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Abstract: In this report we describe the parallel implementation of semi-Lagrangian Vlasov
solvers, which are an alternative to Particle-In-Cell simulations for the numerical investigation of the
behaviour of charged particles in their self-consistent electromagnetic fields. The semi-Lagrangian
method which couples the Lagrangian and Eulerian point of view is particularly interesting on par-
allel computers as the solution is computed on grid points the number of which remains constant
in time on each processor, unlike the number of particles in PIC simulations, and thus simplifies
greatly the parallelisation process.
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Unité de recherche INRIA Lorraine
Technopôle de Nancy-Brabois, Campus scientifique,

615 rue de Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY (France)
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Parallélisation de Codes Vlasov Semi-Lagrangien

Résumé : Dans ce rapport nous pr ésentons la parall élisation de solveurs de Vlasov semi-Lagrangiens
qui repr ésentent une alternative aux codes PIC (Particle-In-Cell) pour la simulation num érique
du comportement de particules charg ées dans leur champ électromagn étique auto-consistant. La
m éthode semi-Lagrangienne qui couple les points de vue eul érien et lagrangien est particulièrement
int éressante pour une implantation parallèle car la solution est calcul ée aux points d’un maillage
dont le nombre reste constant sur chaque processeur au cours du temps, contrairement au nombre
de particules dans un code PIC, ce qui simplifie consid érablement l’obtention d’une parall élisation
efficace.

Mots-clé : Equation de Vlasov, Equations cin étiques, m éthode semi-Lagrangienne, parall élisation,
MPI.
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1 Introduction

Vlasov-Maxwell equations play a key role in plasma physics since they describe the collective
motion of a collisionless plasma with a wide range of applications.

The numerical resolution of kinetic equations the solution of which depends in addition to the
time on three space variables and on three velocity variables is performed most of the time using
Particle-In-Cell (PIC) methods, which enable to get satisfying results with relatively few particles.
However, for some applications, in particular when particles in the tail of the distribution play an
important physical role or when the particle noise is important, semi-Lagrangian methods which
compute the solution on a grid may better describe the physics, see [2, 4]. Such methods are all the
more interesting when using parallel computers as they are, unlike PIC methods, very scalable due
to their inherent parallelism as we shall try to show in this paper.

In this article, we shall first introduce the semi-Lagrangian method and discuss how it can be
applied for different kind of Vlasov equations. After that we shall isolate two special cases which
need different parallelisation methods and expose those methods on two examples: the electrostatic
two-dimensional Vlasov-Poisson model and the two-dimensional guiding-centre Vlasov-Poisson
model.

2 The semi-Lagrangian method

Let us first recall the principles of the semi-Lagrangian method for the Vlasov equations, we refer
the reader to [8] for more details.

All the types of Vlasov equations we are interested in can be written in the following way
���
��������	�
� ��������������� � (1)

where 
 stands for the phase space coordinates and � is a divergence free vector field having
up to six components in the full three-dimensional case. For example, in the case of the 3D non
relativistic Vlasov equation, 
 � 	��������� !��"$#%��"'&(��"') � and �*	�
+� �,�-� 	."'#/��"'&(��"')%��01#2�3"'&$45)�6
"')�45&(��01&7�8"')�45#�69"�#(45)%��01):�;"'#<45&56="'&$45# � , all components of the electric and magnetic field
depending on � , � ,  and

�
.

Note that, as � is divergence free equation (1) can also be written in conservative form
���
��� ��>@?BADCE	F��	�
+� ���G�H�I���/J

(2)

RR n ˚ 3430



4

Let us now introduce the characteristics of (1), which are the solutions of the dynamical system
� 
� � � �*	�
8	 �,� � �,� J (3)

Let us denote by 
8	 ��� ����� � the solution at time
�

whose value is � at time � . Taking 
8	 �,� a solution
of (3), we have

�
� � 	 � 	�
8	 ��� � ���G���

���
��� �

� 
� � � �����-� ���
��� �;��	�
8	 ��� � ��������� �-� � �

which means that
�

is constant along the characteristics. This can also be written

� 	�
8	 ��� ����� � � ����� � 	 
 	�� � ����� � ��� ��� � 	������ �

for any times
�

and � and phase space coordinate � . It is this property which will be used in the
semi-Lagrangian method to solve a discrete problem, which is defined by introducing a finite set
of mesh points 	.��� � �
	�������� � which may or may not be equally spaced. Then given the value of the
function

�
at the mesh points at any given time step, we obtain the new value at mesh point ��� using

that � 	.����� ��� ��� ��� � � 	 
 	 ��� 6�� ��� ����� ��� ��� ��� � ��� 6�� ��� J
For each mesh point ��� , � is computed in two steps:

1. Find the starting point of the characteristic ending at ��� , i.e. 
8	 ��� 6�� ��� ���,� ��� ��� ���
2. Compute

� 	�
8	 ��� 6�� ��� ��� � ��� ��� ��� � ��� 6�� ��� by interpolation,
�

being known only at mesh
points at time

��� 6�� � .
In order to deal with step 1, we need to introduce a time discretisation of (3). As in general no

information on the advection function � is known at any given time, we need to use a two time step
scheme in order to remain second order in time. The starting point of the characteristic is obtained,
to second order accuracy, by

� � 6 
 	 � � 6�� �,�� � �
� ��	�
8	 ���(� � ��� � (4)

writing 
8	 ��� �1� 	�
8	 ��� ��� ��� �;
 	 ��� 6�� �,� �� � , there exists ! � such that 
8	 ��� �1� ����6 ! � and

8	 ��� 6"� �,� � ����6 � ! � . Then (4) becomes

! � � � � �*	.� � 6 ! � � � � � (5)

which can be solved iteratively for the unknown ! � by writing

!$#�% �� � � � �*	�����6 !$#� � ��� � �
or using a Newton method. Notice that U, known only on the mesh, is interpolated linearly at
����6 ! #� . Once ! � is known

� 	�����6 � ! � � is interpolated by a tensor product of cubic B-splines.
The method that we have just introduced deals with the most general case. However, in many

cases, the process can be simplified by using an appropriate splitting of the Vlasov equation. The
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theory of splitting has been well studied for conservation laws and preserves the second order ac-
curacy in time when applied properly. However, one has to be careful to perform the splitting such
that the resulting equations can each be written in a conservative form corresponding to equation
(2). This is only possible if the divergence of each separate term with respect to the corresponding
advection variable does vanish and thus it does not yield simple 1D equations in all cases. We refer
the reader to [8] for more details. On the other hand, even in cases where the splitting might be
numerically possible, physics considerations might prescribe not to do it.

The non relativistic electrostatic Vlasov equation, that reads in one dimension
���
���*�9"

���
� � �90 	���� �,�

���
� "

��� �
is an example where the splitting procedure can be applied. Indeed it can be split into

�H�
� � �9"

���
� �

��� � (6)

and ���
�����80-	.��� ���

�H�
� "

���!J
(7)

In this case we have two 1D equations, the advection function " and 0 respectively being inde-
pendent of � and " respectively. Thanks to this property no iterations are needed in order to solve
(5) and a one time step scheme can be used.

When the equations can be split, all the variables that do not appear in the derivatives as " in
(6) or � in (7) are really just parameters when solving the corresponding equation. Hence a trivial
parallelisation can be performed by distributing the computation on the processors according to the
values of this parameter. It follows that there are really two distinct parallelisation methodologies
which need to be followed depending on whether the equations can be split or not. We are now
going to illustrate these methods on the following two example: the two-dimensional electrostatic
Vlasov-Poisson model where a splitting between space and velocity is performed and the guiding-
centre model where no splitting can be performed.

3 Description of the models

The first model we consider is the 2D electrostatic Vlasov equation:
�H�
� ����� ��� # � � � 	��7� �,� �'�����-��� �

coupled with
� � 6 ��� , and Poisson’s equation

� �-�
	 6 � � � " J

In this case, as � is independent of � and
� 	��7� ��� is independent of � , the above Vlasov equation

can be written in conservative form�H�
� ��� � # � 	�� ��� � � � � 	 � 	��7� �,� ��� ��� �
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and then split between space and velocity coordinates into���
��� � � ��� # �-��� � (8)

and ���
��� � � 	.��� ���I�������-���!J

(9)

The second model we consider is the guiding-center Vlasov model which is an approximation
of the full Vlasov equation valid in presence of a large constant external magnetic field

���
. In this

case the average movement of the particles is an
�������

drift. The equations read�
	
��� ����� �'� # 	E��� � where �� �

�������
4���

J

the electric field being given by Poisson’s equation 6 � �8��	
with

� � 6 � �IJ Here both com-
ponents of � � depend a priori on the two space variables. Therefore splitting can not be justified
theoretically, and will not be performed.

4 The specific semi-Lagrangian algorithms

4.1 The semi-Lagrangian method for the electrostatic Vlasov equation

As we saw in the previous section, the equation can be split into two 2D advections, with an advec-
tion field independent of the advection variable, namely���

��� � � � � # �-���
(10)

and ���
����� � 	.��� ���I�������-���!J

(11)

Here we could even split the equation into four 1D advections. However this would have no in-
fluence on the parallelisation strategy. Hence we shall not consider this possibility in the sequel.

In this case the feet of the characteristics can be computed explicitely. The displacement from
the mesh points is the same everywhere, namely " � � for the advection (10) over a time step � � and
0 � � for the advection (11) over a time step � � . Only the second step of the algorithm involves
effective computation: The distribution function at the previous time step is interpolated by cubic
splines (a two-dimensional tensor product of cubic B-splines in the each case).

4.2 The semi-Lagrangian method for the guiding-centre model

Here as no splitting can be performed, a full 2D scheme is necessary. The advection function� � 	.��� �,� depends on position and time. Therefore we need to use a two time step scheme in order
to remain second order in time. The algorithm we described in section 2 does not simplify. Let us
explicit it for this specific case: The characteristics are the solutions of the differential system� 
� � � " � # 	.���D� � ��� �

�
�
� � � " � & 	.������� ��� J (12)

Then applying the algorithm described in Section 2, for each mesh point 	.���,����� � , 	 is computed in
two steps:

INRIA
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1. Find the starting point of the characteristic ending at 	.��� ����� � , i.e. ( 
8	 ��� 6 � ��� ���,������� ��� �
� ��� � � 	 ��� 6 � ��� ��� �D���$� ��� ��� ��� ), which is done by computing for each 	�� ��� � , the displace-
ments ( ! � �$��� � � ) from the mesh point ( ���,����� � by solving iteratively the non linear system

! � � � � � " � # 	.���H6 ! � �<�D� � 6�� � �$� ��� �
��� � � � � " � & 	.����6 ! � �$�D��� 6���� �%� ��� � J

Concerning the parallelisation, once � � is known, the treatment of all the mesh points can
be performed concurrently. Moreover, the data involved in the computation are the values of� � at neighbouring mesh points. So the problem is essentially local, involving only inter-
processor communication for mesh points close to a boundary of the decomposition.

2. Compute
	 	�
8	 ��� 6"� ��� �����D���$� ��� ��� �,� � � 	 ��� 6�� ��� ��� �D� �%� ��� ��� ��� � ��� 6 � ��� by a tensor

product cubic B-spline interpolation,
	

being know only at mesh points at time
� � 6"� � .

Let us here describe more precisely the tensor product cubic B-spline interpolation procedure
as in this case it will have a direct influence on the parallelisation strategy: The first step consists in
computing the coefficients �
	�� of the cubic spline interpolation function � 	.����� � given by:

� 	.���D� �I� 
� ��� 	 � ��� � �

	 
� ��� � � ��� � �

� 	�� 4�� 	 	�� � 4�� � 	.� � �

The spline � must satisfy the interpolation conditions

� 	.� � ��� � � � 	 	.� � ��� � � � � 6 � ���

for � � 	 � J'J�J ��� # , � � 	 � J�J'J ��� & and the two boundary conditions of the function
	

in each
direction, which in our case are periodic in the � -direction and natural in the � -direction.

In order to compute the �
	�� coefficients, we first solve the � & one-dimensional interpolation
problems:

� 	.������� �7� 
� ��� 	 � ��� � ���

�	 4�� 	 	�� � for � �
	 � J'J�J ��� &
each verifying the � # interpolation conditions � 	����,����� � � 	 	.��� �����$� ��� 6 � ��� and the periodic
boundary conditions, where we denote by

� 	 	.�
� � 

� ��� � � ��� � �
� 	�� 4�� � 	�� � J

and by

�
�	 � � 	 	�� �

� J
Using these interpolation and boundary conditions, we are brought to solve �*& linear systems, one
for each value of � , involving the same 	�� # � � �

-dimensional tridiagonal matrix corresponding to
the one-dimensional B-spline interpolation, which gives us the �

�	 .
Then we obtain � 	�� by solving the � # � �

interpolation problems:

� 	 	.�
� � 

� ��� � � ��� � �
��	�� 4 � � 	�� � for � � 6 � � J�J'J ��� # 6 	 �

RR n ˚ 3430



8

verifying the � & interpolation conditions � 	 	.���
�-�

�
�	 and natural boundary conditions. Using

these interpolation and boundary conditions, we are brought to solve ��# � � linear systems, one for
each value of � , involving the same 	��E&7� � �

-dimensional tridiagonal matrix corresponding to the
one-dimensional B-spline interpolation, in order to obtain the � 	�� , which are the needed coefficients.

Both steps described above involve a set of identical computations, namely tridiagonal solves
with different right-hand-sides. Hence, taken separately these steps are perfectly parallel in nature.
However, assuming a distributed architecture, there needs to be a data redistribution between the
two steps.

Finally, once the B-spline coefficients � 	�� for all � and � have been computed, the value of
	

at the origin of the characteristics is taken to be the value of the B-spline � 	.��� 6 � ! � �$����� 6 � � � � � .
This procedure is essentially local, as it involves only points at the neighborhood of the point being
considered.

5 The Field Solves

The problems we deal with involve a doubly periodic domain for the 2D electrostatic model and
a domain periodic in one direction and bounded in the other for the guiding center model. The
algorithm used for the solves are the following:

For the first geometry (periodic in both direction) a 2D FFT enables to compute directly the
electric field components.

For the second geometry: (periodic in � and bounded in � ), we want to compute the electric
fields to fourth order accuracy. This is done using the procedure first introduced by Knorr, Joyce
and Marcus [7] which we shall recall here in order to get some insight of the intrinsic parallelism of
the method. We first need a fourth order Poisson solve which consists of the following steps:

1. Perform a Fast Fourier Transform in � which yields for each discrete mode a one-dimensional
problem in the � -direction which reads:

6
� �� � �
�
# 	.�

� � � � � # � 	 # J

2. Use of a fourth order scheme for the resulting one-dimensional problem in the � -direction,
which reads:

6
	 �

	���� � � 	
�
#  � % �76

� �
#  � �

�
#  � � �

� � 	 	 #  � % ���
	�� 	

#  � �
	
#  � � �

�
6 � � 	 � #  � % � � 	�� � #  �:� � #  � � � � J

Gathering the identical terms, this yields

	 	 6�� # � � #  � % �768	 � � 	�� � # � � #  �:��	 	 6�� # � � #  � � �� 	 ��� � �	 � 	 	 #  � % � �
	�� 	

#  �:�
	
#  � � �

�

where � #
� ��� � � �  	 � . This holds for � � � � J J ��� &�6 	 . In addition we have

�
# ��

� �
#  ���

�
�

for vanishing Dirichlet boundary conditions. This gives us for each mode
�

a tridiagonal
system which needs to be solved.

INRIA
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3. Perform an inverse Fast Fourier Transform in � to obtain the result.

¿From a computational point of view, the first step consists in ��& simultaneous independent
Fast Fourier Transforms, the second steps consists in the resolution of �*#  � � 	 tridiagonal systems
which can be done concurrently. And the third step consists in ��& simultaneous independent inverse
Fast Fourier Transforms. Hence each of the three steps can completely be performed in parallel,
however steps 1 involves data stored in the rows of the matrix 	 	 �  � � , whereas step 2 involves data
stored in the columns of the matrix 	 	 �  � � . So, assuming a distributed memory architecture, this
means that the matrix 	 	 �  � � needs to be redistributed on the processors between the steps.

Once the potential
�

is obtained to fourth order accuracy, the electric field can be computed
still to fourth order accuracy, by simply using the following fourth order accurate one-dimensional
scheme for computing a derivative:

���� % � �
� ���� � ���� � � � �

��� 	
� � % �76

� � � � � J

Thanks to the periodicity of the problem in the � -direction we can use this scheme in the � -
direction as

� # � 6 � # � . It yields for � �
	 � J J ��� & and for � � � � J J ��� # 6 	
01# � % �� � �

� 01# �  � �901# � � �� � � �
��� 	

� � % �� � 6 � � � �� � � J
Moreover, due to the periodicity, we have

0 # �� � � � 0 # � � � �� � �90 # � � � �  �
� �
��� 	

� �� � 6 � � � � �  � � �
and

01# �  � � � 0 # �� � �801# � � � �  � � �
��� 	

�
�  � 6 � � � � �� � � J

The same scheme can also be used in the � -direction in order to compute
� & � 6 � & � away from

the boundary.
However in order to keep fourth order accuracy a special treatment is necessary at the boundary:

As for the Poisson solver we can transform the problem in a set of one dimensional problems using
the Fourier Transform. Then the following one dimensional formula is accurate to fourth order:

	 � � % �76
� � � � � �� 	 � �� % � �

� �� � 6 � � �	 � 	 � ���� % � 6
� ���� � J

Applying this formula for
�-� �

# ,
� � � 6 � & # ,

� ��� � � � � # 6 	 # yields

� &
# �� �

� &
#  �

� 62	
�
� � 	

	 � � # � 	 � #  � 6 � # �� � �
���
� 	 	 #  � 6

	
# ��
� �

� &
# 
� � � & #  � � �

� 62	
�
� � 	

	 � � # � 	 � #  � 6 � #  � � � � � ���
� 	 	 # 

� 6 	 # 
� � � � �

Then using an inverse Fourier Transform

� &� �� � � &�  � � 6
�
��� 	 	

� �  � 6 � � �� � ��� � � 	 � # 	
�
#  � 6

�
# ��
� � � � ���

� 	 	 �  � 6 	 � �� �
� &�  � � �1&�  � � � � 6

�
��� 	 	

� �  � 6 � �  � � � � ��� � � 	 � # 	
�
# 
� 6 � #  � � � � � � � ���

� 	 	 �  � 6 	 # 
� � � �

RR n ˚ 3430
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where � #
� � � 	 ��� � �  	 � . These two equations complete the system which remains fourth order.

As for the Poisson solves, there is an inherent parallelism in the computation of the electric field
which consists for both components in the resolution of a set of tridiagonal systems. But here again
the distribution of the data on the processors needs to be different for the computation of 0�# and
01& .

6 The parallel algorithms

6.1 The guiding-centre model

Going through the different parts of the algorithm, we can explicit the different kinds of computa-
tion which have to be done. These are for the density advance in time: fixed point iterations over
the displacements from the mesh points, tridiagonal solves for computing the cubic B-spline coef-
ficients (a whole set in each direction as we are using a tensor product interpolant), evaluation of
the interpolated spline at the feet of the characteristics. On the other hand for the field solve the
computations to be performed are multiple one-dimensional Fast Fourier Transforms and inverse
Fast Fourier Transforms, as well as multiple tridiagonal solves.

We notice that a few stages are completely local: finding the origin of the characteristics, com-
puting the spline values which only involves the mesh points in the neighbourhood of the one being
computed. And most stages (FFT, tridiagonal solves) involve whole lines of the domain, but unfor-
tunately not always in the same direction.

Normally, for a 2D problem like ours, a global 2D decomposition is optimal as it has the smallest
inter-processor boundary and involves no data redistribution on the processors. However, tridiagonal
solves and FFTs are well known not to have a very good scalability when performed on multiple
processors. On the other hand, we saw that for each stage of the algorithm, there is a 1D band
decomposition for which there is a natural optimal parallelism. Therefore our final choice was to
take several distinct decompositions even though this would involve global communication. One
primary decomposition in 1D bands in the direction 	���� � would be used most of the time, the
global data being stored according to this decomposition, and several secondary decompositions,
not always the same, would be used where required. That is in our specific case: the tridiagonal
solves for Poisson, for 0 & , and one direction of the spline interpolation.

Using these considerations, we start with a 1D band distribution along the � -direction and pro-
ceed at each time step through the following stages:

1. Compute the new electric field. For this we first perform a Poisson solve, which consists of

(a) a multiple 1D FFT for
	

on each processor, the data being distributed evenly according
to their � index,

(b) a data redistribution, the data is now distributed across the processors according to their
mode number,

(c) multiple tridiagonal solves on each processor,

(d) a data redistribution to go back to the initial distribution according to the � index,

(e) a multiple inverse FFT.

Then we compute the derivatives in each direction of the electric field, for which the steps
are:

INRIA
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(a) multiple tridiagonal solves on each processors where the data is distributed according to
the � index for computing the derivative with respect to � ,

(b) a data redistribution, so that the distribution is along the � index,

(c) multiple tridiagonal solves on each processor where the data is distributed according to
the � index for computing the derivative with respect to � ,

(d) a data redistribution, to get back to the original distribution for the density advance.

2. Advance the charge density
	

, which is performed as follows

(a) Compute feet of characteristics: this needs information from neighbourhood, hence it
involves inter-processor communication for mesh points at the edge of the decomposi-
tion.

(b) Compute the spline coefficients in the � -direction. This involves multiple tridiagonal
solves on each processor.

(c) data redistribution so that the distribution is along the � index.

(d) Compute the tensor product spline coefficients. This involves multiple tridiagonal solves
on each processor which can be performed locally thanks to the actual data distribution.

(e) Data redistribution to go back to the original distribution for the beginning of the next
time step.

(f) Evaluation of splines at feet of characteristics: This needs information from the neigh-
bourhood and thus a slight amount of local inter-processor communication.

6.2 The electrostatic model

Let us now go through the steps of the algorithm for the electrostatic model in the same way. Thanks
to the splitting method we use, the semi-Lagrangian method is applied once for a 2D physical
space advection with the velocity coordinate � as a parameter and once for a 2D velocity space
advection with the physical space coordinate � as a parameter. Thus, if the data is distributed in
each case according to the parameter, there will be no communication at all, not even the almost
local communications that occured in the previous example. The computations in this case, which
are fully local involve multiple tridiagonal solves for the cubic spline interpolation, and explicit
computations for the spline evaluations. For the field solve, we need a 2D Fast Fourier Transform
which is also achieved best by multiple 1D Fast Fourier Transforms involving data redistribution.

Finally the algorithm reads in this case for each time step, starting with a 1D band distribution
along the "'# -direction.

1. perform a spatial shift over � �  � , that is apply the simplified semi-Lagrangian algorithm for
equation (8) over a time step of � �  � .

2. redistribute the distribution function in order to get a 1D band distribution along � -direction.
Then integrate to obtain

	

3. Compute the electrical field

(a) perform a multiple 1D FFT along the � -direction for the electric field

RR n ˚ 3430
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(b) redistribute the field data along the � -direction

(c) perform a multiple 1D FFT along the � -direction for the electric field

(d) redistribute the distribution the electric field in order to get a 1D band distribution along
the � -direction.

4. redistribute the distribution function in order to get a 1D band distribution along "<# -direction.

5. perform a velocity shift over � � , that is apply the simplified semi-Lagrangian algorithm for
equation (9) over a time step of � � .

6. perform a second spatial shift over � �  � .

7 The implementations

7.1 A shared memory implementation of the guiding-centre model

The easiest way to implement the parallel algorithm we described for the guiding-centre model is
to use shared distributed memory concept available on Silicon Graphics’ Origin 2000. This concept
means that even though the memory of the computer is physically distributed, there exists a software
system giving access to the whole memory. When programming on such a platform one still needs
to take care of the data distribution on the processors, but the communications are handled by the
system through compiler directives or system calls. Let us now give a few more details:

The parallel implementation uses just one parallel loop over the number of processors which
appears after the initialisation part of the code and is ended at the end of the computation. This is
implemented using the !$DOACROSS directive. The arrays through which the communication will
be carried over are declared as shared at the beginning of this parallel loop, all the others are local
to each processor. Then a matrix transpose is implemented by simple array copy:

do i=1,n
a(i,j)=b(j,i)

end do

where b is a shared array. Moreover the almost local communications which appear in the compu-
tation of the feet of the characteristics and the spline evaluations are transparent through the use of
shared arrays for the drift velocity and the spline coefficients.

Before each global data redistribution, there is a call to the system routine mp_barrier for
synchronisation.

7.2 A message passing implementation of the electrostatic model

In this case we noticed that with our parallel algorithm, the only communications are the row-
columns exchanges involved in the global data redistribution. There is no other communication
necessary. The implementation we used in this case was the MPI message passing library.

The most obvious approach for implementing the data redistribution consists in having the pro-
cessors send all at once the rows of the arrays to the processors which need them for further com-
putations and then have them all receive their data in the apropriate columns. This worked fine on
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Cray’s T3E but overflowed the Origin 2000’s message passing buffers. Indeed, this communication
scheme requires each processor to bufferize the rows to be sent. As a consequence, the number of
required MPI buffers increases very quickly with the number of processors, leading to deadlock on
Origin 2000 : each processor blocks because all its local buffers are full, but still need to execute
“send” actions before actually starting to receive columns, freeing by the way others processors’
buffers.

For this reason a more refined algorithm was needed. The main idea that lead the design of
the new algorithm for this row-column exchange, was to avoid buffering most of the time. To do
so, we choose to refine the algorithm into a sequence of steps (not only “bulk send followed by
bulk receive”), where each step would only require one MPI buffer, whatever the total number of
processors. Thanks to this, it is possible to reduce the memory needs, and, most important, to avoid
deadlock, even if the architecture has only few MPI buffers available.

The algorithm designed for this row-column exchange is to be applied recursively by each pro-
cessor on their local band. Its main advantage is that it ensures that, at each step of the global
exchange, each processor will only perform one point to point communication. As a consequence,
all congestions and bufferisations can be avoided during communications.

Let us see how the recursive algorithm works on an example. For this example, we will distribute
the global matrix by bands on 4 processors. Figure 1 shows the successive steps performed in
parallel on the matrix.

Figure 1: Successive steps of the transposition

At each step, the global matrix is virtually split into 16 blocks, so that each processor will only
have one partner to send his own data to.

The first step does not include any communication, since this step only involves the data stored
on the diagonal of the global matrix, which means that this very block does not need to be moved.

The three next steps then consist in point to point exchanges between processors. You might
notice that at each step, each processor only has one send-receive operation to complete, so that it
only needs one buffer for the exchange.

Since our 2D Vlasov-Poisson application also required the use of 2D FFT over the global matrix,
we chose to extend this row-column global exchange to a true matrix transposition in order to use it
for a 2D parallel FFT. Indeed, the extension to the previous algorithm was to actually transpose the
data during the exchange. This transposition was performed, on the fly, using MPI derived datatype.

To perform the parallel 2D FFT over a matrix distributed in band on processors, we can use the
following algorithm :

1. each processor computes a multiple real to complex 1D-FFT on its local columns,
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2. the result of this first multiple complex 1D-FFT is globally transposed, to swap directions,

3. each processor computes a new complex to real 1D-FFT on these new columns,

4. the result is transposed once again, to get each direction in the right way.

Multiple 1D-FFT are available from the scsl library on CRAY and SGI platform. We implemen-
ted the row-column exchange algorithm with “on the fly” transposition thanks to MPI derived data
types, to get a true transposition algorithm.

8 The parallel speed-ups

The performance of the parallel algorithms are summarized in the following tables. For the guiding
center model the speed-up is given for the whole code, whereas for the electrostatic code the speed-
up is only for the transposition, the rest of the algorithm being perfectly parallel.

� Speed-up for the guiding-centre code

Processors 1 2 4 8 16
Time (in s) 608 324 163 85 47
Speed-Up 1 1.88 3.73 7.15 12.94

Table 1: Speed-Up for a
	�� � � � 	�� � �

grid

� Speed up for the MPI transposition algorithm

Processors 8 16 32
Speed-Up

� ��� � 	 	 � 	 	 � � � �
Efficacity

� ��� � � � � � � ��� �

Table 2: Speed-Up of a 1024x1024 complex matrix transposition

As we showed in this paper, the semi-Lagrangian algorithm can be applied such that most steps
are perfectly parallel. In fact, in the case of the electrostatic Vlasov-Poisson model, where the feet
of the characteristics are known, all stages of the computation are perfectly parallel provided data
redistributions are performed at some points. Moreover, we have found a way to perform the data
redistribution in an efficient manner which enables us to have a good parallel efficiency.

9 Conclusion

Parallelizing Vlasov codes is an essential task since the numerical solution of Vlasov equations is
very time and memory consuming. The two special models discussed above, have been chosen to
reflect the specific difficulties associated with the parallelisation process of more general Vlasov
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codes. The performance obtained on these examples are very satisfying. Let us also mention that
the examples we developed here were essentially classical problems picked to test the numerical
algorithm and benchmark the codes. More complex and realistic problems related to laser-plasma
interaction are adressed in a companion paper submitted in this issue of the journal [6].

Building on the methods we introduced here we are now ready to develop a fortran 90 module
library implementing the different kinds of advection types that are needed. Assembling these
modules will then enable us to treat many problems occuring in plasma physics using the semi-
Lagrangian methodology.
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[9] A. Staniforth and J. C ôt é, Monthly Weather Review 119 (1991).

RR n ˚ 3430
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