N

N

Compilation of a Skeleton-Based Parallel Language
Through Symbolic Cost Analysis and Automatic Data
Distribution
Julien Mallet

» To cite this version:

Julien Mallet. Compilation of a Skeleton-Based Parallel Language Through Symbolic Cost Analysis
and Automatic Data Distribution. [Research Report] RR-3436, INRIA. 1998. inria-00073254

HAL 1d: inria-00073254
https://inria.hal.science/inria-00073254
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073254
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Compilation of a Skeleton-Based Parall€
Language Through Symbolic Cost Analysis and
Automatic Data Distribution

Julien MALLET

N°® 3436
Mai 1998

THEME 2

apport
derecherche

% I N RIA

RENNES

Compilation of a Skeleton-Based Parallel Language
Through Symbolic Cost Analysis and Automatic Data
Distribution

Julien MALLET *

Theéme 2 — Génie logiciel
et calcul symbolique
Projet Lande

Rapport de recherche n3436 — Mai 1998 — 20 pages

Abstract: We present a skeleton-based language which leads to portable and
cost-predictable implementations on MIMD computers. The compilation process
is described as a series of program transformations. We focus in this paper on
the step concerning the distribution choice. The problem of automatic mapping of
input vectors onto processors is addressed using symbolic cost evaluation. Source
language restrictions are crucial since they permit to use powerful techniques on
polytope volume computations to evaluate costs precisely. The approach can be
seen as a cross-fertilization between techniques developed within the FORTRAN
parallelization and skeleton communities.

Key-words: skeleton-based language, parallelism, cost analysis, automatic data
distribution

(Résumé : tsup)

* mallet@irisa.fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Teéléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Teélécopie : 0299 84 71 71 - International : +3329984 7171

Compilation d’un langage a4 patrons paralleles avec
analyse de coftit symbolique et distribution automatique
des données

Résumé : Nous présentons un langage & patrons dont l'implémentation sur les ma-
chines MIMD est portable et a un cotit prédictible. Le processus de compilation est
décrit par une suite de transformations de programmes. Nous nous concentrons, dans
ce rapport, sur ’étape du choix de la meilleure distribution des données. Le choix
automatique de l'allocation des vecteurs d’entrée sur les processeurs s’appuye sur
une évaluation du colit symbolique. Les restrictions du langage source permettent
d’utiliser des techniques classiques et puissantes, basées sur les polytopes pour évaluer
précisément le cotit. Notre approche peut étre vue comme un exemple de fertilisa-
tion croisée entre les techniques développées dans le domaine de la parallélisation
FORTRAN et celles développées dans le domaine des langages & patrons.

Mots-clé : langage & patrons, parallélisme, analyse de coiit, distribution de donnée
automatique

Compilation of a Skeleton-Based Parallel Language 3

1 Introduction

A good parallel programming model must be portable and cost predictable. General
sequential languages such as FORTRAN achieve portability but cost estimations
are often very approximate. The approach described in this paper is based on a
restricted language which is portable and allows an accurate cost analysis. The
language enforces a programming discipline which ensures a predictable performance
on the target parallel computer (there will be no “performance bugs”).

Language restrictions are introduced through skeletons which encapsulate control
and data flow in the sense of [Col88], [DFH"93]. The skeletons act on vectors which
can be nested. There are three classes defined as sets of restricted skeletons: com-
putation skeletons (classical data parallel skeletons), communication skeletons (data
motion over vectors), and mask skeletons (conditional data parallel computation).
The target parallel computers are MIMD computers with shared or distributed me-
mory. Our compilation process can be described as a series of program transforma-
tions starting from a source skeleton-based language to an SPMD-like skeleton-based
language. There are three main transformations: in-place updating, making all com-
munications explicit and distribution. Due to space concerns, we focus in this paper
only on the step concerning the choice of the distribution.

We tackle the problem of automatic mapping of input vectors onto processors
using a fixed set of classical distributions (e.g. row block, block cyclic,...). The goal
is to determine mechanically the best distribution for each input vector through cost
evaluation. The restrictions of the source language and the fixed set of standard data
distributions guarantee that the parallel cost (computation + communication) can
be computed accurately for all source programs. Moreover, these restrictions allow
us to evaluate and compare accurate execution times in a symbolic form. So, the
results do not depend on specific vector sizes nor on a specific number of processors.

Even if our approach is rooted in the field of data-parallel and skeleton-based lan-
guages, one of its specificities is to reuse techniques developed for FORTRAN paral-
lelization (polytope volume computation) and functional languages (single-threading
analysis) in a unified framework.

The article is structured as follows. Section 2 is an overview of the whole compila-
tion process. Section 3 presents the source language and the target parallel language.
In Section 4, we describe the symbolic cost analysis through an example: LU de-
composition. We report some experiments done on a MIMD distributed memory
computer in Section 5. We conclude by a review of related work.

RR n3436

4 Julien MALLET

2 Compilation Overview

The compilation process consists of a series of program transformations:

L4 Lo L3 —x Lo — L5

Each transformation compiles a particular task by mapping skeleton programs
from one intermediate language into another. The source language (£1) is composed
of a collection of higher-order functions (skeletons) acting on vectors (see Section 3).
It is primarily designed for a particular domain where high performance is a crucial
issue: numerical algorithms. L£; is best viewed as a parallel kernel language which
is supposed to be embedded in a general sequential language (e.g. C). Only, parts
of programs written in £; will be executed in parallel whereas others parts will be
executed in sequential, for example, on the host computer of the parallel machine.

The first transformation (£; — L) deals with in-place updating, a standard
problem in functional programs with arrays. We rely on a type system in the spirit
of [Wad90] to ensure that vectors are manipulated in a single-threaded fashion. The
user may have to insert explicit copies in order for his program to be well-typed. As
a result, any vector in a L9 program can be implemented by a global variable.

The second transformation (Lo — L3) makes all communications explicit. Intui-
tively, in order to execute an expression such as map (Ax.x+y) in parallel, y must
be broadcast to every processor before applying the function. The transformation
makes this kind of communication explicit. In L3, all communications are expressed
through skeletons.

The transformation £3 — L4 concerns automatic data distribution. We restrict
ourselves to a small set of standard distributions. A vector can be distributed cyclicly,
by contiguous blocks or allocated to a single processor. For a matrix (vector of
vectors), this gives 9 possible distributions (cyclic cyclic, block cyclic, line cyclic,
etc.). The transformation constructs a single vector from the input vectors according
to a given data distribution. This means, in particular, that all vector accesses have
to be changed according to the distributions. Once the distribution is fixed, some
optimizations (such as copy elimination) become possible and are performed on the
program. The transformation yields an SPMD-like skeleton program acting on a
vector of processors.

In order to choose the best distribution, we transform the £3 program according
to all the possible distributions of its input parameters. The symbolic cost of each
transformed program can then be evaluated and the smallest one chosen (see Section
4). For most numerical algorithms, the number of input vectors is small and this

INRIA

Compilation of a Skeleton-Based Parallel Language 9

LU
where
M :: Vect n (Vect n Float)
LU(a) = iterfor (n-1) (calc.fac.apivot.colrow) a
calc(i,a,row,piv) = (i, (map (map first)

.rect i (n-1) (rect i (n-1) fcalc)

.map zip3.zip3) (a,row,piv))
fcalc(a,row,piv) (a-row*piv,row,piv)
fac(i,a,row,col,piv) (i,a,row, (map(map /) .map zip.zip) (col,piv))
apivot(i,a,row,col) = (i,a,row,col,map (brdcast (i-1)) row)
colrow(i,a) (i,a,brdcast (i-1) a,map (brdcast (i-1)) a)
zip3(x,y,2) map p2t (zip(x,zip(y,z)))
p2t(x, (y,2)) (x,y,2)

Figure 1: LU decomposition in £;

approach is practical. In other cases, we would have to rely on the programmer to
prune the search space.

The L4 — L5 step is a straightforward translation of the SPMD skeleton pro-
gram to an imperative program with calls to a standard communication library. We
currently use C with the MPI library.

Note that all the transformations are automatic. The user may have to interact
only to insert copies (£1 — Lg step) or, in L4, when the symbolic formulation does
not designate a single best distribution (see 4.4).

3 The Source and Target Languages

The source language £ is basically a first-order functional language without general
recursion, extended with a collection of higher-order functions (the skeletons). The
main data structure is the vector which can be nested to model multidimensional
arrays. The £, program implementing LU decomposition is given in Figure 1.

The syntax of £; is defined in Figure 2. A program is a main expression followed
by definitions. A definition is either a function definition or the declaration of the
(symbolic) size of an input vector. Combination of computations is done through
function composition (.) and the predefined iterator iterfor. iterfor n f a acts
like a loop applying n times its function argument f on a. Further, it makes the
current loop index accessible to its function argument.

RR n3436

6 Julien MALLET

Prog = Exp; where Decly
Decly == Decl; Decl; | f(z1,...,2n) = Exp1 | a :: Shape;
Shape; = (Shapes, ... , Shape;) | Vect LinF; Shape; | Int | Float | Bool
Exp; = Fun; (Expi, ... , Exp1) | (Exp1, ... , Exp1) |z | k
Fun; := Fun; . Fun; | iterfor LinF; Fun; | Opy | f
| CompSkel; | CommSkel; | MaskSkely
Op1 = + | .. |/].. |==].. |zip | unzip | makearray LinF,
LinF, = LinFy + LinF; | LinF; — LinFy |kxz |z | k
CompSkel; == map Fun; | fold Exp; Fun; | scan Exp; Fun;
CommSkel; = transfer LinF; LinF; | rotate LinF; | brdcast LinF;
| scatter LinF; | gather LinF; | allgather | allbrdcast
MaskSkel; = rect LinF; LinF; Fun; | trv LinF; LinF; Fun;
z, Ty, ... , ¥, € IdentVariable. k € Constant. a € IdentVarIn. f € IdentFunction.
IdentVariable N IdentFunction = (). IdentVarIn C IdentVariable.

Figure 2: Skeleton language L.

For handling vectors, there are three classes of skeletons: computation, com-
munication, and mask skeletons. The computation skeletons (CompSkel;) are the
classical higher order functions map, fold and scan. The communication skeletons
(CommSkel;) describe restricted data motion in vectors. In the definition of colrow
in LU (Figure 1), brdcast (i-1) copies the (i-1)th vector element to all the other ele-
ments. Another communication skeleton is gather i M which copies the ith column
of the matrix M to the ith row of M. All these communication skeletons have been
chosen because of their availability on parallel computers as hard-wired or optimized
communication routines. The mask skeletons (MaskSkel;) are data-parallel skeletons
which apply their function argument only to a selected set of vector elements. In the
definition of calc in LU (Figure 1), rect i (n-1) fcalc applies fcalc on vector
elements whose index ranges from i to (n-1). Note that our approach is not restricted
to these sole skeletons: even if it requires some work and caution, more iterators,
computation or mask skeletons could be added.

In order to enable a precise symbolic cost analysis, additional syntactic restric-
tions are necessary. The scalar arguments of communication skeletons, the iterfor
operator and mask skeletons must be linear expressions of iterfor indexes and va-
riables of vector size. This restriction is formalized by the nonterminal LinF; in £
which denotes linear expressions of such variables. We rely on a type system with

INRIA

Compilation of a Skeleton-Based Parallel Language 7

simple subtyping (not described here) to ensure that variables z, in LinF; expres-
sions, are only iterfor and vector size variables.

It is easy to check that these restrictions are verified in LU. The integer argument
of iterfor is a linear expression of an input vector size. The arguments of rect and
brdcast skeletons are made of linear expressions of iterfor variable i or vector size
variable n.

The target language L4 expresses SPMD (Single Program Multiple Data) com-
putations. A program acts on a single vector whose elements represent the data
spaces of the processors. Communications between processors are made explicit by
data motion within the vector of processors in the spirit of the source parallel lan-
guage of [DGTJ95]. L4 introduces new versions of skeletons acting on the vector of
Processors.

An L, program is a composition of computations, with possibly a communica-
tion inserted between each computation. The syntax of L4 is defined Figure 3. Only,
the nonterminals which differ from £; are described. A program is a main function
f followed by definitions. The body of f is the application of a parallel function
(FunPy4) to the vector of processors. A parallel function is either the composition
of a parallel function, a communication and another parallel function, either a pa-
rallel computation pimap Fun which applies Fun on each processor, or an iteration
piterfor LinF FunP which applies LinF times the parallel computation FunP to
the vector of processors. The grammar defining Fun is similar to Fun; in £;. The
only differences are the mask skeleton arguments which may include modulo, inte-
ger division, minimum and maximum functions (as expressed by the nonterminals
ExpR4 and ExpRig in £4). The nonterminal Commy denotes the communications
between processors. It describes data motion in the same way as the communication
skeletons of £1 (CommSkel;) but on the vector of processors.

Distributing the input vector row-block wise, the implementation of LU becomes
a loop whose body is of the form pimap F . Com . pimap F (Figure 4). The variable
M in LUbloc definition is the distributed matrix. For example, the expression pimap
colrow2 denotes the parallel application of the sequential function colrow2 to each
processor; a is a block of rows, n denotes the size of the original matrix and b
the block size (i.e. n divided by the number of processors). Before the call of the
communication routine pbrdcast, each local processor memory is a 3-tuple of the
form (number of the broadcasting processor, value to be broadcast, rest of the local
memory). The resulting vector of processors is a vector of pair of the form (broadcast
value, rest of the local memory). The version of LU with the input matrix distributed

RR n3436

8 Julien MALLET

Progy = f(z1,..,2n) = FunP4 x where Decly
FunP,4 = FunP4 o Commy o FunP,
| pimap Funy | piterfor LinF4 FunPy
Commy u= ptransfer |protate | pbrdcast
| pscatter | pgather |pallgather |pallbrdcast
MasqSkely ::= rect ExpR4 ExpRy4 Fung | trv ExpR4 ExpRy4 Funy
ExpR4 ~ min(LinF, LinF, — ExpRig#n) | min(LinF4, [%D
| max(LinFy, LinF4 — ExpRig*n) | max (LinF4, [MJ)
ExpRis = div(Expis, p) | mod(Expia, p) | ip
n € Sizeldent. p € SizeProcldent. ip € IdentProc. k € Constant. These sets are mutually
disjoint. z,z1, ..., z, € IdentVariable.

Figure 3: Skeleton language L4

row-cyclic wise is given in Figure 5. The only differences with the row-block version
are the bounds of outer mask skeleton rect in function calc and the indexes involved
in the broadcast communication in the functions colrow2 and colrowl.

4 Accurate Symbolic Cost Analysis

After transformation of the program according to different distributions, this step
aims at automatically evaluating the complexity of each L4 program obtained in
order to choose the most efficient. Our approach to get an accurate symbolic cost is
to reuse results on polytope volume computations (|[Taw94]|, [Cla96]). It is possible
because the restrictions of the source language and the fixed set of data distribu-
tions guarantee that the abstracted cost of all transformed source programs can be
translated into a polytope volume description.

First, an abstraction function CA takes the program and yields its symbolic
parallel cost. The cost expression is transformed so that it can be seen as the
definition of a polytope volume. Then, classic methods to compute the volume of a
polytope are applied to get a symbolic cost in polynomial form. Finally, a symbolic
math package (such as Maple) can be used to compare symbolic costs and find the
smallest cost among the L4 programs corresponding to the different distribution
choices.

INRIA

Compilation of a Skeleton-Based Parallel Language

LUbloc(M,n,b)
= piterfor (n-1)
(pimap (calc.fac.apivot.colrowl).pbrdcast.pimap colrow2) M
where
calc(ip,i,a,row,piv)
= (i, (map (map first)
.rect max(0,i-ip*b) min(b-1,n-1-ip*b+b) (rect i (n-1) fcalc)
.map zip3.zip3) (a,row,piv))
fcalc(a,row,piv) = a-row*piv
fac(ip,i,a,row,col,piv)
= (ip,i,a,row, (map(map /) .map zip.zip) (col,piv))
apivot(ip,i,a,row,col) = (ip,i,a,row,map (brdcast (i-1)).copy a)
colrowl(ip, (buf,i,a,row,col))
= (ip,i,a,brdcast mod(i-1,b) .update mod(i-1,b) buf row,
map (brdcast (i-1)).copy a,col)
colrow2(ip, (i,a))
= (div(i-1,b),a!mod(i-1,b),(i,a,copy a,map (brdcast (i-1)).copy a))
zip3(x,y,2)
= map p2t (zip(x,zip(y,z)))
p2t(x, (y,2z))
= (x,y,2)

Figure 4: Row block distribution version of LU expressed in L4

RR n3436

Julien MALLET

LUcyc(M,n,b)
= piterfor (n-1)
(pimap (calc.fac.apivot.colrowl).pbrdcast.pimap colrow2) M
where
calc(ip,i,a,row,piv)
= (i, (map (map first)
.rect max(0,div(i-ip,p)) min(b-1,div(n-1-ip,p))
(rect i (n-1) fcalc)
.map zip3.zip3) (a,row,piv))
fcalc(a,row,piv) = a-row*piv
fac(ip,i,a,row,col,piv)
= (ip,i,a,row, (map(map /) .map zip.zip) (col,piv))
apivot(ip,i,a,row,col) = (ip,i,a,row,map (brdcast (i-1)).copy a)
colrowl(ip, (buf,i,a,row,col))
= (ip,i,a,brdcast div(i-1,p) .update div(i-1,p) buf row,
map (brdcast (i-1)).copy a,col)
colrow2(ip, (i,a))
= (mod(i-1,p),a'div(i-1,p),(i,a,copy a,map (brdcast (i-1)).copy a))
zip3(x,y,2)
= map p2t (zip(x,zip(y,z)))
p2t(x, (y,2z))
= (x,y,2)

Figure 5: Row cyclic distribution version of LU expressed in £4

INRIA

Compilation of a Skeleton-Based Parallel Language 11

4.1 Cost Abstraction and Cost Language LC;

The symbolic cost abstraction CA is a function which extracts cost information from
parallel programs. The main rules are shown in Figure 6. We use a non-standard
notation for indexed sums: instead of } 7', we note >, {!5'} . This notation is
needed because the transformation to polytopes will introduce new inequalities over
sum variables which cannot be expressed in the standard notation. Communication
costs are expressed as polynomials whose constants depend on the target computer.
For example, the cost of pbrdcast involves the parameters ap, and B,y which denote
respectively the time of one-word transfer between two processors and the message
startup time on the parallel computer considered. One just has to set those constants
to adapt the analysis for a specific parallel machine.

CA[f1. 12] = CAIf] + CA[f2]

CA [piterfore (M.f)] = >, {15} CA[f]

CA [pimap (Ai.f)] = &1}%{ CA [f] where p is the number of processors
CA [pbrdcast] = (on:*b + Bor)*p where {l? ilsstt}?: Srllélern cﬂeﬁfcfaﬁiggfsigg
CA [rect el e2 {] = Y {iS Y CAf]

Figure 6: Symbolic cost abstraction (extract)

From the grammar of £4 (Figure 3) and the definition of CA, it is easy to show
that the cost expressions belong to the language £C; shown in Figure 7. LC; is
made of generalized sums (G-sum) and generalized maxima (G-max). A G-max
denotes the maximum expression one can get when the max variable ranges over
the integer interval. Inequalities in G-sum may involve maximum and minimum
functions. The variables of polynomials are only denoting vector sizes (n) or the
number of processors (p). In order to illustrate the analysis, we consider here only
the two best distribution choices for LU: row block and row cyclic. The abstracted
costs are given below; note that only the part of the costs which differs is detailed:

1 — 1<1i p—1 max(0,i—ip*b)<j i<k
Cbloc = Zz {15511 (g}gg Zj {jgmin(b—ll,nl—pl—ipib+b) Zk {Ic;ﬁ—1 } 1 +C
max(0, [%J)<i

—1—i
j<min(b-1, [%W)

. p—1)
Cclyc = Yilish (glggzj (Zk {isiti} 1)) +C

RR n3436

12 Julien MALLET

CPrg; := CPrg; + CPrg; | CPrgSy
CPrgS; == 3, {neqinlnea;} CPrgS; | m%%c CPrgS; | Poly;
ip=

Ineq, x= ¢ < MinExp; | MaxExp; <4 | LinF; < LinFy

MinExp; = min(LinFy, LinF; — ExpRi;#n) | min(LinFl, [%D

MaxExp; == max(LinFy, LinF; — ExpRij*n) | max(LinFl, [MJ)

ExpRi; == div(ExpRi;j, p) | mod(ExpRiy, p) | ip

LinF, x:= LinF; + LinF; |LinF; — LinF; |kxz |z |k

Poly, x:= Poly; + Poly; | Poly; — Poly; | k% Pvar;

Pvar; x= PvaryxPvar; |p | n
n € Sizeldent. p € SizeProcldent. i € IndexIdent. ip € Procldent. k£ € Constant.
These sets are mutually disjoint. z € Sizeldent U SizeProcldent U IndexIdent.

Figure 7: Cost language L£C;.

We emphasize that writing the source program in £; is crucial to get an accurate
symbolic cost. First of all, without a severe limitation of the use of recursion no
precise cost could be evaluated in general. Further, the restrictions imposed by £q
ensure that every abstract parallel cost belongs to £C;. The mask skeletons (which
limit conditional application to index intervals), the communication and the com-
putation skeletons all have a complexity which depends polynomially on the vector
size. Their costs can be described by nested sums. Another important restriction is
that expressions involving iteration indexes (mask skeletons and iterfor bounds) are
linear. This restriction, expressed by the nonterminal LinF; in the definition of L1,
in addition to the form of the standard distributions which keep the linearity of the
vector accesses ensure that the inequalities occurring in £C; are linear.

4.2 Transformation to Descriptions of Polytope Volume

Polytope volumes are only defined in terms of nested G-sums with linear inequalities
containing neither max nor min as described in [Cla96|. In order to apply methods
to compute polytope volumes, we must remove the G-max, min, max occurring in
the cost expressions.

The transformation takes the form of a structural recursive scan of the cost ex-
pression. The min and max appearing in inequalities are transformed into conjunc-
tions of inequalities. For example, the expression max(0,i —ip * b) < j, in Cj.,
becomes 0 < j A4 — i, b < j. G-max expressions are propagated through their su-

INRIA

Compilation of a Skeleton-Based Parallel Language 13

0<j Ai—ip*b<j

. . 1 p—1 . .
bexpressions. For example, in Cy;,,., rz{,lg%(> {ij_lAan_l_ip*b+b} (...) is temporarily

transformed into
iAminP 1 (i—ipx j -1 .
> o= lpio(prOISd I%&X (...). The max value of a G-sum is a sum where
J jsbfll\jgmaxfpzlo (n—1—ipxb+b) 'Lp:O
the upper bounds are maximized and the lower ones minimized. For a sum inequality
1 < e, we propagate the G-max inside e until it reaches a variable = or a constant.
We can finally use the facts that max?_ i, = p—1 and max?_! k = k if k # i,. For
P P

an inequality e < i, the transformation propagates a G-min analogously. Since no
polynomial (Poly; in £C1) may contain a G-max index, the G-max of a polynomial
is just this polynomial.

The grammar of the resulting cost language L£Co appears in Figure 8. Ouly, the
nonterminals which differ from £C; are described.

CPI‘gSQ = Z(h,...,im) {Ineq2} POlyz
Ineqs = Ineqy A Ineqs | ¢ < ExpRs | ExpRs <4 | LinFs < LinF,
PR, o [UDFa] | |LinF |

Figure 8: Cost Language LC,.

In the case of distributed LU, the cost expressions are transformed into

1<i<n—1

1 - . 0<iNi—(p—1)%b<j - (2
Chloe Z(Z,J,k) J<b—1Aj<n—14+bAi<k<n—1 1+C = Cige
1§i§n—1A05]’ALi*P+1J <j 9
Cl - L p]. C = C
cyc E(W’k) j<b—1Aj< [%1 —1pi<k<n—1 + cyc

The technique described to remove G-max expressions may maximize the real
cost. This is due to the duplication of G-max in G-sums. A more complicated but
accurate symbolic solution also exists. The idea is to evaluate (as described in the
next section) the nested G-sums first. When the G-sum is reduced to a polynomial
the problem amounts to computing symbolic maximum of polynomials over symbolic
intervals. This can be done using symbolic differentiation, solution and comparison
of polynomials. At this point, we have only used the simpler approximated solution
because the approximation is minor for our examples (e.g. none for LU) and the
accurate symbolic solution is not implemented as such in existing symbolic math
packages.

RR n3436

14 Julien MALLET

4.3 Parametrized Polytope Volume Computation

A parametrized polytope is a set of points whose coordinates satisfy a system of linear
inequalities with possibly unknown parameters. After the previous transformation,
the cost expression denotes polytope volume, that is the number of points in the
associated polytope. For example, CZ_. is the number of points (i, j, k) which satisfy
the system shown in Figure 9(a).

1<i<n—-1 1<i<n—-1

(a) 0<j,i—(p-1)x*b<y (b) 0<j, 255, 5J<b-1
i<b—-1,7<n-1+0b i<k<n-1
i<k<n-1 px(z—1)<i—p+1<pxz

Figure 9: Inequality systems associated to Cpoc (2), Ceye ().

[Taw94], [Cla96] describe algorithms for computing symbolically the volume of
parametrized polytopes. The result is a polynomial whose variables are the system
parameters. Further, Clauss [Cla96| presents an extension for systems of non-linear
inequalities with floor (| |) and ceiling ([|) functions. The technique consists in first
transforming the non-linear inequalities to conjunction of linear inequalities and then

applying the volume computation. If an expression of the form L%J appears in an
inequality, a new free variable z and a new inequality pxx < e < p* (z + 1) are

e
. p
functions, the transformation is similar.

Thus, the algorithms of [Taw94] and [Cla96| allow to transform each parallel cost
expression into a polynomial. This method applied to LU yields:

introduced, and every occurrence of [J is replaced by the variable z. For ceiling

2 _ 3 (3p2-1) _ n? n — 3
Chtoe = ™ <6p3) 2p Top TC = Chioe
2 _ nd 2 (p=2 —3p%4+6p—2 p?—3p+2 — 3
Coye = 35t (2p)+n(6p + =% +C = Cg

4.4 Symbolic Cost Comparison

The last step is to compare the symbolic costs of different distribution choices. It

amounts to computing the symbolic intervals where the difference of cost (polyno-

mial) is positive or negative. Symbolic math packages such as Maple can be used for

solving this problem. In the case of LU, Maple produces the following condition:
Cgloc_cg >0&n>p

cyc

INRIA

Compilation of a Skeleton-Based Parallel Language 15

The programmer may have to indicate if the relations given by Maple are satisfied
or not. In our example, he must indicate if n > p. Another (automatic) solution is
to use the relations as run-time tests which choose between several versions of the
program.

In our example, the difference in the two costs can be explained by the fact
that the cyclic distribution provides a much better load balancing than the block
distribution whereas communications are identical.

5 Experiments

We have performed experiments on an Intel Paragon XP /S with a handful of standard
linear algebra programs (LU, Cholesky factorization, Householder, Jacobi elimina-
tion, ...). Our implementation is not completed and some compilation steps, such as
the destructive update step and part of the symbolic cost computation, were done
manually. Figure 10 gathers the execution times obtained for LU decomposition,
Cholesky factorization and Householder. They are representative of the results we
got for the other few programs. For all programs, the distribution chosen by the cost
analysis proved to be the best one in practice.

We compared the sequential execution of skeleton programs with standard (and
portable) C versions taken from [PTVF86] and our parallel implementation with High
Performance Fortran (a manual distribution approach). No significant sequential or
parallel runtime penalty seems to result from programming using skeletons, at least
for such regular algorithms.

We compared our code with the parallel implementation of NESL, a skeleton-
based language [BCH'93]. The work on the implementation of NESL has mostly
been directed towards SIMD machines. On the Paragon, the NESL compiler distri-
butes vectors uniformly on processors and communications are not optimized. Not
surprisingly, the parallel code is very inefficient (at least fifty times slower than our
code).

We also compared our implementation with ScaLAPACK, an optimized library of
linear algebra programs designed for distributed memory MIMD parallel computers
[CD95]. In ScaLAPACK, the user may explicitly indicate the data distribution. So,
we indicated the best distribution found by the cost analysis in each ScaLAPACK
program considered. If our code on 1 processor is much slower than its ScaLAPACK
equivalent (between 3 to 6 times slower), the difference decreases as the number of
processors increases (typically, 1.8 times slower on 32 processors). Much of this diffe-
rence comes from the machine specific routines used by ScaLAPACK for performing

RR n3436

16

Julien MALLET

Processors || Skel. cyclic | Skel. bloc | C Seq. | HPF cyclic | ScaLAPACK cyclic
1 14.77 15.07 13.61 15.36 3.78
2 8.43 10.71 X 8.67 24
4 5.25 6.75 X 5.41 1.84
8 3.23 5.50 X 3.38 1.66
16 2.97 5.33 X 3.06 1.50
32 2.57 5.58 X 2.67 1.41
(a) LU decomposition for a 512x512 matrix
Processors || Skel. cyclic | C Seq. | ScaLAPACK cyclic | ScaLAPACK bloc cyclic
1 67.45 53.17 55.80 11.41
2 35.54 X 34.95 5.93
4 21.35 X 21.80 3.60
8 14.81 X 15.56 2.11
16 11.55 X 12.56 1.39
32 9.91 X 11.32 0.92

(b) Cholesky factorization for a 1024x1024 matrix

Processors || Skel. | C Seq. | ScaLAPACK
1 318.16 | 308.17 56.35
2 159.04 X 35.23
4 82.12 X 22.57
8 44.59 X 16.27
16 26.68 X 12.82
32 17.98 X 10.83

(c) Householder for a 1024x1024 matrix

Figure 10: Execution Time on Paragon XP/S

INRIA

Compilation of a Skeleton-Based Parallel Language 17

matrix operations (the BLAS library). This suggests a possible interesting extension
of our source language. The idea would be to introduce new skeletons corresponding
to the BLAS operations in order to benefit from these machine specific routines.

Note that ScaLAPACK allows block cyclic distributions with a variable size of
blocks which are a more general form of distribution than ours. This enables the
programmer to sometimes find a better compromise between communication costs
and load balancing by guessing the right block size. This is the case for the Cholesky
factorization (Figure 10(c)). The ScaLAPACK program with a block cyclic distri-
bution is always faster than the cyclic skeleton one (between 6 to 10 times faster).
Indeed, the optimal distribution for Cholesky is not cyclic but block cyclic with the
block size greater than one and smaller than the vector size divided by the number of
processors. We believe that block cyclic distributions (with a variable size of blocks)
could fit within our framework. It is clear that an exhaustive analysis of all possible
distributions would become unrealistic in this case. However, a symbolic cost ana-
lysis would remain of interest for a programmer who hesitates between two specific
block cyclic distributions.

These preliminary results are promising but more experiments are necessary to
assess both the expressiveness of the language and the efficiency of the compilation.
We believe that these experiments may also indicate useful linguistic extensions (e.g.
new skeletons) and new optimizations.

6 Related Work and Conclusion

The community interested in the automatic parallelization of FORTRAN has studied
automatic data distribution through parallel cost estimation (|[GB92|, [CGST93]). If
the complete FORTRAN language (unrestricted conditional, indexing with runtime
value, ...) is to be taken into account, communication and computation costs cannot
be accurately estimated. In practice, the approximated cost may be far from the
real execution time leading to a bad distribution choice. [Taw94], [Cla96] focus
on a subset of FORTRAN: loop bound and array indexes are linear expressions
of the loop variables. This restriction allows them to compute a precise symbolic
computation cost through their computations of polytope volume. Unfortunately,
using this approach to estimate communication costs is not realistic. Indeed, the
cost would be expressed in terms of point-to-point communications without taking
into account hard-wired communication primitives. Working on the same FORTRAN
subset, Feautrier [Fea94] points out this fact and considers only a rough estimation

RR n3436

18 Julien MALLET

of communication costs. All these works estimate real costs too roughly to ensure
that a good distribution is chosen.

The skeleton community has studied the transformation of restricted compu-
tation patterns into lower-level parallel primitives. [DFH193] defines a restricted
set of skeletons which are transformed using cost estimation. Only cost-reducing
transformations are considered. It is, however, well known that often intermediary
cost-increasing transformations are necessary to derive a globally cost optimal al-
gorithm. [SC93], [JCSS97| and [Ran96| define cost analysis for skeleton-based lan-
guages. Their skeletons are less restricted than ours leading to approximate parallel
cost (communication or/and computation). Furthermore, the costs are not symbolic
(the size of input matrices and the number of processors are supposed to be known).
[GL98| define precise communication cost for scan and fold skeleton on several pa-
rallel topologies (hypercube, mesh, ...) which allows them to apply optimization of
communications through cost-reducing transformations. There are also a few real
parallel implementations of skeleton-based languages. NESL [BCH"93] is a nested
vector language. Its compilation is specialized to SIMD computer and, so, the exe-
cution on distributed memory machine is not efficient. [Bra93| uses cost estimations
based on profiling which does not ensure a good parallel performance for different
sizes of inputs. [Pel93] uses a finer cost estimation but implementation decisions are
taken locally and no arbitration of tradeoffs is possible.

We have presented in this paper the compilation of a skeleton-based language
for MIMD computers. Working by program transformations in a unified framework
simplifies the correctness proof of the implementation. One can show independently
for each step that the transformation preserves the semantics and that the transfor-
med program respects the restrictions enforced by the target language. The overall
approach can be seen as promoting a programming discipline whose benefit is to
allow precise analyses and a predictable parallel implementation. The source lan-
guage restrictions are central to the approach as well as the techniques to evaluate
the volume of polytopes. We regard this work as a rare instance of cross-fertilization
between techniques developed within the FORTRAN parallelization and skeleton
communities. A possible research direction is to study dynamic redistributions cho-
sen at compile-time. Some parallel algorithms (e.g. Alternative-Direction-Implicite
Integration) are much more efficient in the context of dynamic data redistribution.
A completely automatic and precise approach to this problem would be possible in
our framework. However, this would lead to a search space of exponential size. A
possible solution to this problem is to consider (high-level) interactions with the user.

INRIA

Compilation of a Skeleton-Based Parallel Language 19

Acknowledgements : Thanks to Pascal Fradet, Daniel Le Métayer, Mario Siid-
holt for commenting on an earlier version of this paper.

References

[BCH*93|

[Bra93|

[CD95]

[CGST93]

[Cla96]

[Col88]

[DFH*93]

[DGTJ95)

[Fea94]

RR n3436

G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha.
Implementation of a portable nested data-parallel language. In 4th ACM
Symp. on Princ. and Practice of Parallel Prog., pages 102-112. 1993.

T. Bratvold. A Skeleton-Based Parallelising Compiler for ML. In 5th Int.
Workshop on the Imp. of Fun. Lang., pages 23-33, 1993.

J. Choi and J. J. Dongarra. Scalable linear algebra software libraries for
distributed memory concurrent computers. In Proc. of the 5th IEEE
Workshop on Future Trends of Distributed Computing Systems, pages
170-177, 1995.

S. Chatterjee, J. R. Gilbert, R. Schreiber, and S. Teng. Automatic array
alignment in data-parallel program. In 20th ACM Symp. on Princ. of
Prog. Lang., pages 16—28, 1993.

P. Clauss. Counting solutions to linear and nonlinear constraints through
Ehrhart polynomials: Applications to analyze and transform scientific
programs. In ACM Int. Conf. on Supercomputing, 1996.

M. Cole. A skeletal approach to the exploitation of parallelism. In
CONPAR’88, pages 667-675. Cambridge University Press, 1988.

J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp,
Q. Wu, and R. L. While. Parallel programming using skeleton functions.
In PARLE 93, pages 146-160. LNCS 694, 1993.

J. Darlington, Y. K Guo, H. W. To, and Y. Jing. Skeletons for structu-
red parallel composition. In 5th ACM Symp. on Princ. and Practice of
Parallel Prog., pages 19-28, 1995.

P. Feautrier. Toward automatic distribution. Parallel Processing Letters,
4(3):233-244, 1994.

20

Julien MALLET

[GB92

[GL9S]

[JCSS97]

[Pel93]

[PTVFS6]

[Ran96]

[SC93]

[Taw94]

[Wad90]

M. Gupta and P. Banerjee. Demonstration of automatic data partitioning
techniques for parallelizing compilers on multicomputers. IEEE Transac-
tions on Parallel and Distributed Systems, 3(2):179-193, 1992.

Sergei Gorlatch and Christian Lengauer. (De)Composition rules for pa-
rallel scan and reduction. In Proc. 8rd Int. Working Conf. on Massively
Parallel Programming Models (MPPM’97). IEEE Computer Press, 1998.

C. B. Jay, M. 1. Cole, M. Sekanina, and P. Steckler. A monadic calculus
for parallel costing of a functional language of arrays. In Furo-Par’97
Parallel Processing, pages 650-661. LNCS 1300, 1997.

S. Pelagatti. A Methodology for the Development and the Support of
Massively Parallel Programs. PhD thesis, Pise University, 1993.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in FORTRAN The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, 1986.

R. Rangaswami. A Cost Analysis for a Higher-order Parallel Program-
ming Model. PhD thesis, Edinburgh University, 1996.

D. B. Skillicorn and W. Cai. A cost calculus for parallel functional pro-
gramming. Technical report, Queen’s University, 1993.

N. Tawbi. Estimation of nested loops execution time by integer arithmetic
in convex polyhedra. In Int. Symp. on Par. Proc., pages 217-223, 1994.

P. Wadler. Linear types can change the world! In Programming Concepts
and Methods, pages 561-581. North Holland, 1990.

INRIA

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

