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Abstract: The half-sample method has been introduced by Stephens (1978) for testing parametric models
of distribution functions. In this paper, we present a similar method for testing the goodness-of-fit of linear or
nonlinear regression or autoregression functions for parametric models of order 1, under minimal stationarity
and ergodicity assumptions. Our procedure is based on a measure of the cumulated deviation process A,
between a weighted marked process of residuals and a parametric estimator of the cumulated conditional
mean function (i.e. cumulated regression or autoregression function), under the null hypothesis Hy. We
establish a functional limit theorem under H, for a variant Aﬁf), 0 < k < 1, of the process A,. The
half-sample method corresponds to k = 1/2. We show that the limiting distribution of /1(”1/ ?) under H,
takes a very simple form. Several easily implemented goodness-of-fit tests can be based on this result. We
provide simple conditions under which their power converges to 1 as the sample size goes to co. Finally, we
investigate the asymptotic behavior of fl(nn) as n — oo under sequences of O(n~1/?) local alternatives. This
allows us to compare the corresponding local powers of tests based on AS/ ?) and on A(nl).
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La méthode du demi-échantillon pour tester des modéles
paramétriques de régression et d’autorégression d’ordre 1.

Résumé : La méthode du demi-échantillon a été introduite par Stephens (1978) pour tester des modéles
paramétriques de distributions. Dans cet article, nous présentons et étudions une méthode analogue pour
tester 'adéquation de fonctions de régression et d’autorégression d’ordre 1, sous des hypothéses minimales
de stationnarité et d’ergodicité. Nous utilisons le processus A,,, qui cumule les différences entre les résidus
et un estimateur paramétrique de la fonction de moyenne conditionnelle, ceci sous ’hypothése nulle Hy.
Nous établissons la loi limite sous Hy d’une variante An"), 0 < k < 1, du processus A,. La méthode du
demi-échantillon correspond au cas k = 1/2. Nous montrons que la loi limite de AR sous Hy, admet une
forme remarquablement simple. Des tests faciles & implémenter peuvent alors étre envisagés. Nous étudions
des conditions suffisantes pour que leur puissance tende vers 1 quand la taille de ’échantillon tend vers
I'infini. Enfin, nous nous intéressons au comportement asymptotique de flgf) quand n — oo sous des suites
d’alternatives locales en O(n~'/2). Ceci nous permet de comparer les puissances locales d’une classe de tests

selon qu’ils sont calculés & partir de AS/ 2 ou de AS).
Mots-clé : Autorégression ; Régression ; Adéquation ; Moindres carrés conditionnels ; Ergodique ; Demi-

échantillon ; Stationnaire; Tableau de différence de martingale ; Non linéaire ; Non paramétrique ; Puissance
locale ; Contiguité.



The half-sample method for testing parametric regressive and autoregressive models of order 1. 3

1 Introduction

The half-sample method has been introduced by Stephens (1978) in the context of goodness-of-fit tests for
parametric models of distribution functions. In this paper, we present a new half-sample method for testing
the goodness-of-fit of linear or nonlinear regression or autoregression functions for parametric homoscedastic
models of order 1. We consider both parametric models of regression or autoregression functions for which
the response variables Y; or X;41 are related to X; by a relation of the form

Y't = m(Xt, 0) + o€y or Xt-l—l = m(Xt, 0) + O€t+1, (].].)

where {X;} is stationary and ergodic. We will occasionally denote m(-; §) = my. We do not assume that
the sequence {(X¢,e1)} (or {(X¢,€141)}, respectively) is stationary and ergodic. The rv’s ¢; are (G; : t > 1)-
martingale differences with conditional variance 1, i.e.

E(&]Gi1) =0 and E(aﬂgt,l) =1 (1.2)

forallt > 1, with Gy = o(X1) (or Go = 0(Xp)) and G; = o(X1,e1,..., X4, €1, Xtg1) (0r Gt = 0(Xp, €1, .. .,€1)),
t > 1, respectively, and (G; : t > 1) the corresponding filtration.

We wish to test the goodness-of-fit of models of the form (1.1). In this situation, the null hypothe-
sis Hy asserts that the true conditional mean function actually belongs to some parametric model M =
{mp : 0 € ©}. Many papers have been devoted to this question (see, e.g., Stute and Gonzalez Manteiga,
1996, and references therein, and Zuber, 1996, 1997, for a survey). Here, we focus on testing procedures
based on some measure of the deviation process

Ap(z) = n~1/2 z": (Yt — m(Xy; én)) I(X;<z), =z€R, (1.3)

t=1

where 6,, is some strongly consistent estimate of the true parameter §y under Hy. Such cumulated marked
residual processes converge in distribution to Gaussian processes derived from Brownian motion. In contrast,
analogous processes based on local nonparametric estimators of the regression or autoregression function (e.g.,
nearest neighbors estimators in Stute and Gonzalez Manteiga, 1996) have no functional limiting distribution.
The basic reason is that such local nonparametric estimators can be seen as derivatives of cumulated processes
such as

nt Z Y I1(X; <z or n! Z Xipn I(X; <),

t=1 t=1

and Brownian motion has no functional derivative. This is the basic mathematical reason why workable
goodness-of-fit tests should be based on cumulated marked residual processes such as (1.3) rather than on
local nonparametric estimators.

An and Cheng (1991) have introduced a Kolmogorov-Smirnov type test based on (1.3) to check the

linearity of autoregressive time series of order 1. They propose to replace A, with the partial sums p, 1/2
Zf;l (Xip1 — m(Xy; 0)) (X, < ), where p, — 00 and p,/n — 0 as n — oo, to get rid of the influence
of 8, on the limiting distribution. However, this method results in a dramatic loss of power, since it can
only detect O(pn 1 %) local alternatives. Su and Wei (1991) have studied a similar Kolmogorov-Smirnov type
test. They propose a simulation method to implement it, but mistakes (see Stute, 1997) invalidate their
results. Cheng and Wu (1994) have considered a similar testing process for testing the goodness-of-fit of a
parametric family of link functions in the context of Generalized Linear Models, where the X;’s are assumed
to be iid. They base their Kolmogorov-Smirnov type test on the maximum likelihood estimation of §. They
provide no practical method for computing the fractiles of the limiting distribution that they obtain.

RR n " 3418



4 Jean Diebolt

Following Diebolt (1990), Diebolt and Laib (1994) have established a functional limit theorem for cumula-
ted regressograms when the parameters are assumed known. McKeague and Zhang (1994) have established
more general functional limit theorems for cumulated regressograms when the parameters are unknown,
with 6, the least squares estimator (LSE). Diebolt and Laib (1993, 1995), Diebolt (1995) (for iid X,’s),
and Diebolt and Ngatchou Wandji (1995, 1996, 1997) have considered the process (1.3) in the particular
case where the parameters are assumed known. Stute (1997) and Zuber (1997) have established the limiting
distribution of (1.3) in the regression setting when 6, is the LSE, whereas Ngatchou Wandji and Laib (1998)
have obtained similar results for autoregressive models.

However, practical computation of the fractiles of the limiting distribution of possible goodness-of-fit
tests based on these results remains hardly tractable. This is the reason why a half-sample type approach
can turn out to be of great practical interest. In this paper, we establish a functional limit theorem for a
variant of the process (1.3), namely

AW (g) = p~1/2 Z (Yt — m(Xy; égf))) I(X;<z), z€R, (1.4)

t=1

under Hy, where {éﬁf")} denotes the (conditional) LSE of the K- dimensional parameter 6 based on randomly
selected observations in proportion &, 0 < & < 1. The half-sample method corresponds to k = 1/2. It turns
out that for k = 1/2, this process converges in distribution to the remarkable process o W (F'(-)), with W a
standard Wiener process (Corollary 1 to Theorem 2). This simple time-changed Brownian motion is exactly
the limiting process of the process

Ap(@) = n 2" (Vi —mo(X)) (X, <z), =z€R. (1.5)
t=1
for testing m = mg against m # mg, under the simple null hypothesis Hy. Corollary 1 is extremely interesting
for practical use, since the distribution of the limiting process o W (F(-)) only depends on ¢ and F' and does
not depend on the model M to be tested. Moreover, the distributions of numerous functionals of W are
analytically known.

In section 2, we precise the models that we consider and list the assumptions that we need. We establish
the main asymptotic properties of the (conditional) LSE é(n'i), 0 < k <1, in the general case where the ;s
are not necessarily iid (Theorem 1). This extends the results of Mangeas and Yao (1996, 1997). Section
3 is devoted to the functional limiting distribution of fl(n'i) under the null hypothesis Hy (Theorem 2 and
its corollary). In section 4, easily implemented goodness-of-fit tests based on Corollary 1 are discussed. In

section 5, we examine the asymptotic behavior of Aﬁf) under the alternative hypothesis H; that the true
conditional mean function remains sufficiently far from the manifold M, and provide simple conditions under
which the power of such tests converges to 1 as the sample size goes to 0o (Theorem 3). Finally, section 6

is devoted to the study of the asymptotic behavior of A&”) as n — oo under a sequence of local alternatives
H7T of the form m = myg, + n~1/28. This allows us to compare the corresponding local powers of tests based

on ALY (half-sample process) and on AD (full-sample process) when testing for no effect. The proofs are
postponed to section 7.

2 Models, assumptions and estimation

For simplicity, we establish our functional limit theorems for models M of the form
Y; = m(Xt, 0) + O &, t 2 1, (21)

under the assumptions that {X; : ¢ > 1} is a stationary and ergodic process of real-valued rv’s and that
(1.2) holds. We do not assume that the sequence {(X;,e:)} is stationary and ergodic. We denote by F' the

INRIA



The half-sample method for testing parametric regressive and autoregressive models of order 1. 5

common repartition function of the X;’s. The function x — m(z; 8) corresponds to the conditional mean
of Y; given the o-field G; 1, E (Y:|Gt—1) = m(Xy; 6) a.s. The autoregressive case follows by replacing Y;
with Xt-l—l and Et with Et+1 in (21)

We assume that the model M is identifiable, i.e. for all § and ¢’ in the compact subset © of R¥ the
almost everywhere equality of the functions x — m(z; 6) and z — m(z; 6') implies that § = ¢'. The
parameter § = (0y,...,0x)T, K > 1, is considered as a K x 1 matrix. The parameter space © is a compact
subset of RX with nonempty interior, int(©). We denote by

Okm(z; 0) = Om(z; 0)/90r and  Owm(z; 0)|,_, = Om(w; 0)/00k|,_,, k=1,...,K,

the partial derivative of m(x; ) with respect to 65 and the value of this partial derivative at some point § = ¢
€ int(®), respectively. We denote by Vem(z; ) = (dim(z; 0),...,0xm(z; 6))" the gradient of m(z; 6)
with respect to §. The gradient Vym(z; ) € RE is considered as a K x 1 matrix. In order to simplify
the notation we will write Vgm(z; 8) = Vm(z; ) = Vmy(z) when no confusion can arise, and will denote
Vomg(z)|g—p, = Vmo(z), where 8y = (69,1, .- ,00, )T is the true value of the parameter.

Below we list the assumptions that we need. These assumptions concern the existence of conditional
moments of sufficient order for the ¢,’s, regularity of the repartition function F' of X, regularity, smoothness
and moment properties for the function m(x; 6). We suppose that the true value 6 of the parameter under
the null hypothesis Hy that the observations are actually issued from the postulated model M is in the
interior int(©). We denote by ||-|| a norm on R¥. We first assume that for all fixed z the function § —
m(z; §) has continuous derivatives up to order 2, and for all 8 the functions £ — m(z; 6), 0;m(z; 6) and
3% jym(x; 0) = 8*m(x; 0)/06;06;: are continuous.

(A1) There exists v > 0 such that
C(e,y) = SUP E(|8t|2+7‘gt71) < 0.
t>1
(A2) The distribution function F is continuous and increasing and there exists a real number 8 > 2 such
that E (|X1|ﬂ) I wl? dF(y) < oo.

(A38) There exists 7' > 0 and a nondecreasing continuous function wy(-) such that lims_,q wp(§) = w(0) = 0
and

[m(a; 62) = m(z; 01)] < wo(I62 = 6u) (1 + [a]/C+) (22)
for all z € R and (61, 62) € © x ©. Moreover, there exists co,o such that

Im (z; 80)| < co.0 (1 + |x|ﬂ/<2+7’)) for allz € R. (2.3)

(A4) There exists a positive finite real number r¢ such that the closed ball By = B (6, ro) is contained
in int(©), and there exists a nondecreasing continuous function wp,2(-) such that lims_¢ wo,2(6) =
wO,Q(O) = 0 and

‘ ym(z; 8) — &m(z; 0),_, ‘ < w2 (/1 — 6ol]) (1 + |m|ﬂ/<2+7’>) (2.4)

for all z, all § € By and all j,j' = 1,..., K. Moreover, there exists co,2 such that

sm(z; 6) |9 66 ‘ < ¢o,2 (1 + |m|ﬁ/(2+7’)) for allz € R. (2.5)

RR n "~ 3418



6 Jean Diebolt

(A5) There exists co,1 such that for all z,
IVmo@I| < o1 (1 + [/ +). (2.6)
(A6) The matrix
Vo = / ” VmoVml dF (2.7)
is definite positive.

Remark 1. (i) The assumption (A3) has a global nature, whereas (A4) is local (§ € By) and (A5) is
pointwise (6 = ;).

(1) Since © is compact the continuous functions wy(-) and wy,2(-) are bounded, hence it follows from (A3)-
(A4) that

|m(z; 62) — m(z; 61)] < cst (1 + |x|ﬁ/(2+71)) for all z € R and (6, 62) € © x O, (2.8)
|m (x5 8)] < cst (1 + |x|ﬂ/(2+"")) forallz € Rand 6 € O, (2.9)

and
|02 ;m (x5 0)| < cst (1 + |w|ﬁ/(2+7')) forallz € R, § € Byand j,j' = 1,...,K, (2.10)

for some positive constants. Therefore, there exists a nonnegative finite measurable function M(z), = € R,
such that [*° MdF < oo and

sup| m(x; )] < M(z) forallz € Rand j,j' = 1,...,K. (2.11)
0e By

(#i) It follows from the mean-value theorem and (2.10) that
IVmg(z) — Vmo(z)|| < cst (1 + |$|ﬂ/(2+7')) for all z € R and 0 € By. (2.12)
Therefore, in view of (A5),

Vme(z)]| < cst (1 + |:c|’g/(2+"”)) for all z € R and § € By. (2.13)

(iv) Similarly, it follows from (2.13) that
[m (5 ) = m (23 60)| < cst 16 — bl (1 + |27/ *77) (2.14)

for all z € R and 4 € By.

In this paper, we consider the estimator éﬁf) derived from the mean squares estimator 6,, for nonlinear

models of regression (or autoregression) functions,

n
~

n = argmin 3 (Y — m(X;; 9))”,
0 argggg;(t m(Xy; 6))

INRIA



The half-sample method for testing parametric regressive and autoregressive models of order 1. 7

studied, e.g., by Klimko and Nelson (1978), Lai (1994), McKeague and Zhang (1994), and Mangeas and
Yao (1996, 1997) for stationary processes and by Duflo, Senoussi and Touati (1990, 1991) in the general
linear regression or autoregression context. Under the assumptions (A1)—(A6), which are essentially similar
to conditions [S], [M] and [N] of Mangeas and Yao (1997) (see also McKeague and Zhang [1994, conditions
B|), this sequence of estimators is strongly consistent and satisfies

& = nl/? (én — 00) = n*1/2a%_1 Z Vmo(Xi)er + op(l) as n— o0,
t=1

where the K x K symmetric matrix Vo = [*_ VmoVm{ dF is finite and definite positive, and op(1) € R¥
converges in probability to 0 as n — oo. Therefore, &, converges in distribution to a K- dimensional normal
rv € with mean 0 and variance matrix ¢2V;. We consider a real number 0 < s < 1 and a sequence
{bs : t > 1} of iid Bernoulli(x) rv’s (i.e. by = 1 with probability x and b, = 0 with probability 1 —
k). We assume that the sequence {b; : t¢ > 1} is independent of the o-field G = o (Ug2;G;) and set
He = 0(X1,e1,b1 - .., X, €4, b, Xyp1). Letting Qn, = D7, by, we extract a - subsample {X;,, ..., Xio, }

randomly as follows. For t = 1,...,n, we keep X; when b; = 1 and delete it when b; = 0. Let é(n”) denote
the mean squares estimate of 6 based on this subsample, i.e.

6lx) = arg min ; b (Vi — m(Xy; 0))° . (2.15)

Theorem 1 Under the assumptions (A1)-(A6), g converges to 6y a.s. as n — 0o, and
£ = pl/? (égf) — 00) = k1Y 020 Z b Vmo(Xi)e:r + op(1) (2.16)
t=1
converges in distribution to o Gaussian rv £%) with mean 0 and variance matriz fe_laQVO_I.

3 Functional limit theorems

We wish to test the null hypothesis Hj that the true regression function m belongs to the manifold M = {mg :
0 € O} representing some parametric model, i.e. we wish to test the null hypothesis Hy that E(Y; | G:—1) has
the form m(Xy; 6) for some unknown value 8y € ©. We introduce the process

AR (g) = /2 Zn: (Yt -m (Xt; é(n“))) I(X;<z), =z€R. (3.1)

=1

Under Hy, this process A%(-) takes the form

BY¥(2) = Ba(z) — n Y (m (Xt; égﬁ) — m(Xe; oo)) I(X,<z), z€R, (3.2)
t=1
where
Bu(z) = n 20 ) &l(X,<z), =z€R. (3.3)
t=1

RR n~ 3418



8 Jean Diebolt

Theorem 2 Under the assumptions (A1)-(A6) and under Hy, the processes Bﬁf)(-) converge in distribution
to the centered Gaussian process

BW() = B(x) — go(2)7¢", z€eR, (3-4)

where

go(z) = / VomdF, z€R, (3.5)

£%) is Gaussian with mean 0 and variance matric .‘c_102V0*1, and the mv’s £ and B(x) have covariance
column matriz

ho(a) = E (69 B(@) = oV gola) (36)
The covariance function of B (-) is
E (g(n)(ml)é(ﬂ)(;gz)) = o [F(z1 Am2) + (k71 = 2) go(z1)T Vy ! go(z2)] - (3.7)

If in addition x = 1/2, then we find the following simple and remarkable result, which is the analogous
in the present setting of Stephen (1978)’s result.

Corollary 1 If K = 1/2, then under the assumptions (A1)-(A6) and under Hy, the processes BS/Q)(-)
converge in distribution to the centered Gaussian process

B2 (z) = oW (F(z)), (3.8)

where W is a standard Wiener process.

4 Possible tests based on these results

First, two possible tests based on Corollary 1 of Theorem 2 are a Kolmogorov-Smirnov type test and a
Cramér-von Mises type test. The limiting distributions under Hy of these test statistics are given by

sup
z€R

A @) — o sup [W(w)
u€[0,1]

and

oo R 9 1
[ i8] 0 @ate)) dBate) — o [ W @) du,
oo 0
where w is a weight function and F,, is the empirical distribution function of the sample. When ¢ is unknown,
it can be replaced with an a.s. convergent estimate &,,.

Anpther possibility is to make use of the Karhunen-Loéve expansion of the Gaussian process Z (")(-) =
o1 (B(") o F~1)(-) defined on the unit interval [0, 1],

oo

2 = 5 ()" 20 a

J=1

INRIA



The half-sample method for testing parametric regressive and autoregressive models of order 1. 9

where A{® > Al > . > 0 are the eigenvalues of the covariance operator of Z(*) on L2[0, 1], the functions
§”>, ¢2”), ... are an orthonormal basis of eigenfunctions of this operator, and under Hy the rv’s

K K _1/2 ! K ..
Z](- ) = ()\5 )) (/0 Z) (u) q); )(u) du) are iid normal N(0,1). (4.2)
The proposed test statistics has the form

J

2
T =) (Zﬁ,z) (4.3)
j=1
for some moderate J > 1, where
(x) N2 [T Ay b
Znj = (/\j ) o /_ _ A (y) 957 (F(y)) dF (y), (4.4)

converges in distribution under Hy to
D) (<))
T = 37 (Zj ) , (4.5)
7j=1

a chi-square with J degrees of freedom. When F' is unknown in (4.4), it can be replaced with F,. For
k = 1/2, Z(/?) is a standard Wiener process W on the unit interval [0, 1],

MYD = (- 1/2)7%77% and ¢{P(w) = 22sin[(j — 1/2)7u], we[0,1], j > 1. (4.6)

5 Behavior of the processes under a fixed alternative

In this section, we study the power of possible tests which can be derived from Corollary 1. We assume that
the alternative hypothesis holds, namely that

Y;; = ml(Xt) + g &, t 2 ]., (51)

where the true regression (or autoregression) function mi(-) cannot be written in the form my. We denote

[$llec = sup,er [¢(2)]-

Theorem 3 We assume that the alternative hypothesis Hy holds, i.e. the stationary process {X;} satisfies
Y, = mi(Xy) + o0&, t21,

where the regression (autoregression) function mq(-) cannot be written in the form my, 0 € ©, the martingale
differences e+ satisfy (A1), and the stationary distribution function F of the process {X:} is continuous and
increasing. Moreover, we assume that [ _|m1| dF < oo and that (A1)-(A3) hold. Let N denote a seminorm
on the Skorokhod space D[R], such that N(v) < cst ||[¢]|e for all b € D[R]. If

N </ (m1 — mp) dF) > 0 forall €0, (5.2)
then
N (Asf)) — 00 6.5 as n — 0. (5.3)

RR n " 3418



10 Jean Diebolt

6 Behavior of the processes under local alternatives

6.1 Theory

In this section, we investigate the local power of tests based on the processes AS{‘"). To this end, we first
establish a functional limit theorem (Theorem 4 below) analogous to Theorem 1, under the sequence of local
alternatives H{* that

Y;g = m(Xt, 90) + n71/25 (Xt) + o€g¢ or Xt+1 = m(Xt, 0()) + n71/25(Xt) + O&¢41 (61)

for some fixed 6y € int® and some function §. Then, we compare the local power of the x7 test defined in
(4.1)—(4.5) when k = 1 (full-sample testing process) and k = 1/2 (half-sample testing process). Finally, we
compute and compare the local powers of this test for Kk = 1 and k = 1/2 in the important particular case
of testing for no effect.

The square root p'/? of the density p is said to be differentiable in quadratic mean with respect to
Lebesgue measure (e.g., Pollard, 1997) if there exists ¢ € L?(R,dz) such that

o0 2
’lzirrh h2 [p1/2 (x + h) — p*/?(z) — hq(m)] dz = 0. (6.2)

— o0

If moreover p(z) > 0 for all z, we denote g = p/2,/p.
Theorem 4 Suppose that (A1)-(A6) hold, and one of the following assumptions is in force.
(1) In the regression case,

§(z)| < c5.4n (1 + 2P/} for all = (6.3)
(6,7")

(2) In the autoregression case, the function 6 is bounded and the €;’s are iid with mean 0 and variance
1. Their common distribution has a positive density p differentiable in quadratic mean with respect to
Lebesgue measure, and ffooo ¢p(2)*+ p(z)dz < o0, with ¢, = p/p.

Then under HY (see (6.1)), A converges in distribution to the Gaussian process

B®W () = B() — gl (2)e™ + / §dF — g¥(z) po, (6.4)
where
po = Vgt / § Vmyg dF. (6.5)

6.2 Comparisons for the y3-test

Here, we now compare the local powers of the tests based on (4.1)—(4.5) for k =1 and k = 1/2. We assume
that the function ¢ is orthogonal to the tangent space of the model at 6y, i.e.,

1o = / ¥ §VmedF = 0. (6.6)
We then have
B{?(@) = B(x) - gf(z)€™ + / " saF
= BW(g) + / " sdF (6.7)

INRIA



The half-sample method for testing parametric regressive and autoregressive models of order 1. 11

and
ZPw) = ot (B oF ) (u)
Fl(u)
= o " (BoF 1Y) (u) — o tgy (F (u) ) 4 ot / 6 dF
= ZW@w) + ot / 6*(v) dv, (6.8)

where §* = § o F~1. Under the sequence of alternatives HJ, the rv’s
K K K _1/2 —_ K
zif) = 7" + (\) 1/ (/ §*(v >¢§ ) (u) du
= Z](.'g) + dg-”) are iid normal N(0, dg-”)). (6.9)

2
Therefore, the x% noncentrality term is E;-Izl (dg”)) . Under the sequence of alternatives H{* the process

Z(1/2) has the same distribution as .
W + o7t / 6*(v) dv,
0

and under the sequence of alternatives H7', the rv’s
1 u
zZ{? = 2P 4 (G - 1/2)7r0_1/ (/ 6*(v)dv) V2sin[(j — 1/2) nu]du
0 0
= ZJ(.I/Z) + d§_1/2) are iid normal N(0, d§1/2)). (6.10)

2
The corresponding x% noncentrality term is then ijl (dg-l/ 2)) . An integration by parts yields
&' = o / & (u) V2 cos[(j — 1/2) 7 u] du. (6.11)

6.3 Example: testing for no effect
In this case mg(x) = cst = § and Omyg(x)/06 = 1 for all z. The condition py = 0 reads

/O; §dF = /01 §*(v)dv = 0, (6.12)

the process Z(1) is a Brownian bridge, )\g-l) =j7 272 and q&g-l)(u) = +/2sin (jwu). An integration by parts
yields

dgl) = o} /1 6*(u) V2 cos (j 7 u) du. (6.13)

0

2 2
We wish to compare <d§.1)) with <d§-1/ 2)) in the special case where

/ §*(w)dv = k7t ¢§j>(u) = /2 sin (k7u). (6.14)
0
The condition (6.12) is satisfied, and é*(u) = 7 v/2 cos (kmwu). In this case,

2 —1
(d§;>) — g2 (A;”) = o727 and d" =0 for j # K, (6.15)
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whereas for k =1,...,J,

J J
(1/2) 2 4(j — 1/2)°
2 () =~ D Y (6.16)

Table I displays the values of the x% noncentrality terms for £ = 1/2 in the special case where ¢ = 1 and
6*(u) = mv/2cos (kmu), i.e. [ 6*(v)dv = k‘1¢§:)(u), k=1,...,10, with J = 10,20 and 100. These values
are to be compared with the corresponding common value of the x% noncentrality terms for k = 1, namely
72 = 9.869605. This example shows that even for the comparatively small value J = 10, the local powers of
the x?% tests corresponding to £ = 1/2 (half-sample estimation) and x = 1 (full-sample estimation) against
local alternatives of the form cstn /2 cos (kwu) are close for the 8 first frequencies k¥ = 1,...,8, and still
comparable for the frequency k = 9. For the frequency k& = 10, this local power is significantly smaller for
k =1/2 than for k = 1.

J=10 9.467 9.459 9.444 9420 9384 9.328 9.233 9.050 8.559 4.389

J=20 9.669 9.668 9.667 9.664 9.661 9.657 9.651 9.645 9.637 9.627

J =100 9.830 9.830 9.830 9.830 9.830 9.830 9.829 9.829 9.829 9.829

2
Table 1: Values of 7_, (d§1/2)) . J =10,20 and 100, for o = L and k = 1, ..., 10.
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7 Appendix: Proofs of the results

7.1 Sketch of the proof of Theorem 1

The proof follows as in Mangeas and Yao (1997), with the help of the CLT in subsection 7.5. The basic
ingredient is that for all ¢ € L2+7'(dF) the sequence of partial sums 7, b;¥(X;) & is a martingale with
increasing process kn ffooo ¥ dF with respect to the filtration (H; : ¢ > 1), since {b; : ¢t > 1} is assumed
independent of G. We have

Db (Vi = m(X450)) Vm (X435 0) =0 for § = 6. (7.1)
t=1
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Therefore, by Taylor expanding m(X; ) and Vm(Xy; ) around 6, we obtain that

’TL_I/QO' Z bt 6th0(Xt) = TL_I Z bt Vmo(Xt)VmOT(Xt)f(n”) + Op(l). (72)

t=1 t=1

Finally, n =t 37, b;Vmo(X:)Vm{ (X;) and the variance matrix of n= /2 37 | b;Vmg(X;)e; both converge
to kVj. |

7.2 Proof of Theorem 2 and Corollary 1

Sketch of the proof of Theorem 2 : The proof is basically similar to the proofs concerning the limiting
distribution of B,(-) in Zuber (1996) (who tests for no effect in the regression case with iid noise), Zuber
(1997) (who treats the regression case with iid noise), Stute (1997) (who mainly treats the regression case
with iid noise and regression function of the form m(z; 0) = Ele 0;9;(x)), and Ngatchou Wandji and
Laib (1998) (who treat the autoregression case with stationary ergodic {X;} and martingale difference noise
{e+}). Therefore, we give a very short account of the proof, only insisting on the modifications related to

the substitution of 6, with éﬁ:‘”. The process Bﬁ”) can be uniformly approximated by

B(z) — n7! i vmd (X;) €9 1(X, <),

t=1

and the latter expression can in turn be uniformly approximated by B,(z) — ¢d () (=) These uniform
approximations result from:

(i) A second order Taylor expansion of m(Xy; 6) around 6y and assumptions (A4)—-(A5).

(ii) The following extension of the version of Dini’s Lemma which is used to extablish the Glivenko-Cantelli
Theorem (e.g., Billingsley [1968, page 103]).

Lemma 1 Let F,(2) = n' Y[ I(X; < z) denote the empirical distribution function of the n-sample
{X1,...,X,} of the stationary ergodic process {X:} with continuous and increasing stationary distribution
function F. For each function A : R — RP such that ffooo |All dF < oo, the processes ffoo A dF,

converge a.s. to ffoo A dF uniformly in x.

Proof of Lemma 1 : It is enough to prove this result in the case p = 1. By splitting A into the difference of
nonnegative functions AT — A=, we may suppose without loss of generality that A > 0. Then the function

P ()

wel, 1] — /Ou (AoF‘l)(v)dv:/ AdF

de o}

is continuous and nondecreasing. Moreover, by the stationarity and ergodicity of the sequence {X;} and
integrability of A with respect to dF’, the nondecreasing functions fou(A o F~1)dH,,, where H,(-) denotes
the empirical distribution function of {U; = F(X4),...,U, = F(X,)}, converge pointwise to the continuous
function [;'(A o F~)(v)dv a.s. for u in the compact interval [0, 1]. By making use of the above-mentioned
version of Dini’s Lemma it results that this convergence is uniform a.s. ]

This lemma is used to prove that [ M dF, and [*_ VmqdF,, converge to [“ M dF and [* _VmgdF
uniformly in z, respectively, since by (A4)—(A5) (see (2.11), [*° M dF < oo and [~ _||[Vmyl| dF < cc.

Therefore, the functional limit as n — oo of the sequence of processes Bﬁf)(-) is the same as that of
B,(-) — go(-)Téf). Using Theorem 1 of Ngatchou Wandji and Laib (1998) (which relies on a version of
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the CLT for martingale difference arrays, see, e.g., Hall and Heyde [1980, Corollary 3.1, pages 58-59| and

subsection 7.5 below) it follows that the R**%-valued (H;)- martingale array (Bp(z), I3 ) converges in
distribution to a normal rv with mean 0 and variance matrix

o?F(z) hi(z)
( ho(z) K102V} )
for each z, whereas the corresponding finite-dimensional distributions also converge to multivariate normal
distributions. It remains essentially to establish the tightness of the sequence {B,(:)}. We make use of the
quantile transformation in order to deal with rv’s uniformly distributed over the unit interval [0, 1], and
functions and processes defined on [0, 1], as in the proof of Lemma 1. Let B = B,, o F~!. By an extension

of Billingsley (1968) used, e.g., in McKeague and Zhang [1994, page 507], it is enough to prove that we have,
for some p > 2,

E(1By(us) — Bi(w)?) < pff” (fur, wa]) + o(1) as n — oo
uniformly in 0 < u; < uz < 1, for some nonnegative continuous measure pp(-). This can be done using

Rosenthal’s inequality (e.g., Hall and Heyde [1980, Theorem 2.12, pages 23-24]). For more details, see
subsection 7.6 below. It follows that the process

Ba(z) = go(@)€ = (Bal2), £°) (1, —go(x))"
converges in distribution to the Gaussian process B(-) — go(-)&(*) with covariance function

0?F (21 A2y) — B (B(z)go(21) €)= B (B(a2)go(@2)"6®) + r 0% go(1)" V™" go(w2)-

|
7.3 Proof of Theorem 3
For simplicity we will denote vy = m; — my. The process Aﬁf) can be written in the form
AX(z) = Bu(z) — n /2 i (m (Xt; égf)) -—m (Xt)) I(X:<x)
t=1
= B.(z) + n'/? / : Yy AP, (7.3)
By assumptions (A2)—(A3) we have for all z that
‘/w vg, dF,, — /f vy, dF,, < o (|61 — 6-])) / 1+ |y|ﬁ/2) dF,.(y)
<l - 6al) [ (14 W) dRate)
— wole - ) [ (14 1P?) aF) (74)

almost surely. Since N(-) < cst]| - ||oo, setting

L, = /fo (1 + |y|ﬁ/2) dF,(y) and L = /oo (1 + |y|ﬂ/2) dF(y) < o0,

—0o0
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it follows that

N(/ Vo, an - / Vg, an) < Wo (“01 - 02”) CSth

—0o0 — o0

— wp (||61 — 62||) cst L a.s. (7.5)

Therefore, § — N([*__vydF,) and § — N(J°__ v dF) are continuous. By compacity of © and making
use of Lemma 1 we obtain that

lim sup N (/ vodF, — / Vo dF) =0 as. (7.6)

N0 geo —0o0 —o0

lim inf N(/ Vg an) = inf N(/ Vg dF) a.s. (7.7)
n—oo €O o 0e® — o

If infpco N(f:oo vgdF) > 0 then a.s. infyco N(f:Oo vgdF,) > 0 for all n large enough. Suppose that
infgco N([°__ vg dF) > 0. For all n large enough,

Finally,

N (Bn + n1/2/ Voo an) > |n'?N (/ er )

= n1/2N</ 9(~)dF>
> n1/2N< 9()dF)
> 1/2 _
> n Glggzv(/_ F) N (Ba), (7.8)

hence

P{N (Bn + n1/2/ Vjo) an) < qa} < P{N(B ) > nl/? Gin(f;) N(/ yngn) qa},
oo ™ € o
which is asymptotic to P { N(B) > n'/? infseo N(f:oo vy dF) } as n — oo. [ ]

7.4 Proof of Theorem 4

(i) REGRESSION CASE. Under Hj ,, the process Al takes the form

AW (z) = BY(z) + nt zn: §(X)I(X,<z), =z€R, (7.9)

t=1

where B is defined in (3.2)-(3.3). In the regression case, the only modification is in the asymptotic
distribution of éﬁf) under Hi,,. An inspection of the first part of the proof of Mangeas and Yao (1997) shows
that under Hj, p, 4 still converges a.s. to #g. Moreover, by Taylor expanding m(X;; #) and Vm(X;; 0)
around 6y we now obtain that

n

n 1> b Vmg (Xo) Vg (X0) €0 = n7 20 Y biey Vmo (X0) + n 'Y by 6(Xy) Vo (Xy) + op(1).

t=1 t=1 t=1
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Since n~1 Y1 by 6(X;) Vmo(Xy) converges a.s. to k [ §VmgdF and 7 by Vmo(X:)Vmd (X;) con-
verges a.s. to the matrix kVp, it follows that

{5[‘) = n'/? (éﬁf) — 60) converges in distribution to &%) + g

under Hy .

(ii) AUTOREGRESSION CASE WITH IID €;’S. The assumption that § is bounded basically ensures that the
homogeneous Markov chain {X;} remains ergodic. Its stationary distribution F' = Fj , now depends on the
additional perturbation term n~/2§(-). Therefore, we need a contiguity result to proceed. However, we are
not in a standard situation where the parameter is shifted. On the contrary, here the parameter has a fixed
value, 0y. In view of (6.1), the shift is rather functional than parametric. More precisely, the shift

me, — me, + n 20716

is effective only if 6 is not in the tangent space of the model M = {my : § € O} at by, i.e. if § is not in the
subspace spanned by the functions 8;mg, j = 1,..., K. Typically, we will choose é§ orthogonal in some sense
to this tangent space. Since the idea of likelihood ratio has no precise meaning in the present setting, we have
to somehow revisit the usual application scheme of mean-square differentiability, LAN and contiguity theory.
We begin with a change of measure and the related Girsanov type formula for (not necessarily Gaussian)
dicrete-time processes. By equation (6.1), X; is o(Xo,€1, . . .,&¢)-measurable for ¢ > 1.

Lemma 2 Let
ap = cst and a; = ai(er,...,er), t>1, (7.10)

denote real-valued measurable functions defined on the product space RN equipped with its cylindrical o-field.
Let IL,, denote the product measure

I, (dei, - ..,de,) = p(er)...p(ey) dey . ..de,.

and II, ,, denote
I, » (de1,...,de,) = exp(An) I, (de,. .., den),

where
An = Z np(e: — ar—1(er,---,e1-1)) — Inp(er)]. (7.11)
t=1

Let T denote the measurable transformation
T (e1,...,en) = (e1 + ag,...,en + an_1(€1,...,€n-1)). (7.12)

Then, (e1,...,en) has the same distribution under I, , as T(n) (e1,...,en) under II,.

Proof of Lemma 2 : It is essentially an application of Fubini’s Theorem. Consider bounded measurable
functions hy, he and h(e1,e2) = hi(e1) ha(ez). We have

/ / hi(er) ha(ez) T, 2(dex, des)
= [ [ ey ma(eter — an)ples — arfer)) desdes
= / hi(e1)p(er — ap) (/ ha(ea) plea — ai(er)) d€2) dey
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= / hi(e1) p(er — ao) (/ ha(eh + al(el))P(e'z)de'z) dey
= [ et + aontet) ([ el + aneh))ples) det ) e
- / / ha(e) + ao) ha(eh + ar(€) + ao)) p(e}) pley) del de,

= // hi(er + ao) h2(e2 + ai(er)) 2 (der, de2)

= // h(61 + ap, €2 + a1(€1 + (L())) Hg(del, deg). (713)
We have a similar sequence of equalities for h(es,...,e,) = hi(e1) ... hn(en), where hq, ..., h, are bounded
measurable functions. The result follows by density. [ |
As a consequence, if we set
dPg,n = exp (A5,n) dPn, (7.14)
where
As,n = Z [lnp (5t+1 —p 251 6(Xt)) — 1np(€t+1)] , (7.15)
=0
then

Ps n {(61, e ,En+1) S An}
= P, { (61 +n Y20 6(Xg), . ey + 0 20 (Xn)) € An} . (7.16)
Therefore, the process {X;} defined by (6.1) has the same distribution under the probability measure P,

as the process {X;} defined by (1.1) has under the probability measure Ps ,. Set hi , = n~/2016(X;).
Under the regularity conditions and (i)—(iii), E(¢p(e¢)) = 0 for all ¢ > 1 and the martingale array

nt/? Z 6 (Xt) ¢p (141)

t=1

satisfies the CLT (see subsection 7.5) and converges in distribution to N'(0,I, [*_(6/0)?* dF), where I,

denotes the Fisher information [ ¢,(x)? p(x) dz. Moreover (e.g., Swensen, 1985, Kreis, 1987, Hallin, 1996
and Pollard, 1997), we have for all 7 that

Arsn = D Mp(ests = Then) — Inp(erta])

t=0

= -7 Z hi,n &p (E¢41) +

t=0

= —TO’il n*1/2 Z 6(Xt) (bp (Et+1) + T

1=0

212
. N(—T;‘ ,Tw), (7.17)

7_2 /\2
2

+ op(1)

212

2

+ Op(l)

where

2=, / T (6)0)2dF > 0. (7.18)

— 00
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By Le Cam’s first lemma (e.g., Le Cam and Yang [1990, page 20] or Hallin [1996, page 150]), this implies
that the two sequences of probability distributions {Ps, »} and {P,} are contiguous. Now, denote by ¥(")(z)

= @ (2),..., fi”)(x))T an R4-valued function such that

[

2+'y’
dF < oo forallj=1,...,d

and let

PR = p1/2 Z by ) (Xy) E41. (7.19)

t=1

Lemma 3 Suppose that (A1)-(A6) and the assumptions of Theorem 4 (2) hold. Then under Hy, (A,, \Ilgf))
converges in distribution to N'((=A?/2, 0)T; T(®)), where

K k)T
- (5] ).
I11,2 I‘2,2
T\ = o'k / §YWdF and TY) = / MOMOLET)

—0o0

Proof of Lemma 8 : This is a direct consequence of the CLT for arrays of martingales (subsection 7.5) and
of the equalities

Ag,n = —0'_1 ’Il_l/2 Z (S(Xt) ¢p (5t+1) + /\2/2 + Op(l)

t=1

and E(eipp(er)) = —1 for all ¢. [ |

Since

f,(nn) = I"\]_l .‘/071 n_1/20 Z bt VmO(Xt) Et+1 + OP(].),

=1

and taking ¥(*)(z) = k~'V; 'aVmg(z) in Lemma 3, it follows that (An,f,(f)) converges in distribution to
N (1o, T™)) under Hy, where

po = I = vyt / §Vmo dF (7.20)

does not depend on &, and I‘g’f% = k1% V; ' It then follows from Le Cam’s third lemma (e.g., Hallin

[1996, page 151] or Pollard, 1997) that under H}, () converges in distribution to V(ug, s~V ). Finally,
to prove that the sequence of processes {By} converges under H* to the Gaussian process B + f:oo 6dF, it
suffices to study the finite-dimensional distributions and the tightness of B, under H{*. This can be done
by using Lemmas 2-3 with x = 1. ]
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7.5 CLT for an array of martingales

The conditions required by Hall and Heyde [1980, Corollary 3.1, pages 58-59] for having a CLT for an array
of martingales are expressed in terms of the corresponding martingale difference array

Moyt = 0 Y20,0(Xy) e, 1<t<m, (7.21)

where ffooo [¢)2+7" dF < co. The first condition is a conditional Lindeberg condition. The second condition

involves the limit as n — oo of the sums from ¢ = 1 to ¢ = n of the conditional variances E(n2 ;| H; 1). We
only examine the technical proof of the conditional Lindeberg condition. This condition has the following
form. For all g > 0,

n

ZE(Wi,tI{mn,d > B}| Hiz1) — 0 as. as n— .

t=1
In order to check this condition we have to prove for all 8 > 0 that
n! Z E (bfﬁQ (Xt)st{M(Xt) |les| > nl/Qﬁ} ‘ ’Ht_l) — 0 a.s. as n — oo. (7.22)
t=1

To prove this result, we make use of a conditional version of Hoélder’s inequality. Let a > 1 and b > 1 be
conjugate exponents, a~! + b~! = 1, such that 2a < 2 + v, implying that

sup E (|Et|2a‘7‘(171) < 00,
t>1

in view of (A1l). We have

E (bf 2 (Xt)efz{wte(xm leo| > ﬂnl/Q} ‘ Ht_l)

IA

¢ (x0) BV (| | Hoea) BV (1{Jbre (X0 led > Bn*/} | Hoos)

A

cst €2 (X,) BY/? (I{|bt£(Xt)| led| > ﬁnl/z} ‘ HH) , (7.23)

since 0 < b; < 1. Everything then boils down to the following sequence of inequalities:

E (I {|bt£(Xt)| leo| > ﬂnl/z} ‘ HH) p{ b £(X0)| |ee] > A/ ‘ HH}

< BT E (B 0 (Xy)e] | Heor)
= B 'kl (Xy)E (e} | Hi—1)
< estnTH 2 (X) (7.24)
by independence of b; and G. Thus,
BV (I{|th(Xt)| lea| > ﬁn1/2} ‘ HH) < estn VP Jo(x)P? (7.25)

and

'S E (bf 2 (Xt)eff{|btz(xt)| lea| > ﬂnl/z}‘ Ht_l) < estn Yoty ()P
t=1 t=1
— 0 as. as n — oo, (7.26)

since n=1 S 10(X)2 2" converges aus. to 1=, |¢**%/* 4F and this integral is finite provided that
1 <a <1+ v/2 has been chosen so close to 1 that 2 + 2/b < 2 + 4. [
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7.6 Tightness of {B,}
Consider a process of the form
To(u) = n 29 (U) I (U < u) ey, (7.27)
with % [h2+7" < 00, 0 < 4" < 4. We have (Rosenthal’s inequality)
)

B(|¥n(u) - Ta(u)’) = E(

> TP (U) I (ug < Uy < ug)e
t=1

n r/2
S CRos E |:(TL_1 Z¢2 (Ut) I(ul < Ut S U2)> ]
t=1
+ Cros 3 E [n_P/2 W (U)|° I (w1 < Uy < us) |et|P] : (7.28)
t=1
We now select 2 < p < 2 + 4"”. We then have
E(Y U I (ur <Ur <wa)les”) = E(E(|¢ (U I (wr <Us < ug)leel”| Heo1))

= E([ U] I(ur <U; <uz) E(leg]”| Hi-1))
< st /0 b (w)|f du < oo, (7.29)

Moreover, since p > 2 it follows that n' ~#/?> = o(1). Therefore, everything boils down to determining a
suitable upper bound for

n~r’E

n p/2
(Z P2 (U I (g < U < u2)> ] (7.30)
t=1
with p/2 > 1. Let us denote
HY(u) = n7! z": V2 (U)I (U <u), welo,1]. (7.31)
t=1

The expectation (7.30) can be written as
E (| HY (up) — HY (uq) |p/2)

= B (| (o, wal) + [(H7 = 1) (wa) = (51 = 1Y) ()] )

< B(|n* (ur, w) + Bal"”?)

< ¢ |u¢ ([u1, us2]) |p/2 + ¢, B (R,’;ﬂ) , (7.32)
where

% (4) = /A V2(v) dv and HY (u) = /0 " 02 ) do (7.33)

are well-defined and HY is continuous since ffooo % dF < co. We have made use of the fact that for all for any

q > 1 there exists a positive constant ¢, such that for all positive w and w’ we have (w + w')? < ¢; (w? + w'?).
Moreover,
R, = sup |HY(u) — HY(u)|
u€l0, 1]
is bounded by 1 and converges to 0 by ergodicity and Dini’s Lemma, as in Lemma 1. Finally, taking uy =
cst u¥ yields the result. n
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