go from one given point on the plane to another
with given initial and final tangent angles, curvatures and absolute values of the speed, the
paths joining these given points being C! and along them the derivative of the curvature
and the acceleration remaining bounded by two constants B and A respectively. So, we have
two bounded controls — the acceleration and the derivative of the curvature.

The real background of the problem is to solve the minimum time problem for a car-like
robot to go from one given point to another with the above mentioned initial and final
conditions. One can turn the wheels of a car with a bounded speed. Hence, the speed of
changing the curvature of the path of a real car is bounded. Evidently, the acceleration of
a real car is also bounded.

Some similar problems have been the object of several efforts recently. Dubins in [§]
considers the problem of constructing the optimal trajectory between two given points with
given tangent angles and with bounded curvature (cusps are not allowed). He proves that
there exists a unique optimal trajectory which is a concatenation of at most three pieces;
every piece is either a straight line segment or an arc of a circle of fixed radius. The same
model is considered by Cockayne and Hall in [7] but from another point of view: they provide
the classes of trajectories by which a moving “oriented point” can reach a given point in a
given direction and they obtain the set of all the points reachable at a fixed time.

Reeds and Shepp in [18] solve a similar problem, when cusps are allowed. They obtain
the list of all possible optimal trajectories. This list contains forty eight types of trajectories.
Each of them is a finite concatenation of pieces each of which is either a straight line or an
arc of a circle.

Laumond and Souéres in [15] obtain a complete synthesis for the Reeds-Shepp model in
the case without obstacles.

A complete synthesis for the Dubins model in the case without obstacles is obtained by
Boissonnat, Bui, Laumond and Souéres (1994, see [4] and [5]).

All these authors use very particular methods in their proofs. It seems very difficult
to generalize them. That is why the same problem is solved by Sussman and Tang in [19]
and by Boissonnat, Cérézo and Leblond in [1] by means of simpler arguments based on the
Maximum Principle of Pontryagin.

Using these arguments allows to treat more difficult models as the one considered in [3]
by Boissonnat, Cérézo and Leblond and in [14] by Kostov and Degtiariova-Kostova. They
study the problem to find the shortest path connecting two given points of R? with given
initial and final tangent angles and curvatures and with bounded derivative of the curvature
(cusps are not allowed). In [3] Boissonnat, Cérézo and Leblond prove (using the Maximum
Principle of Pontryagin) that any extremal path is a C? concatenation of line segments in
one and the same direction and of arcs of clothoid, all of finite length. They study the
possible variants of concatenation of arcs of clothoid and line segments and obtain that if
an extremal path contains but is not reduced to a line segment, then it contains an infinite
number of concatenated arcs of clothoids which accumulate towards each endpoint of the
segment which is a switching point. In [14] Kostov and Degtiariova-Kostova prove that if
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2 Elena Degtiariova-Kostova

the distance between the initial and the final points is greater than 320/, then, in the
generic case, optimal paths have an infinite number of switching points.

In the present paper we consider a similar problem but now with two bounded controls
— the acceleration and the derivative of the curvature (cusps are not allowed). We denote
by u; (by us) the control of acceleration (of the derivative of the curvature respectively).

After the application of the Maximum Principal of Pontryagin we obtain the following
result: any extremal path is a C'-jonction of line segments in one and the same direction
¢ (u2 = 0; ¢ € [0,27] and it is defined by the initial and final conditions) and of arcs of
curves with linear curvature (uy = £B) and along any optimal path the point moves with
piecewise-linear absolute value of the speed (u; = +A).

We study all possible forms of concatenation of arcs of curves with linear curvature and
of line segments and we obtain that if an optimal path contains but is not reduced to a line
segment, then:

1) along any optimal path the point moves with piecewise-linear absolute
value of the speed (u1 = £A4),

2) any optimal path contains at most one line segment,

3) if for some optimal path the point mouve along the line segment in the
direction ¢+ ( mod (2)), then this optimal path contains an infinite number of
concatenated arcs of curves with linear curvature (uy = +B) which accumulate
towards each endpoint of the line segment.

In Section 2 we formulate the problem and we study the controllability of the system
and the existence of an optimal solution. In Section 3 we apply the Maximum Principle of
Pontryagin to the problem and we formulate the obtained results in Section 4. We study
all possible variants of concatenation of different pieces of extremals in Section 5 and in
Section 6 we give the main result of the paper (see Lemma 13).

2 Statement of the problem, controllability of the system
and existence of an optimal solution

Consider the minimum time problem to go from one given point on the plane to another
with given initial and final tangent angles, curvatures and absolute values of speed, the
paths joining these given points being C! and along them the derivative of the curvature
and acceleration remaining bounded by two constants B and A respectively.

Denote by z(t) and y(t) the planar coordinates of a point, by k(t) its curvature, by «a(t)
its tangent angle and by v(t) the absolute value of its speed.

For i(t), 9(t) we have the following equations:

{ @(t) = v(t) cos a(t)
y(t) = v(t) sin a(t)

Obtain now the equation for &(t).

INRIA



The planar motion with two bounded controls — the acceleration and the derivative of the curvature 3

£ (t)j(t) — g(t)E(t)
T e o
= [v(t) cos a(t) (0(t) sin a(t) + v(t)&(t) cos a(t))—
—o(t) sin a(t)(0(t) cos a(t) — v(t)a(t) sina(t))] /v*(t) =
= [0?(t)a(t) cos® a(t) + v*(t)a(t) sin® a(t)] /v°(t) = a(t)/v(?) -

Hence, a(t) = v(t)k(t). So, we have the following system:

Z(t) = v(t) cos a(t)
) 9(t) = v(t) sin a(t)
X(t) =4 o(t) = wi(t) fus(8)] < A 1)
a(t) = v(t)k(t)
Ai(t) = ua(t) luz ()] < B
with initial and final conditions
X(0) = (2°,9°%0%a% k%), X(T)=(a",y",0",a" k") . 2)

We control the acceleration by u;(t) and we control the derivative of the curvature by
uz(t) (they are measurable real-valued functions). The vector-function u(t) = (u1(t), us(t))
belongs to the set U = [—A, A] x [-B, B].

We want to find functions x(t), y(t), v(¢), a(t), x(t) satisfying (1) and (2) and such that
the associated control function u(t) = ((u1(t), u2(t)) should minimize the time:

J(u1 5 ’ll.g / dt . (3)

We can prove the complete controllability of system (1), (2) using the results of the
treating of one more simple problem with only one control function uy(t) (see [13]).

In [13] we set v(t) = 1, we control the derivative of the curvature and we prove the
complete controllability of the system. This means that for any points (2°,1°,a° k%) € R*
and (27,97, a”,kT) € R* we can construct a path connecting these points. Denote this
path by R. Now in order to satisfy the initial and final conditions for the variable v(t) we
assume (if % < v7) that the point move along the path R with the absolute value of the
speed v(t) = At +° for t € [0,(vT —2°)/A] and v(t) = vT for t € [(vT —°)/A,T). If
v9 > 0T, then we assume that the point move along the path R with the absolute value of
the speed v(t) = —At +v° for t € [0, (v° — vT)/A] and v(t) = o7 for t € [(v° —vT)/A,T).
So, we have proved the complete controllability of system (1), (2).

In order to prove the existence of an optimal solution we can use Filippov’s existence
theorem, see [6], th.5.1.ii. So, rewrite system (1) in the form

X(t) = F(X(t),u(t)), X({t)eR?x[0,+00)xR?, u(t)eU.
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4 Elena Degtiariova-Kostova

All requirements of the theorem of Filippov are satisfied: all functions F(X(t),u(t))
are continuous together with their partial derivatives; the function under the sign of the
integral in (3) is continuous; the control functions u1(t), u2(t) are bounded and the range of
control is convex; X (t) € R? x [0, +00) x R? (R? x [0,+00) x R? is closed); the initial and
final points (X (0), X (7)) are fixed; one can verify that there exists a constant C > 0 such
that for every X(¢) € R? x [0,+00) x R? and u € U the following inequality is satisfied:
XF(X) < C(X|*>+1). Thus we can assume the existence of an optimal solution and an
optimal control for problem (1), (2), (3).

3 Application of the Maximum Principle of Pontryagin
to the problem

3.1 Formulation of the Maximum Principle of Pontryagin

System (1), (2) is autonomous with fixed endpoints. Apply now the Maximum Principle of
Pontryagin for this type of systems. Rewrite system (1), (2) and integral (3) as the following
system:

.’i?o(t) =1 .’L‘()(O) =0

#(t) = v(t)cosa(t) =(0) =20 =x(T)=2aT

y(t) = v(t)sina(t) y(0)=y° y(T)=y"

(t) = ur (1 0(0) =0 o(T) =0 |un(t)] < A
a(t) = v(t)k(t) a(0)=a® oT)=a”

k(t) = ua(t) k(0)=k" k(T)=rT |u2(t)]<B

Denote by ¥(t) = (¢o(t), ¥1(t), ¥2(t),¥3(t), ¥a(t),¥5(t)) the vector of "dual" variables;
the Hamiltonian H is defined for every ¢ € [0,T] by

H(X (1), U(t), ur(t), ua(t)) = 1ho(t) + 1 (t)v(t) cos a(t)+ (@)
+2(t)o(t) sin a(t) + Ps(t)us () + Ya(t)o(t)r(t) + s (t)ua(t) -

We have the following adjoint system for every ¢ € [0,T7:

[ o(t) =0
Yi(t) =0
con ) a(t)=0
“”“%m:—wmmmo () sin a(t) — Ba(t)w (1) ©)
Dalt) = ¥ (Ho(t) sin a(t) - a(£)o(t) cos a(t
B(t) = —ba(t)o(t)

So ¥o(t), ¥1(t), ¥=2(t) are constant on [0,7]. Hence there exist A > 0 and ¢ € [0, 27]
such that 11 = Acosep, ¥ = Asing (here A\ = /92 + 92 > 0 and for A > 0 we have

INRIA



The planar motion with two bounded controls — the acceleration and the derivative of the curvature 5

cos p = 1 [\ 1% + Y3, sinp = 1y /\/¥? + 12). Then we can rewrite the adjoint system (5)

and the Hamiltonian (4) as follows:

Po(t) = 1o
P1(t) = Acosp
Pa(t) = Asingp ©)
Ps(t) = —Acos(a(t) — ) — Ya(t)s(?)
Ya(t) = Mo(t) sin(a(t) — ¢)
P5(t) = —a(t)v(t)
H(X(t),T(t),u1(t), ua(t)) = Mo(t) cos(a(t) — @) + s(t)ui(t)+
+a(t)o(t)r(t) + Ps(t)ua(t) + o = (M)
= —Y3(t)v(t) + ¥3(t)o(t) + 5 (t)u2(t) + vo
Define
M(X(t),%(t)) = min H(X(t), U(t),u(t), ua(t))
uy (t) € [=A, 4]
UQ(t) S [—B,B]

where U(t), X (t), u1(t) and us(t) are considered as independent variables.
The Maximum Principle of Pontryagin ([6] Th. 5.1i) asserts that if (u](t), u3(t)) is an
optimal control, then

(a) there exists an absolutely continuous non-zero vector-function ¥(t) which
is a continuous solution to (6);

(b) for almost every fixed ¢ € [0, T] the function H(X (t), ¥(t), u1(t), ua2(t)) of
the variables u1(t) € [-A, +A] and us(t) € [—B,+B] only attains its minimum
at the point u1(t) = ui(t), ua(t) = ui(t):

M(X (1), ¥(t)) = H(X(t), ®(t), 1 (1), uz(t)) , t€0,T];
(c) the function M (t) = M(X(t), ¥(t)) is absolutely continuous in [0,T] and

PO, 9(0) = 57 (X (1), B(0), 01 (), wal0);

(d) at any time t € [0,7] the relations ¥y > 0 and M(X(t), ¥(t)) = 0 are
satisfied.

A measurable control (u;(t), u2(t)) and the associated trajectory X (t) of (1) satisfying
all conditions of the Maximum Principle of Pontryagin will be called extremal control and
extremal trajectory. A point X () of an extremal trajectory will be called a switching point
if at t = ¢, the control function u(t) has a discontinuity; the time ¢, will be called a switching
time.

From condition (d) and from (7) we obtain that for an extremal trajectory the following
equality holds:

RR n° 3444



6 Elena Degtiariova-Kostova

—h3(8)o(t) + P3(D)0(8) + s (E)ua(t) + o = 0 (8)
We calculate now H(t).
H(t) = —s(t)u(t) — s (t)o(t) + s (£)0(t) + Y3 (8)(t) + s (Dua(t) + ¥s(t)ia(t) =
= [ (t)o(t) + s (t)ua(t)] + s (t)in (t) + s (t)ia(t) -
The expression in the brackets is equal to zero. Really,
—Pa(t)o(t) + s (tua(t) = [Asin(a(t) — @)a(t) — da(t)r(t) — Ya(t)i(t)]o(t)+
)5 (D)ua(t) = Me(t)v? () sin(a(t) — @) — Ae(t)v? (¢) sin(a(t) — p)—
—Ya(t)v(t)ug + Pa(t)v(t)uz =0 .

For any extremal trajectory we have H(t) = 0, i.e the following equality holds:

V()i (t) + ¥s(t)ia(t) =0 . 9)

3.2 Treatement of condition (b) of the Maximum Principle of Pon-
tryagin in the interior of U

We treat condition (b) in the interior of U, i.e. we consider the case when there exists an
interval [t., ] C [0,T] such that 0H /0u; = 0 and 0H /Ous = 0 for ¢ € [Bay tas]-
From equality 0H /Ou; = 0 we obtain from (7) 93(t) = 0, hence ¥5(¢) = 0, i.e. (from
(6))
Acos(a(t) — @) + Ya(t)s(t) = 0. (10)

From equality 0H /Ous = 0 we obtain from (7) ¢5(t) = 0, i.e. ¥5(t) = 0, hence (from
(6)) 14(t) = 0, i.e. Y4(t) = 0, hence (from (6))

Asin(a(t) — @) =0. (11)
Now, using equalities 13(t) = 0 and ¥5(t) = 0, we obtain from (8)
o =0.
We can rewrite (10) (using equality 14(¢) = 0) as follows:
Acos(a(t) —¢) =0. (12)

Comparing (11) and (12) we obtain A = 0. Hence (from (6)) ¥1(t) = 1=2(t) = 0 and
we obtain a contradiction with condition (a) from the Maximum Principle of Pontryagin

(because we obtain ¥ (t) = 1¥2(t) = ¥3(t) = Ya(t) = ¥s5(t) = o = 0).
Conclusion: there are no extremal trajectories containing a piece corresponding to some
u1(t), us(t) from the interior of U.

INRIA



The planar motion with two bounded controls — the acceleration and the derivative of the curvature 7

3.3 Treatement of condition (b) of the Maximum Principle of Pon-
tryagin on the bound of U

We treat condition (b) on the bound of U. We must consider three cases:

1) the case when there exists some interval [t., t..] C [0,T] such that 0H /du; #
0 and 0H /Oug # 0 for t € (b, tss),

2) the case when there exists some interval [t,, t..] C [0,T] such that 0H /Ou; #
0 and 0H /Oug = 0 for t € (tu,tus) »

3) the case when there exists some interval [t4, t+] C [0, 7] such that 0H /Ouq, =
0 and OH [Ougy Z 0 for t € (ts, tus) -

Consider the case 1).

Using 0H /0uy # 0, we obtain from (7) u; (t) = —Asign(ws(t)). Hence 0(t) = — Asign(vs(t))
for t € (tu,tss) C [0,T]. Using 0H /Ouy # 0, we obtain from (7) uz(t) = —Bsign(¢s(t)).
Hence #(t) = —Bsign(¢s(t)) for t € (ts,t.) C [0,T].

Conclusion: in the case 1) we obtain the result that the part of the extremal path
corresponding to the interval (%, t..) is some curve with the piecewise-linear curvature &(t) =
—Bsign(¢5(t)) and with the piecewise-linear absolute value of speed ¥(t) = — Asign(v3(t))

Consider the case 2).

Using 0H /0uy # 0, we obtain from (7) u; (t) = —Asign(ws(t)). Hence 0(t) = — Asign(s(t))
for t € (t.,ts) C [0,T]. .

Using 0H /Ous = 0, we obtain from (7) ¥5(t) = 0, i.e. ¥5(t) = 0, hence (from (6))
Ya(t) = 0, ie. Y4(t) = 0, hence (from (6))

Asin(a(t) —¢) =0. (13)

From (8) we obtain )
—P3(t)o(t) + s(t)o(t) + 1o = 0. (14)

From (13) follows that we must consider two possibilities:

a) sin(a(t) — ) =0,
by A=0.

In the subcase a) we have sin(a(t) — ¢) =0, i.e. @ = p(modn) for ¢t € (L., t) C [0, T].

Thus, in the subcase a) we obtain a line segment in the direction ¢ and with the piecewise-
linear absolute value of speed v(t) = —Asign(¥3(t)) (o > 0, A > 0).

In the subcase b) A = 0, then we obtain from (6) that 11 (t) = ¥2(t) = ¥a(t) = ¥s(t) =0,
¥3(t) = 0. Hence ¥5(t) = 13(t,) = const. From (14) we obtain — At (¢, )sign(vs(t,))+1o =
0,i.e. —Albs(te)| + %o =0, i.e. |ws3(ts)| = o/A # 0if 9g > 0. Hence, for 19 > 0 there is
no contradiction with condition (a) from the Maximum Principle of Pontryagin (for 19 = 0

RR n° 3444



8 Elena Degtiariova-Kostova

we obtain 1 (t) = ¥2(t) = ¥3(t) = ¥4(t) = ¥5(t) = 0 — a contradiction with condition (a)
from the Maximum Principle of Pontryagin).

Remark that if A = 0 for some extremal path, then it follows from (6) that 14(t) = 0,
i.e. 4(t) = const = 149 along the whole extremal path. Hence, as in the subcase b) we
have 14(t) = 0 along the part of the extremal path corresponding to the interval (t.,t.s),
then ¢4(t) = 0 along the whole extremal path. But if A = 0 and 94(t) = 0 along some
extremal path, then it follows from (6) that ¥3(t) = 0, i.e. ¥3(t) = const = 139 along the
whole extremal path. Hence, ¥3(t.) = 130 and we obtain that along the whole extremal
path the speed is either increasing or decreasing function (it depends on the initial and final
conditions), i.e. ©(t) = —Asign(130) and v(t) = —Atsign(¢30) + v°. So, the extremal path
is run in time T = (vT — 0°)/(—Asign(¢30)) = |[vT —2°|/A.

So, in the subcase b) and if )9 > 0 we obtain the result that optimal paths are all
admissible curves with the linear absolute value of speed v(t) = —Atsign(t39) + v° and
which are run in time T = |[vT — v°|/A.

Conclusion: in the case 2) we obtain the result that if A > 0, ¥p > 0, then the part of
the extremal path corresponding to the interval (t.,t..) is a line segment in the direction
¢ and with the piecewise-linear absolute value of speed ©(t) = —Asign(¥s(t)); if A = 0,
19 > 0, then optimal paths are all admissible curves with the linear absolute value of speed
v(t) = — Atsign(130) + v°, they are run in time 7 = [vT — v°|/A.

Consider the case 3). '
Using 0H /0u1 = 0, we obtain from (7) 13(t) = 0, hence ¥3(t) = 0, i.e. (from (6))

Acos(a(t) — ) +1a(t)k(t) =0 . (15)

From (8) we obtain
Vs (t)ua(t) + 10 = 0. (16)

Using 0H /dus # 0, we obtain from (7) uz(t) = —Bsign(s(t)). Hence &(t) = —Bsign(15(t))
for t € (t«,t4) C [0,T].
From (16) follows that we must consider two possibilities:

a)Tﬁo:O;
b) 9 > 0.

Consider the subcase a). We have 1)y = 0, hence, from (16) we obtain ¢5(t)uQ( ) =
Then 95(t) = 0 (because uz(t) # 0), ie. w5( ) = 0, hence (from (6)) ¥4(t) = 0,
¥4(t) = 0, hence (from (6)) Asin(a(t) — ¢) = 0. From (15) we obtain A cos(a(t) — ) =
Thus, we have A = 0 and 91 (t) = ¥a(t) = ¥3(t) = ¥a(t) = VY5(t) = 1o =0—a contrad1ct10n
with condition (a) from the Maximum Principle of Pontryagin.

So, in the subcase a) no extremal curve can contain a piece such that 0H /duq # 0 and
OH /dus = 0 along this piece.

Consider the subcase b). We have ¢y > 0 and u»(t) = —Bsign(ts(t)), hence, from (16)
we obtain |¢5(t)] = 1o /B. Hence, ¥5(t) = 0 and (from (6)) a(t) = 0, i.e. ¥4(t) =0, hence
(from (6)) Asin(a(t) — ¢) = 0. From (15) we obtain Acos(a(t) — ¢) = 0. Thus, we have
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A =0 and ¥1(t) = ¥a(t) = ¥3(t) = ¥4a(t) = 0, ¥5(t) #Z 0, ¥ > 0 — there is no contradiction
with condition (a) from the Maximum Principle of Pontryagin.

Remark that if A = 0 for some extremal path, then it follows from (6) that 14(t) = 0,
i.e. 14(t) = const = 149 along the whole extremal path. Hence, as in the subcase b) we
have 14(t) = 0 along the part of the extremal path corresponding to the interval (., t.s),
then ¢4(t) = 0 along the whole extremal path. But if A = 0 and 94(t) = 0 along some
extremal path, then it follows from (6) that ¥5(t) = 0, i.e. ¥5(t) = const = 159 along the
whole extremal path. Hence, in the subcase b) ¥59 = 9o/B and we obtain that along the
whole extremal path the curvature is either increasing or decreasing function (it depends on
the initial and final conditions), i.e. &(t) = —Bsign(+s0) and x(t) = —Btsign(1s0) + &°. So,
the extremal path is run in time T' = (kT — k°)/(—Bsign(¢s0)) = |kT — k°|/B.

So, in the subcase b) we obtain the result that A = 0 and that optimal paths are curves
with the linear curvature (t) = — Btsign(1s0) + k°, with some admissible absolute value of
speed and which are run in time 7 = |7 — £°|/B.

Conclusion: in the case 3) we obtain the result that if A = 0, 9 > 0, then optimal
paths are all curves with the linear curvature x(t) = —Btsign(¢s0) + £° and with some
admissible absolute value of speed, they are run in time 7' = |7 — k°|/B; if either ¢y = 0,
A>0or ¢y >0, A >0, then no extremal curve can contain a piece such that 0H/0u; # 0
and OH /Ous = 0 along this piece.

4 Conclusions made after the application of the Maxi-
mum Principal of Pontryagin to the problem

Summarizing the results obtained in the Section 3 we can make the following conclusions:

Lemma 1 If for some extremal path the control functions have finitely many points of dis-
continuity and if X > 0, then this path is a C'-jonction of arcs of the curves with the

piecewise-linear curvature (t) = —Bsign(ys(t)) and line segments in one and the same di-
rection ¢ and it is run with the piecewise-linear absolute value of speed 0(t) = — Asign(13(t))
(o >0).

If for some extremal path the control functions have finitely many points of discontinuity,
if A\ =0 and 1o > 0, then this path is a C'-jonction the arcs of the curves with the piecewise-
linear curvature f(t) = —Bsign(v¥s(t)) and it is run with the piecewise-linear absolute value
of speed v(t) = — Asign(13(t)).

For A =0 and ¢y > 0 there are two special cases:

1) optimal paths are all admissible curves with the linear absolute value of
speed v(t) = — Atsign(130) + v° and they are run in time T = |vT —v°|/A,

2) optimal paths are all curves with the linear curvature k(t) = — Btsign(vso )+
k%, with some admissible absolute value of speed and they are run in time T =
|k — k°|/B.
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5 Concatenation of different pieces of extremals

From now on we use the following notation for arcs of curves with us(t) = +£B and line
segments:

1) ?ClT” — an arc of curve with us(t) = B, ¢¥5(t) <0,

)
2) ”Cl~” - an arc of curve with ua(t) = —B, 9¥5(t) > 0,
3) ”5¥” — a line segment in the direction ¢ (uz2(t) =0, ¥5(t) = 0),
4) »C1F(7” — an arc of curve of length v with us(t) = B (u2(t) = —B),
5) 7%v+” — a piece of an extremal path (a line segment or an arc of curve with
uz(t) = £B) with an increasing linear speed (u;(t) = A, ¥3(t) < 0),

6) ”+¥~” — a piece of an extremal path (a line segment or an arc of curve with
us(t) = £B) with a decreasing linear speed (u1(t) = —A, ¥3(t) > 0),
7) """ — a switching point.

Remark 2 If v(t) = 0 on some interval [t*,t**], then we cannot correctly define the piece
of the path corresponding to [t*,t**] using the initial system (1) and, hence, extremal paths
have no intervals of zero speed.

Remark 3 Asv(t) € [0,400) and as extremal paths can have only some points of zero speed
and not intervals, we obtain that the point t (where v(t) = 0) is a switching point of the
control wi(t) at which the variable 1¥s(t) change the sign from " =" to "+".

To characterize extremal paths we consider the following problem: how these arcs of
curves corresponding to wus(t) = —Bsign(9s(t)) and line segments are arranged along an
extremal trajectory? To theat this problem we use the method introduced by Boissonnat,
Cérézo and Leblond in [3].

At first we prove some common properties for the extremal trajectories in the two cases
(i.e. for A =0 and for A > 0).

Proposition 4 At any switching point of the control uy(t) (*** %"~ or ¥~ %% ) 43(t) = 0.

Proof

At a switching point **T .V~ (x*~.%"*") the signs of u; (t) and ¢3(t) change, hence ¥3(t) =
0 at this point.
The proposition is proved. m|

Proposition 5 At any switching point of the control us(t) (C1.C1l, C1.S% or S¥.Cl) ¥5(t) =
0.

Proof

INRIA
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On S% the continuous function v5(t) = 0, hence, ¥5(t) = 0 at a switching point CI.5%
or S¢.Cl. At a switching point CI.CI the signs of ua(t) and v5(t) change, hence ¥5(t) = 0
at this point.

The proposition is proved. m|

Now we consider the case X\ > 0.

5.1 Concatenation of different pieces of extremals — the case A > 0

Proposition 6 If an extremal path contains a line segment S¥ (it is run during the time
interval [t1,t2]), then

w3(t)ur(t) + 1o <0 if a(t) = ¢(mod27) and v(t) #0 on S¥ ,
P3(t)ur(t) + o >0 if at) = ¢+ m(mod27) and v(t) #0 on S¥

and
Y3(t)ur(t) <0 if v(t)#0 on S% .

Proof

If an extremal path contains a line segment S¥, then on S¥ we have 14(t) = Ya(t) =
¥5(t) = ¥5(t) = 0. Hence, using (8) and (6), we obtain

Au(t) cos(a(t) — @) + ps(t)ua(t) + 1o =0 (17)
Remind, that a(t) = ¢(mod7) on S¥. Consider two possibilities:

a) a(t) = p(mod27) on S¥ ,
b) a(t) = ¢ + 7(mod27) on S¥ .

In the case a) and if v(t) # 0 on S¥ we have the following inequality: Av(t) cos(a(t)—p) =
Av(t) > 0 (because A > 0 and v(t) > 0). Hence, from (17) we obtain

Y3(t)ur(t) + 1o <0

In the case b) and if v(t) # 0 on S¥ we have the following inequality: Av(t) cos(a(t)—yp) =
—Mv(t) < 0 (because A > 0 and v(t) > 0). Hence, from (17) we obtain

Y3(t)ur(t) + 1o >0 .

Remind that the point move along S¥ with the piecewise-linear absolute value of speed
0(t) = —Asign(3(t)), hence,

P3(t)ur(t) = Ps(t)o(t) = —Ays(t)sign(vs(t)) = —Als(t)] <0

(if v(t) # 0 on S%).
The proposition is proved. |
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Proposition 7 For the case under consideration (i.e. X > 0) the expression P4(t) —
U1 (t)y(t) + Ya2(t)x(t) is constant along any extremal path. For any ¢ € R, all the points
of an extremal path where 1¥4(t) = ¢ lie on the same straight line D? of direction ¢ (mod ).

Proof

From (5) we have the following equation:

Pa(t) = P1(t)v(t) sin a(t) — P2(t)o(t) cos alt)

hence, using (1), .
Pa(t) = Y1(D)y(t) — P2(t)i(t) , (18)

where 11 (t) and 12(t) are constants (1 () = Acos, Pa(t) = Asing).

So, it follows from (18) that there exists a constant ¢g € R such that ¥4(t) + ¢o =
Acospy(t) — Asin pz(t) (the first statement of Proposition 7 is proved).

We consider the case A > 0, hence, Acosy and Asin ¢ cannot be both equal to zero, so
¢+ co = Acospy(t) — Asin pz(t) is the equation of a line of direction ¢ (modw) (tang =
V2 /1)

The proposition is proved. o

Corollary 8 Any line segment S¥ of an extremal path is contained in the straight line D§
and, hence, the extremal path contain only one line segment.

Proof

On S? we have 94(t) = 0. Hence, it follows from Proposition 7 that S is contained in
the straight line D§ of direction ¢.
The corollary is proved. |

Proposition 9 For any extremal path there exists a coordinate system Oxy such that in
this coordinate system the mean values of y(t)v(t) on every interval between two consecutive
switching points of the control us(t) are equal to zero.

Proof

Consider some extremal path. It follows from Proposition 7 that 1¥4(t) = 1 (t)y(t) —
Yo (t)x(t) — co along any extremal path (11(t) = Acosy, ¥2(t) = Asiny). Hence, we can
rotate the given coordinate system Oxy at some angle & such that in the new coordinate
system 14 (t) = y(t) along the extremal path.
So, using (6), we obtain )
Ps(t) = —y(t)o(t) . (19)
This equation holds along the extremal path. Consider some interval [t1,t2] € [0,7]
between two consecutive switching points of the control uz(t). So, it follows from (19) that

s(ta) = — / (D)t + s(ty) - (20)

t1
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But 5 (t1) = ¥5(t2) = 0 (it follows from Proposition 5). Hence, we obtain [, :12 y(t)v(t)dt =
0 for any interval between two consecutive switching points of the control us(t), i.e. the mean
values of y(t)v(t) on every interval between two consecutive switching points of the control
ua(t) are equal to zero.

The proposition is proved. |

Proposition 10 For the case A > 0 each open arc of clothoid Cl, (v > 0) of an extremal
path (except possibly the initial and the final ones) intersect DY at least once or has a point
with zero absolute value of speed.

Proof

Consider an extremal path and consider some arc CI, belonging to this path, » > 0
(Cl, is neither the initial nor the final one). So, both endpoints of such arc are switching
points. Denote by ]t3,t4[ the time interval during which CI, is run. By Proposition 5 we
have 95(t3) = s(t4) = 0. As ty —t3 = v > 0, there exists at least one ¢ €]t3, 4] (denote
it by t5) such that ¥5(t5) = 0. Hence, from (6), we obtain v4(t5)v(ts) = 0. So, either
Pa(ts) =0, or v(ts) = 0. If ¢4 (t5) = 0, then (from Proposition 7) we obtain that the point
of Cl, corresponding to t = t5 belongs to Df.

The proposition is proved. o

Proposition 11 An extremal path (in the case A > 0) containes no portion of type S?.CI,
(or C1,.5%?) with v > 0 if a(t) = ¢ + 7 (mod(27)) along S¥.

Proof

Assume that there is a piece of an extremal path of type S¥.Cl, with v > 0. Let t; is a
switching point between S¢ and Cl,. Using (1) and (6) we obtain the following expressions
for the four first derivatives of ¥5(¢t) (valid on S¥ and Cl,):

Ps(t) = —pa(t)o(t) ,
Ps(t) = —tha(t)o(t) — Ya(thua(t) = —W(t) sin(a(t) — ¢) — Ya(t)ua (t) , (21)
¥y (t) = —2X0(t)uq (t) sin(a(t) — @) — M (t) cos(A(t) — @) — a(t)us (t) =

= =3 (tyus(t) sin(a(t) — @) — Ms(t)o* (1) cos(a(t) — ) , (22)
D5 () = =3ur (t) [ur (¢) sin(a(t) — @) + v(£)d(t) cos(a(t) — ¢)] -
—Aus(t)v* (t) cos(a(t) — ¢)—
) — ) — v (t)a(t) sin(a(t) — ¢)] =

—Xi(t) [30%(t)us (t) cos(a(t

= =3 u?(t) sin(a(t) — @) — 3Au1 (t)v?(t)k(t) cos(a(t) — ¢)—

—ug ()03 (t) cos(a(t) — @) — 3Ak(t)v? (t)uy (t) cos(a(t) — @)+
+ARZ ()t (t) sin(a(t) — ) = (M (t)K%(t) — 3Aui(t)) sin(a(t) — p)—
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—(6AK(t)u1 (1)v2 () + Aua(t)v3(t)) cos(a(t) — ) =
= Av* ()&% (t) — 3ui (t)) sin(a(t) — ¢))—
— () (6k(t)uy (t)v(t) + ug(t)v?(t)) cos(a(t) — @) .
From (8) and (6) we have

) )
) )

H(X (1), ¥(t), ur(t), ua(t)) =

= Au(t) cos(a(t) — ) + ¢3(t)u (t) + Ya(t)o(t)s(t) + Ps(t)ua(t) + 1o =0
Hence,
—Av(t) cos(a(t) — @) = s (t)ui(t) + Ya(t)v(t)k(t) + ¥s(t)ua(t) + o ,
and
P (8) = Mo (8)87(t) — 3uf (1)) sin(a(t) — ¢)) + (6x(t)ur (t)v(t)+
+up(t)o* (t)) (s (t)ur (8) + Ya(t)o(t)R(t) + s (t)us(t) + o) - (23)
Hence, the variable 95(t) is of class C? in the neighbourhood of ¢;. Remind that on S¥
the following equalities hold:
Js(t) = s(t) = da(t) = va(t) =0, a(t) = p(modr) , K(t) = 0.

Hence, we obtain from equations (21)—(23) that on S? (and by continuity at ¢;) the
following equalities hold:

Us(t) =05 () =0, 5 (1) = ua(t)0? (£)(Ws(t)ur(t) + o) -
So, there exists an ¢, 0 < € < v, such that for ¢ € [t1,t; + €[ we have:

(t—t1)*
41

s (t) = ua()v? () (Y3 (t)ur () + o) +O0((t—t)°) .

We know from Proposition 6 that
w3(t)ur(t) + 1o < 0 if a(t) = ¢(mod27r) and v(t) #0 on S¥
and
P3(t)ur(t) + 1o >0 if a(t) = ¢+ n(mod27) and v(t) #0 on S¥ .

Evidently, that there exists a subinterval [t],t3] € [t1, t1 +¢[ such that v(t) # 0 on [t], t3].
Hence, in the case a(t) = ¢ + 7 (mod27) on S we obtain that v2(¢)(1s(t)ui(t) + 1y) > 0,
hence, 15(t) and uy(t) have the same sign on [}, 3] — a contradiction with condition (b) of
the Maximum Principle of Pontryagin.

The proposition is proved. |

Conclusion: in the case A > 0 to characterize extremal paths we can say:
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1) along any optimal path the point mouve with the piecewise-linear absolute
value of speed 0(t) = —Asign(¥s3(t)),

2) the extremal path contains only one line segment S¥ which is contained
in the straight line D,

3) each open arc of clothoid Cl, (v > 0) of an extremal path (except possibly
the initial and the final ones) intersect D¥ at least once or has a point with zero
absolute value of speed,

4) an extremal path containes no portion of type S¥.Cl, (or CI,.S%) with
v>0if a(t) = ¢ + 7 (mod(27)) along S¥.

5.2 Concatenation of different pieces of extremals — the case A =0

Consider extremal paths for which A = 0 and )y > 0 (except two special cases mentioned
in Lemma 1 for A\ = 0 and 9y > 0). They are constructed from arcs of curves with the
piecewise-linear curvature %(t) = —Bsign(15(t)) and they are run with the piecewise-linear
absolute value of speed 0(t) = — Asign(3(t)).

Proposition 12 If for some extremal path A = 0 and g > 0, then it is either of type CI

and it is run with the linear absolute value of speed v(t) = — Atsign(v3) +v°, or it consists
of arcs of the curves with the piecewise-linear curvature f(t) = —Bsign(¢s(t)) which are
run with the piecewise-linear absolute value of speed v(t) = —Asign(vs(t)): between two

consecutive switching points of the control uy the extremal path is of the type Cl, Cl.Cl or
Cl1.C1.CI1 and between two consecutive switching points of the control us the extremal path is
an arc which is run with the piecewise-linear absolute value of speed which can change the
sign of its acceleration at most two times.

Proof

Using A = 0 we obtain (from (6)) Yy =0 and, hence, 94(t) = const = 4.

If 40 = 0, then (from (6)) 93(t) = 0 and ¥5(t) = 0, hence, 9¥3(t) = const = 130 and
P5(t) = const = Ps0.

Any extremal path consists of some arcs Cl, hence, 159 # 0, because for every Cl the
function 15 (t) is positive or negative. Hence, it follows from Proposition 5 that such extremal
curve doesn’t contain any switching point of the control uy(t). Thus, this curve is an arc
Cl. For any extremal path we have ©(t) = — Asign(13), hence 3¢9 # 0 and it follows from
Proposition 4 that such extremal curve doesn’t contain any switching point of the control
u1(t). So, this extremal path is an arc Cl which is run with the linear absolute value of
speed v(t) = — Atsign(¥so) + v° and it is run in time T = |7 — v°|/A.

If 149 # 0, then (from (6)) 13 = —sok(t) and 5 = —4ov(t) where k(t) and v(t) are
some piecewise-linear functions.

Between two consecutive switching points of the control u;(t) the absolute value of speed
is a linear function of ¢ (increasing or decreasing). Hence, 15(t) is a quadratic function of
t. So, this function has at most two zero. Hence, between two consecutive switching points
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of the control u;(t) the extremal path is of the type Cl, CI.Cl or CI.CI1.CI (it follows from
Proposition 5).

Between two consecutive switching points of the control ux(t) the curvature is some linear
function of ¢ (increasing or decreasing). Hence, 13(t) is some quadratic function of ¢. So,
this function has at most two zero. Hence, between two consecutive switching points of the
control us(t) the extremal path is an arc with u2(t) = —Bsign(¥5(t)) and this arc is run with
the piecewise-linear absolute value of speed which can change the sign of its acceleration at
most two times (it follows from Proposition 4).

The proposition is proved. |

6 Conclusions

After the studing of the concatenation of different pieces of extremals we can make the
following conclusions.

Lemma 13 If for some extremal trajectory A > 0, ¥y > 0, to it characterize we can say:

1) along any optimal path the point mouve with the piecewise-linear absolute
value of speed 0(t) = — Asign(93(t)),

2) the extremal path contains only one line segment S¥ which is contained in
the straight line D,

3) each open arc of clothoid Cl, (v > 0) of an extremal path (except possibly
the initial and the final ones) intersect D§ at least once or has a point with zero
absolute value of speed,

4) an extremal path containes no portion of type S¢.Cl, (or Cl,.5¢) with
v >0 if a(t) = ¢+ 7 (mod(27)) along S¥.

If for some extremal trajectory A = 0, ¥9 > 0, to it characterize we can say:

1) either it is of type Cl and it is run with the linear absolute value of speed
v(t) = —Atsign(¢30) +0°,

2) or it consists of arcs of the curves with the piecewise-linear curvature
i(t) = —Bsign(1s(t)) and they are run with the piecewise-linear absolute value
of speed v(t) = —Asign(¢s(t)): between two consecutive switching points of the
control uy the extremal path is of the type Cl, Cl.Cl or CI.CI.Cl and between
two consecutive switching points of the control us the extremal path is an arc
which is run with the piecewise-linear absolute value of speed which can change
the sign of its acceleration at most two times.

For A =0, 19 > 0 there are two special cases:

1) optimal paths are all admissible curves with the linear absolute value of
speed v(t) = — Atsign(zg) +v° and they are run in time T = |[vT —v°|/A,
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2) optimal paths are all curves with the linear curvature k(t) = — Btsign(vso)+

K, with some admissible absolute value of speed and they are run in time T =

|« — K°|/B.
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