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Abstract: This article deals with the problem of restoring and motion segmenting noisy
image sequences with a static background. Usually, motion segmentation and image restora-
tion are tackled separately in image sequence restoration. Moreover, motion segmentation
is often noise sensitive. In this article, the motion segmentation and the image restoration
parts are performed in a coupled way, allowing the motion segmentation part to positively
influence the restoration part and vice-versa. This is the key of our approach that allows to
deal simultaneously with the problem of restoration and motion segmentation. To this end,
we propose a theoretically justified optimization problem that permits to take into account
both requirements. The model is theoretically justified. Existence and unicity are proved
in the space of bounded variations. A suitable numerical scheme based on half quadratic
minimization is then proposed and its convergence and stability demonstrated. Experimen-
tal results obtained on noisy synthetic data and real images will illustrate the capabilities
of this original and promising approach.
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Une Méthode Variationnelle et son Etude Mathématique
pour I’Analyse de Séquences d’Images

Résumé : Cet article traite du probléme de la restauration et de la segmentation du mou-
vement dans des séquences d’images bruitées & fond fixe. Habituellement, la segmentation
du mouvement et la restauration sont traitées de maniére séparées. Dans cet article, il s’agit
de le faire de maniére couplée, ce qui permettra 4 la restauration du mouvement d’influencer
positivement les résultats de la restauration et inversement. C’est I'idée maitresse de notre
approche qui permet de traiter simultanément les deux problémes. Pour ce faire, nous propo-
sons un probléme d’optimisation que nous justifions théoriquement. L’existence et I'unicité
de la solution est prouvée dans 'espace des fonctions & variations bornées. Un schéma numé-
rique adapté, basé sur la minimisation semi-quadratique est alors proposé. Nous démontrons
sa convergence et sa stabilité. Des résultats expérimentaux sur des séquences synthétiques
et réelles illustreront les capacités de cette méthode originale et prometteuse.

Mots-clés : Restauration de séquences d’images, segmentation du mouvement, régulari-
sation avec préservation des discontinuités, approches variationnelles.



1 Introduction

Automatic image sequence restoration is clearly a very important problem. Applications ar-
eas include image surveillance, forensic image processing, image compression, digital video
broadcasting, digital film restoration, medical image processing, remote sensing ... See,
for example, the recent work done within the European projects, fully or in part, involved
with this important problem : AURORA, NOBLESSE, LIMELIGHT, IMPROOFS,... Im-
age sequence restoration is tightly coupled to motion segmentation. It requires to extract
moving objects in order to separately restore the background and each moving region along
its particular motion trajectory. Most of the work done to date mainly involves motion
compensated temporal filtering techniques with appropriate 2D or 3D Wiener filter for noise
suppression, 2D/3D median filtering or more appropriate morphological operators for re-
moving impulsive noise [14, 34, 35, 29, 25, 46, 17, 15]. However, and due to the fact that
image sequence restoration is an emerging domain compared to 2D image restoration, the
literature is not so abundant than the one related to the problem of restoring just a sin-
gle image. For example, numerous PDE based algorithms have been recently proposed to
tackle the problems of noise removal, 2D image enhancement and 2D image restoration in
real images with a particular emphasis on preserving the grey level discontinuities during
the enhancement /restoration process. These methods, which have been proved to be very
efficient, are based on evolving nonlinear partial differential equations (PDE’s) (See the work
of Alvarez et al [4], Aubert et al. [8], Chambolle & Lions [19], Chan [12, 61] Cohen [21],
Cottet and Germain [22], Kornprobst & Deriche [39, 38, 37], Malladi & Sethian [41], Mum-
ford & Shah [59, 47], Morel [3, 45], Nordstrom [48], Osher & Rudin [54], Perona & Malik
[52], Proesman et al. [53], Sapiro et al. [18, 55, 56, 11, 57], Weickert [65, 66|, You et al. [68],

It is the aim of this article to tackle the important problem of image sequence restoration
by applying this PDE based methodology, which has been proved to be very successful in
anisotropically restoring images. Therefore, considering the case of an image sequence with
some moving objects, we have to consider both motion segmentation and image restoration
problems. Usually, these two problems are tackled separately in image sequence restoration.
However, it is clear that these two problems must be tackled simultaneously in order to
achieve better results. In this article, the motion segmentation and the image restoration
parts are done in a coupled way, allowing the motion segmentation part to positively influence
the restoration part and vice-versa. This is the key of our approach that allows to deal
simultaneously with the problem of restoration and motion segmentation.

The organization of the article is as follows.

In Sect. 2, we make some precise recalls about one of our previous approach for denoising
a single image [24, 8, 38]. The formalism and the methods introduced will be very useful in
the sequel.

Section 3 is then devoted to the presentation of our new approach to deal with the case
of noisy images sequence. We formulate the problem into an optimization problem.

The model is theoretically justified in Sect. 4 : we prove the existence and the unicity
of the solution to our problem in the space of bounded variations.
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A suitable algorithm is then proposed in Sect. 5 to approximate numerically the solution.
We prove its convergence and its stability.

We propose in Sect. 6 some experimental results obtained on noisy synthetic and real
data that will illustrate the capabilities of this new approach.

We conclude in Sect. 7 by recalling the specificities of that work and giving the future
developments.

2 A Variational Method for Image Restoration

In Sect. 2.1, we recall a classical method in image restoration formulated as a minimization
problem [24, 10, 8]. Section 2.2 presents a suitable algorithm called the half quadratic
minimization which will also be used in the sequel.

2.1 A Classical Approach for Image Restoration

Let N(z1,z2) be a given noisy image defined for z = (z1,72) € Q C R? which corresponds
to the domain of the image. V. is the gradient operator. We search for the restored image
I(z1,z2) as the solution of the following minimization problem :

: _ 2 by
int /Q (- N +a /Q (Vi (1)

term 1 term 2

where o is a constant and ¢ is a function still to be defined. Notice that if ¢(t) = t?, we
recognize the Tikhonov regularization term [62]. How can we interpret this minimization
with this choice? In fact, we search for the function I which will be simultaneously close to
the initial image N and smooth (since we want the gradient as small as possible). However,
this method is well known to smooth the image isotropically without preserving disconti-
nuities in intensity. The reason is that with the quadratic function, gradients are too much
penalized. One solution to prevent the destruction of discontinuities but allows for isotropi-
cally smoothing uniform areas, is to change the above quadratic term. This point have been
widely discussed [58, 60, 10, 8]. We refer to [24] for a review. The key idea is that for low
gradients, isotropic smoothing is performed, and for high gradient, smoothing is only applied
in the direction of the isophote and not across it. This condition can be mathematically
formalized if we look at the Euler-Lagrange Equation (2), associated to energy (1) :

2(I = N) — a*div (%w) —0 @)

Notice that Neumann conditions are imposed on the boundaries. Let us concentrate on the
regularization part associated to the term 2 of (1). If we note n = %, and ¢ the normal
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vector to 1, we can show that :

. (¢(IVI]) _¢(VvI)) "
div (Wvo = WI& +¢"(| VI |) I, (3)

[
ce

where I,),, (respectively I¢¢) denotes the second order derivate in the direction 7 (respectively

£). If we want a good restoration as described before, we would like to have the following

properties :

lim ¢, = lim ¢t =ap>0 4
Vil—0 T |VI—0 ¢ ° *)

lim ¢, =0 and lim c¢e =00 >0 (5)
|VI|—o0 |VI|—o0

But it is clear that the two conditions in (5) are incompatible. So, we will only impose for
high gradients [24, 10, 8] :

lim ¢, = lim c¢,=0 and lim (c_,,) =0 (6)
|VI|—o0 |VI|— oo |VI|—o0 Ce

Many functions ¢ have been proposed in the literature that comply to the conditions (4) and

(6) (see [24]). From now on, ¢ will be a convex function with linear growth at infinity which

verifies conditions (4) and (6). For instance, a possible choice could be the hypersurface

minimal function proposed by Aubert :

B(t) = V1+12 -1

In that case, existence and unicity of problem (1) has recently been shown in the Sobolev
space W11 (02)[10] (See also [63]).

2.2 The Half Quadratic Minimization

Solving directly the minimization problem (1) by solving directly its Euler Lagrange equation
(2), is something hard because this equation is highly non linear.

To overcome the difficulty, the key idea is to introduce a new functional which, although
defined over an extended domain, has the same minimum in I and can be manipulated with
linear algebraic methods. The method is based on the half quadratic minimization theorem,
inspired from Geman and Reynolds [28]. The general idea is that under some hypotheses
on ¢ (mainly ¢(+/t) strictly concave), we can write it as an infimum :

6(t) = inf(dt* + ¥(d)) (7)

where d will be called the dual variable associated to x, and where 1)(+) is a strictly convex
and decreasing function. We refer to the Appendix A for more details. We can verify that
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the functions ¢ such that (4) (6) are true can be written as in (7). Consequently, the problem
(1) is now to find I and its dual variable d; minimizing the functional F(I,d;) defined by :

(I, dy) :/Q(I—N)Qda:—l—ar/g(dIWIP+¢(dl))dw (8)

It is easy to check that for a fixed I, the functional F is convex in d; and for a fixed di,
it is convex in I. These properties are used to perform the algorithm which consists in
minimizing alternatively in I and dj :

"t = argmin  F(I,d}) 9)
I

dpt! = argmin  F(I"', dy) (10)
dr

To perform each minimization, we simply solve the Euler-Lagrange equations, which can be
written as :

" N — & div(dp VIt =0 (11)
! n+1
m+1 __ ¢ (lVI |)
dI - 2|v1’n+1| (12)

with discretized Neumann conditions at the boundaries. Notice that (12) gives explicitly
dp ! while for (11), for a fixed d?, I"*! is the solution of a linear equation. After discretizing
in space, we have that (Ifjl)(,-, j)eq is solution of a linear system which is solved iteratively
by the Gauss-Seidel method for example. We refer to the Appendix B for more details about
the discretization of the divergence operator.

3 Dealing with Noisy Images Sequences

Let N(x1,22,t) denotes the noisy images sequence for which the background is assumed to be
static. A simple moving object detector can be obtained using a thresholding technique over
the inter-frame difference between a so-called reference image and the image being observed.
Decisions can be taken independently point by point [67]. More complex approaches can
also be used [49, 51, 50, 1, 32, 40, 14, 34, 35, 29, 25, 46]. However, in our application, we are
not just dealing with a motion segmentation problem neither just a restoration problem. In
our case, the so-called reference image is built at the same time while observing the image
sequence. Also, the motion segmentation and the restoration are done in a coupled way,
allowing the motion segmentation part to positively influence the restoration part and vice-
versa. This is the key of our approach that allows to deal simultaneously with the problem
of restoration and motion segmentation.

We first consider that the data is continuous in time. This permits us to present the
optimization problem we want to study (Sect. 3.1). In Sect. 3.2, we rewrite the problem
when the sequence is given only by a finite set of images. This leads to the Problem 2.
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3.1 An Optimization Problem

Let N(z1,x2,t) denotes the noisy images sequence for which the background is assumed to
be static. Let us describe the unknown functions and what we would like them ideally to
be :

(i) B(z1,%2), the restored background,

(ii) C(x1,z9,t), the sequence which will indicate the moving regions. Typically, we would
like that C'(z1,22,t) = 0 if the pixel (z1,22) belongs to a moving object at time ¢, and 1
otherwise.

Our aim is to find a functional depending on B(z1,22) and C(x1, z2,t) so that the min-
imizers verify previous statements. We propose to solve the following problem :

Problem 1. Let N(x1,z2,t) the given noisy image sequence. We search for the restored
background B(z;,z2) and the motion segmented sequence C(x1,x2,t) as the solution of the
following minimization problem :

inf(// C’2(B—N)2d:cdt+ac//(0—1)2dxdt
B.CNJiJa | JiJa |

term 1 term 2
+af, [ 61(9B)dz+at [ [ éa(IVCdsit) (13)
Q tJQ

term 3

where ¢; and ¢, are convex functions that comply conditions (4) and (6) , and o, o}, ok
are positive constants. We will specify later the spaces over which the minimization runs.

Getting the minimum of the functional means that we want each term to be small, having
in mind the phenomena of the compensations.

The term 3 is a regularization term. Notice that the functions ¢1,42 have been chosen
as in Sect. 2 so that discontinuities may be kept.

If we consider the term 2, this means that we want the function C(x1,z2,t) to be close
to one. In our interpretation, this means that we give a preference to the background.
This is physically correct since the background is visible most of the time. However, if
the data N(z1,z2,t) is too far from the supposed background B(zi,z3) at time t, then
the difference (B(z1,z2) — N(z1,22,t))? will be high, and to compensate this value, the
minimization process will force C(x1,x2,t) to be zero. Therefore, the function C(z1, z2,t)
can be interpretated as a motion detection function. Moreover, when searching for B(z1, z2),
we will not take into account N(z1, x2,t) if C(x1, z2,t) is small (term 1). This exactly means
that B(z1,z2) will be the restored image of the static background.
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3.2 The Temporal Discretized Problem

In fact, we have only a finite set of images. Consequently, we are going to rewrite the Prob-
lem 1, taking into account that the sequence N(x1,x2,t) is represented during a finite time
by T images noted Ny(z1,%2),... , Ny(x1,22). The Problem 1 becomes :

Problem 2. Let Np,...,Nt be the noisy sequence. We search for B and C4,...,Ct
as the solution of the following minimization problem :

T T
. 2 _ 2 —1)?
st ,cT(hZZI/QC“(B Nu)"de +ac hZZI/Q(Ch D

S

term 1 term 2

T
+a{)/9¢1(|VB|)dx+a§];/9¢2(|VCh|)da:) (14)

v

term 3

Before going further, one may be interested in the link between this method and the vari-
ational method developed for image restoration in section 2. To this end, let us consider
a sequence of the same noisy image. More generally, we can consider a sequence of noisy
images where no moving objects are present. If we admit the interpretation of the functions
Ch, we will have Cy, = 1. After few computations, (14) may be re-written :

i%f(/Q(B_ %éNh)szH— %E/qul(WBDdx)

Consequently, if we observe the energy (1) proposed for the image restoration problem, we
can consider B as the restored version of the mean in time of the sequence. Notice that if the
sequence has been obtained as a multiplication of the same image, both methods correspond
exactly. Therefore, this model devoted to sequences of images can be considered as a natural
extension of the previous one for single image restoration.

Now that we have justified the proposed model, let us prove that it is mathematically
well posed. It is the purpose of the next section.

4 A Rigorously Justified Approach in The Space of Bounded
Variations

Section 4.1 presents the mathematical background of our problem : the space of bounded
variations which is suitable to most problems in vision [54, 20]. Roughly speaking, the idea is

to generalize the classical Sobolev space W1:1(Q) so that discontinuities along hypersurfaces
may be considered. After having precisely specified the problem in Sect. 4.2, we first prove
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the exitence of a solution in a constrained space (See Sect. 4.3. Using this result, we finally
prove the existence and the unicity of a solution over the space in bounded variations in
Sect. 4.4.

4.1 The Space BV (Q2) : a Short Overview

Let © be a bounded open set in RY, we denote by £" or dz the N-Lebesgue dimensional

measure in R and by H® the a—dimensional Hausdorff measure. We also set |E| = Ly (E),

the Lebesgue measure of a measurable set E C R™. B(Q) denotes the family of the Borel

subsets of 2. We will respectively denote the strong, the weak and the weakx convergences
*

in a space V() by , , .
V) vEQ) V(@)

Let C2(92; R*) be the space of continuous functions with compact support in €. This
space is a Banach space endowed with the norm ||ul|co(;rs) = maxzeq |u(x)|. The dual of
C2(£%; R™) is the space of RY vector-valued Radon measures on {2 denoted M(Q). The total
variation of y = (p1,... , ), for a Borel subset A, is denoted |p|(A) and its derivative with

respect to the measure v is denoted iil—llj(x)
As a natural extension of the space

W (Q) = {u/u € L'(Q) and Du € (L' ()"},

we usually propose the space of bounded variations, noted BV (Q2), the space of L!-functions
whose distributionnal derivatives belong to M(Q2). We refer to [2, 26, 30, 27] for the complete
theory.

The product topology of the strong topology of L!(Q) for u and of the weak topology of
measures for Du will be called the weakx topology of BV, and will be denoted by BV — wx.

"t —— u
u” U <= LY(Q) (15)
BV —wsx |[Du™  —  |Du|

We recall that every bounded sequence in BV (Q2) admits a subsequence converging in BV —

wx*. Notice that we do not assert that |Du™ — Du| — 0. Moreover,this sequence is also
N

relatively compact in LP(2) for 1 < p < 5= and N > 1, and relatively weakly compact

in LP(Q) for p = i~ and N > 2 (Giusti [30], Acart-Vogel [2]). This is traduced by the

following notations :

BV(Q) <« LP(Q) for 1<p< and N>1 (16)
strong N -1
BV(Q) — L¥1(Q)CL'(Q) for N>2 (17)
weak

We represent by Du the distributional derivative of v and by Vu the density of the absolutely
continuous part of Du with respect to the Lebesgue measure.
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We recall that the approximate limit of u is defined by :

lim r=% /B(E’T) lu(y) — a(z)|dy =0 (18)

r—0t

where B(z,r) is the closed ball with center x and radius r. The set of points where we can
define 4 is called the Lebesgue set. We denote by S, the complement of the Lebesgue set of
u which is Lebesgue negligible. For z € S, it is possible to find u™ (z),u ™ (z) € R unique,
with u*(z) > v~ () and n, € SV~ such that :

tim, 7 [ [uy) — o ()| dy =
Btru(z,r)

r—0+t

lim r_N/ lu(y) — u~(2)|dy = 0
r—0% B=nu(z,r)

where BY™(z,r) = {y € B(z,r) : (y — ) -n, > 0} and B~ (x,7) = {y € B(z,r) :
(y — z) - n, < 0}. We suppose that the normal n, "points towards the largest value" of w.
We recall the following decompositions :

Du=Vu-Ly+Cy+ (u+ — U )Ny ~Hf§:1 (19)
\Dul(2) = / Vulde + / ICul + / (ut — u)dHN ! (20)
Q Q\ S, S

where dHN— is the Hausdorff measure of dimension N —1 and C, is the Cantor part of the
distributional derivative Du (see [5] for more details). We will sometimes write it by C(u)
for clearer notations when no doubt is possible.

We then recall the definition of a convex function of measures. We refer to the works of
Goffman-Serrin [31] and Demengel-Temam [23] for more details. Let ¢ be convex and finite

over R with a linear growth to infinity. Let ¢ be the asymptote (or recession) function
defined by :

P=(z) == tll,rf)lo @ € [0; +00).

Then, for v € BV (Q), using a classical notation, we can define the notion of convex functions
of measure by :

[ oo = [ s(vupas + (21)
Q Q
o U+—U_ N-—1 ()
= [ ¢ ar =) [ e

u \Su

We recall that / ¢(Du) is lower semi-continuous for the BV — wx topology.
Q
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4.2 Setting the problem

Let us recall the problem. Notice that the derivatives will be now considered as distributional
derivatives. Consequently, the problem is to minimize over BV (Q)T*! the functional E
defined by :

T T
E(B,C’l,..,CT):Z/ C’ﬁ(B—Nh)Zda:+aCZ/(C’h—1)2da:
h=1"% h=1"

T
+ai [ 0om)+ar Y. [ aapa) (22)
h=1

where the precise hypotheses on the functions (¢;);=1,2 are :

¢; : R — R is an even and strictly convex function, nondecreasing

on RT and there exist constants ¢ >0 and b> 0 such that

cx—b< ¢j(z)<cx+b foral z€ R (23)
#(0) =0, ¢5°(1)=1 (24)

We recall that the terms / ¢(DB) and / ¢(DCY) are defined as convex functions of measure

Q Q
(see (21)). As for the data (Np)p=1..7, we will assume that :

N, € BV(Q)NL*®(Q) YVh=1.T (25)
There exist two finite constants my and My defined by:
mny = ess—inf  Np(z1,z2)
he[o..T],(zl,zg)EQ (26)
My = ess—sup  Np(z1,22)

hE[O..T],(Zl,Ig)EQ

where ess — inf (resp. sup — ess) is the essential infimum (resp. supremum).

4.3 Existence of a solution in a constrained space

The aim of this section is to show that the minimization problem :

inf E(B,Ci,..,Cr) (27)
(B,C1,..,CT)BV(Q2)T+1

admits a solution in B_V(Q)T"'l. First of all, we are going to show that we can find a solution
on a restricted space £(Q) defined by :

&) ={(B,C1,..,Cr) € BV(2)™*" such that:
mNy <B< My ae. and 0<CL<1 ae. Vh} (28)
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Theorem 1 Given a sequence of images Ny, verifying (25)-(26), the minimization problem

inf _ E(B,Ci,..Cr) (29)
(B,Cl,..,CT)EE(Q)

where ¢; verify (23)-(24), admits a solution in the set ().

Preuve Let (B",C},..,C3) € £(Q) be a minimizing sequence of E. Since all the terms in
E are non negative, and thanks to (23), we have :

|DB"| <M and |DC}|<M Vn Vh

where M is a constant which can be different from one line to another. Since the sequence
belongs to £(Q2), we also have a L>-majoration. Since  is bounded, the sequences B® and
CP are bounded in LP(Q) for every p and especially p = 1,2, 0o. Thanks to the compactness
result (17), we can extract a subsequence again noted (B™,C7,..,C}) converging to some
(B,Cy,..,Cr) in £(Q) for the topology BV — w * X(BV — w x L?>weak)”. Notice that the
limit is effectively in £(2) because £(Q) is weakly star closed. In other words, we can pass
to the limit in the constraints of the space £(£2). We also have :

lim ¢1 (DB™) / #1(DB) (30)

lim ¢2 DC’h /¢2 DCh (31)
lim [ (Cp—1)%dz 2/ (Chn —1)%dx (32)
n— 00 Q

But what can be said about :

lim [ CP*(B™ — Ny)?dx
n—oo Q%/_/

n
Wy

Since we have the L!-strong convergence for all the variables (17), we also have the pointwise
convergence (up to a subsequence). So we have :

wp — C_hQ(E — Ny)? ae. onQ
Moreover, thanks to the L uniform bounds of B" and C}, we have in fact :
lwp(z)] < M a.e.

A direct application of the Lebesgue dominated convergence theorem permits us to pass to
the limit :

T T
lim Z/C}‘l‘z(B“ — Ny)2dx = Z /C_h2 (B — Ny)2dx (33)
nee h=1 Q h=1 Q2
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So, using Equations (30)-(33) permits us to write :

liminf E(B*,C?,..,C2) > E(B,Cy,..,Cr)

n—oo

This concludes the proof. W

4.4 Existence and unicity of a solution over BV (Q)

The previous theorem establishes the existence of a solution on a restricted space. However,
this result is not satisfying because working in a constrained space is not easy to handle
because the optimality conditions are inequations and not equations. In fact, even if these
constraints are natural (with regard to the interpretation of the variables), we would like to
avoid them. This is the aim of Theorem 2 but we first need a preliminary result :

Lemma 1 Letu € BV(Q), ¢ a function verifying hypotheses (23)-(24), and ¢a.p the cut-off
function defined by :

a if z<a
Yapx)=¢ z if a<z<p (34)
B if r>f
Then we have :
[ (Deusw) < [ o(Du
Q Q

Preuve Let us first recall the Lebesgue decomposition of the measure ¢(Du) :

/¢(Du) :/¢(|Vu|)dx+/ |ut —u_|dHN_1+/ |Cu
Q Jo s, Q/S.
~ ~ ~ ' ——

term 1 term 2 term 3

We are going to show that cutting the fonction u using the fonction ¢4 g permits to reduce
each term. To simplify notations, we will sometimes use the notation % for the troncated
function @4 g(u)

Term 1: let Q. = {z € Q/u(z) < a or u(z) > B} and Q; = Q/Q.. Thanks to [33], we

have / $(|Vi|)da = / 6(|Vu|)dz. Consequently :
Q; Q

/Q o(|Vil)dz = /Q oVl + /Q SV < /Q o(|Vul)dz (35)
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Term 2: using results proved in [5], we know that :
Sﬁ C Su
@t = o p(ut) and 47 = pqa5(u”)

Thanks to these results, and since ¢, g is Lipschitz continuous with a constant equals to 1,
we have :

/ lat —a " |dHN Tt < / lut —u |dHN T < / lut —u~|dHN ! (36)
Sa Sa Su

Term 3: we need to understand how is the Cantor part of the distributional derivative
of the composed function ¢, g(u). Vol'pert [64] first proposed a chain rule formula for
functions v = ¢(u) for u € BV (Q2) and when ¢ is continuously differentiable. Ambrosio and
Dal Maso [6] gave extended results for functions ¢ uniformely Lipschitz continuous. Since
u is scalar, it is demonstrated in [6] that we can write :

C(pa,p(u)) = ¢a,s(@)C(u) |Du| ae. on Q/S, (37)

where 4 is the approximate limit of u (see Eq. 18). Moreover, we have :

[oicad=[ ical+ [ s (39
Q/Sa Q/S Su/Sa

' (=0)

Notice that the second integral equals to zero because the Hausdorff dimension of the set
Su/Ss is at most N — 1 and we know that for any v € BV(§2) and any set .S of Hausdorff
dimension at most N — 1, we have C,(S) = 0. Then, using the chain rule formula (37), we

have :
/ Cal < I sl / Cul < / Cul (39)
Q/Sa (<1) Q/S Q/Su

[13 u

Finally, using results (35), (36), (39) permits to write :

[ oDgast) < [ o0

Now we are going to prove that the minimization problem (29) over £(Q2) is equivalent
to the same problem posed over BV (Q)T+!, that is to say without any constraint. This
remark will permit us to prove the existence of a solution. As for unicity, the difficulty
comes from the apparent non convexity of the function :

This concludes the proof. W

T

(B,C4,..,C Z (B— M)’ +ac Y (Ch — 1)

h=1

INRIA



15

with respect to all variables (Notice that it is convex with respect to each_variable). However,
if ac is large enough, we will prove that this functional is convex over £.

Theorem 2 Under hypotheses (23)-(24)and (25)-(26), the minimization problem :

inf E(B,Cy,..,Cr) (40)
(B,C1,..,CT)€BV(Q)T+1

admits a solution in BV (Q)T+'. If moreover :
ac > 3(My —my)? (41)

where the constants mn, Mn are defined by (26), then the solution is unique.

Preuve Let us first show the existence.
Existence : Let V = (B,C,.,Cr) € BV(Q)T+'. The idea is to show that the
vector valued cut-off function :

QD(V) = ((PmN,MN (B)v 900,1(01)7 0y QDO,I(CT))

where g1 and pmy, My are the cut-off functions defined as (34), belongs to BV (Q2)T+! and
that :

E(p(V)) < E(V) YV eBV(Q)™ (42)

This means that starting from any V and using cut-off functions, permits to diminish the
energy E. As a consequence, the constraints proposed in the space £ are naturally checked.
So we can conclude that the two minimization problems (29) and (40) are actually the same
so there exists a solution to the problem (40).

Let us show inequality (42). Let V fixed. We are going to use cut-off fonctions, compo-
nents per components. The first question is : what can we say about E(pmy My (B), C1, .., C1)?
Thanks to Lemma 1, we know that :

[ 6D emn(B) < [ (0B (43)
Q Q
0~ ={z/B(x) < mn}
Noting Q+ = {z/B(z) > Mx} , we have :
= {z/mn < B(z) < My}

T
> [ Catemon (B) - 30 =

(
h=1/Q° o+
(

/ CZ(B — Ny)*dx (44)

<>

T
Z C2(B-N) dx+2 _Ch(mx = Ny) dm+z C2(My — Ny)?da
-
h=1
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Equations (43) and (44) permits to write :
E(meN,MN(B)a C1, . CT) < E(Ba C1, . CT)

The effect of using the cut-off functions for variables Cy, can be proved without any difficulty
using same ideas. Consequently, (42) is proved and so the existence.

Unicity : Let V = (B,C,.,Cr) and V = (B, (4, ..,Cr) be two distinet solutions
of the minimization problem (40). We then consider the vector valued function :

V! =(¢B+(1-6)B, 6Ci +(1-6)Cy ,... §0r + (1 - 0)Cn)

=B? =cy =C8§,

Our aim is to prove that :
E(V®) <0EV)+(1-0)E(V) (45)

If we admit (45), then the result is demontrated because the right-hand side of (45) equals
to min(E) and then we have :

E(V?) < min(E)

which is impossible. Let us prove (45). To this end, we first split the functional E in two
parts :

T T
Ey(B,Cy,..,Cr) = Z/cﬁ(B — Ny)2dz + e Z/(C’h —1)%dx
h=1 Q2 h=1 Q2

T
Ey(B.Cr....Cr) = o}, [ 61(DB)+a1 Y [ 6a(DCh)
h=1

Looking first at the functional F», and using the strict convexity of the functions ¢;, permits
to write :
Ey(V?) < 0By (V) + (1 — 6)Ey (V) (46)
What can we say about E;(V?)? Let f: Q x R? — R the function defined by :
(2, b,¢) = (b — NMu(2))? + ac(c —1)?
and, for €  and h € [1..T], we introduce the function I : R — R defined by :
() = f*(z, B°,Cy)

With these notations, we remark that if the function /2 is convex for all z in Q and for all
h, then we have :

Ei (V) <0E, (V) + (1 —0)E (V) (47)
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Together with (46), this would lead to (45). The problem then becomes to study the
convexity of the function {*. Easy computations permit to obtain that :

2 —~ — o~ E— A
L b9y =2(B — BRI + 4(B — B)(Cr — Ca)CI (B — Ny) +

do? =
+2(Ch — Ch)*(ac + (B® — Npn)?)

L (B-B\,(B-b
T\ G -Gy Ch — Ch

where :

_ cf? C{(B? — Ny)
= ( COB - M) (ac+ (B — Nu)?) )

We recall that each functions are applied in z. If we want that the function I be convex, a
sufficient condition is that the matrix H be definite positive. Saying that the determinant
should be non negative permits to get the condition :

(B — Wy)* < a?c (48)

As we know that the functions B solution should belong to [mn, Mx] (see previous part of
the proof), we also have :
(B’ = Nu)* = 16(B = Nu) + (1 = 0)(B = My)|’
< OB - Nu|>+(1—6)|B - Ny|?
S (MN - 'an)2 (49)

because we have B — Ny| < [Myx — mx| and |B — Ny| < |[My — mx|. Consequently, if we
choose a¢ such that :

ac > 3(My —mn)?

which is condition (41), and thanks to (48)-(49), we observe that the function 11 is convex.
So in fact, E; is convex over £(f2) and then (47) is proved. This concludes the proof. W

This theorem is important since it permits to consider the minimization problem over all
BV (Q)T+! without any constraint. On a numerical point of view, this remark will be also
important since we will not have to handle with Lagrange multipliers. We can also remark
that the condition (41) is in fact natural : it means that the background must be sufficiently
taken into account.

RR n° 3415



18

5 The Minimization Algorithm

In the preceding section, we saw that there was a unique solution in BV (Q)T+! of the
minimization problem (40). The aim of this section is to propose a suitable algorithm to
approximate numerically this solution.

Before begining, we would like to insist on the fact that working numerically with BV (2)
is something hard. Firstly, we can not write Euler-Lagrange equations. Anzellotti [7] pro-
poses an extension of Euler-Lagrange equation but they are variational inequalities. In an
image restoration background, Vese [63] gives a caracterisation of the solution using a dual
formulation. However, both of them can not be used, at the moment, numerically.
Secondly, discretizing directly functions in BV (Q) is still an opened question. For theses
reasons, we propose an algorithm with two steps :

- Section 5.1 : we define a functional E. on a more regular space. We show that the associ-
ated minimization problem admits a unique solution in W*2(Q)T*+! (noted (B, Ci., .., Ct.)),
and that the functional E, T'—converges to E for the L2-strong topology. Consequently,
(B, Cy,..,Cr.) will converge for the L?-strong topology to the unique solution of the ini-
tial problem.

- Section 5.2 : For a fixed €, we are going to construct a sequence (B",CT, .., C}) converg-
ing to (B, C., .., Cr.) for the L?—strong topology. It will be found as a minimizing sequence
of an extended functional. This part usually referenced as the half quadratic minimization.

Consequently, we are able to construct a sequence (B®,CT,..,C%) converging to the
unique minimum of the functional E for the L2—strong topology. We will end this section
by presenting in section 5.3 the precise discretized algorithm. Its stability will be proved
using the fixed point theorem.

5.1 A Quadratic Approximation

We first extend an idea developed in [19]. For a function ¢ having hypotheses (23)-(24), we
define the odd function ¢, by :

%(:)t%tcp(e)—% ifo<t<e
Pe(t) = ©(t) ife<t<1/e (50)
DD 1 p(re) - EUD g > 1/

We observe that for € > 0, ¢ > ¢ and for all ¢, we have : lim._,g pc(t) = ¢(t). Using this
definition, let us denote by ¢1,. and ¢2 . the two functions associated to ¢; and ¢>. We then
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define the function E. by :
E.:BV(Q)™ S R (51)
E.(B,C4,.,Cr) =
EZ=1 fQ CR(B — Nn)*dx + 0‘75 25:1 fQ(Ch —1)%dzx
+ay, fo ¢1.e(IVB)dz + al 325y Jo ¢2,(IVCh|)dz

if (B,Cy,..,Ct) € WhH2(Q)T+!
+00 otherwise

Then we have the following results :

Theorem 3 Under hypotheses (23)-(24)(for Nn) and (25)-(26)(for ¢;), the minimization
problem :

inf E.(B,Ci,..,Cr) (52)
(B,Cl,..,CT)EWI‘Q(Q)T"'l

admits a solution in W2(Q)THL. If moreover :
ac > 3(MN - 7711\1)2 (53)

where the constants mx, Mx are defined by (26), then the solution is unique. We will denote
it by (Bea Cl€7 23} CTG)'

Preuve The demonstration of that theorem is based on the same arguments as in the
preceding section. In particular, we can show that the function (B, C4,..,Ct) are bounded.
|

Proposition 1 The sequence of functionals E. T'—converges to the functional E for the
L2T+1—str0ng topology as € goes to zero. The sequence of the unique minima of E. (noted
(B, Ciq, --,Cr.)) converges in L2T+1—strong to the unique minimum of E.

Preuve By construction, the sequence E. is a decreasing sequence converging pointwisely
to the functional E defined by :

E:BV(Q) - R

E(B,Cy,.,Cr)  if (B,Cy,..,Cr) € WLH2(Q)T+1

E(B,C,..,Cr) = { +00 otherwise

Thanks to [42] (proposition 5.7), we can deduce that E. I'-converges to the lower semi con-

tinuous envelope of E (for the L2T+1—str0ng topology) noted R(E). We then show that in
fact R(E) = E using some compacity results developed in for instance [23, 13]. H
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5.2 An extension using dual variables

Let (B, Ci,..,Ct.) be the unique minumum of the functional E. over W2(Q)T+1, For a
fixed €, our aim is to approximate it. To this end, we need the result recalled in the Appendix
A and already used for the image restoration problem (see Sect. 2.2) : let us apply Theorem
4 to the functions ¢, . and ¢,  which fulfil desired hypotheses. We will denote by ¥ . and
¥, . the associated functions ¥. We then define the functional E¢ defined by :

E? . (Wh2(Q) x L2(Q)) x WhH2()T x L2(Q)T - R (54)
EY(B,dg,Cy,..,Cr,dcy, ... doy) =

T
Z/ [C2(B — Nu)? + ae(Ch — 1)] da
h=1"%
+a;/ [ds|VB|* + U1 (dg)] dz
Q

T
+af Z/ [do, |VCh|? + Ua ((de, )] do
h=1 Q

where we have introduced the variable dg, dc, , .., dc, associated to B, C, .., Ct respectively.
To minimize the functional E?, the idea is to minimize successively with respect to each
variable : given the initial conditions (B°,d},Cy,d¢, ), we iteratively solve the following
System :

Bt — argmin E4B,d3,Cp, Cy) (55)
B e Wh*(Q)

dgtt = argmin E4(B"*! dg,Cy, Cn) (56)
ds € Lz(Q)

optt = argmin EX(B™, dgtt, G, dg,) (57)
Cy € Wl’z(Q)

B = wmmn  EHEMLACILdo,) £
dc, € L*(Q)

Equalities (57)-(58) are written for h = 1..T'. Notice that the order of the minimization
procedure is not important for all the results presented below. The way to obtain each
variable like described in (55) to (58) consists in solving the associated Euler-Lagrange
equations. As we will see in section 5.3, the dual variables dj"' and (dré—:1>h:1_.T are given
explicitly, while B**! and (C’]‘:"'l)h:l,,T are solutions of linear systems. Anyway, before
going further, we need to know more about the convergence of this algorithm : does it
converges and does (B*,C},..,CR) approximates (B, Ci.,..,Cr.)? This is the purpose of
the following proposition :

Proposition 2 Let (B, d},Cp,d}, ) € Wh2(Q)TH. Then the sequence defined by the sys-

tem (55)-(56)-(57)-(58) is convergent in L?(2) T+ —strong. Moreover, the sequence (B™,CT, .
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T+1

converges in L?(Q) T+ —strong to the unique minimum of E. in W12(Q)T+L | that is to say

(3670167 "7CTE)'

Preuve The basis of the proof is to write the variational optimality conditions associated
to each step and to pass to the limit into them. To this end we needed some results about
non-linear elliptic equations [43, 44] and we used the trick of Minty (see for instance [16, 19]).
For more details, we refer to [19, 9, 36] where such kind of ideas have been developed. W

5.3 The discretized algorithm

Let us write explicitely the equations that the system (55)-(56)-(57)-(58) implies. Starting
from an initial estimate (B°,d, Cy,d{, ), the equations that will be solved are the following

T
> CRA(B™ — M) — of div(dgVB™) = 0 (59)
h=1
91 (IVB™))
dn+1 — 5€ 60
B 2|VBnH| (60)
CPt! [ae + (B™ = V)% — ac — abdiv(dg, VCRt!) =0 (61)
ntl _ ¢ (IVCiT) (62)
o 2|VeRt|

As we said in the previous section, (60) and (62) give explicitely the values of dit' and
dgt' while B**! and C'*! are solutions of a linear system. Once discretized using finite
differences, the linear system can be solved by a Gauss-Seidel method for instance.

We next prove that the discretized algorithm described by (59) to (62) is unconditionally
stable.

Proposition 3 Let Q% correspond to the discretization of Q. Let fd(Q) be the space of
discrete functions (B, C1,..,Crt):,; such that :

my < B;; < My (63)

0 S Chi,j S 1 fO’I" h=1.T (64)
T

0<me<Y Ch<T (65)
h=1
my = inf (4,5) Nhi,j Taor

where h=t T , me = e (66)

My =sup (i j) Nni; e + (Mxy —my)? +4
h=1..T
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Then, for a given (B*,C},...,C}) in Ed(Q), there exists a unique
(Bt optt L Ot in £4(Q) such that (59)-(62) are satisfied.

Before proving this result, let us remark that the boundaries (63) and (64) can be justified
if we consider the continuous case (see the proof of the Theorem 2). As for condition (65),
it is also very natural if we admit the interpretations of the variables C}, : if this condition
is false, this would mean that the background is never seen at some points which we refuse.
Preuve We first rewrite equations (55)-(57) taking into account (60)-(62) :

T ! n

n2 n+1 _ N AT s ¢1,e(|VB |> n+1 _
h::1: Ch %) (B’L,J Nhl,]) aBdlv ( 2|VB'rL| VB i - 0 (67)
6,097

n+1 n+1 2 T
Critt lac + (BT — Ny, j)?] — ao — agpdiv ( SN

4,3

vc;;“) =0 (68)
4,3
We now write the discretized equations in space. To this end, techniques developed in the

Appendix B are used to discretize the divergence operator. Several possibilities have been
considered and discussed. Anyway they can be written as follows :

div (MVA"H) ~

VA" ij
> pirkgrt(AMATT | YT pigkri(A™) | Aij (69)
(k,1)eD (k,1)€D

where D = {(k,1) # (0,0) € [-1,0,1]*} and (piyx,j+1)(k)ep verifying :

0 <pitkj+1 <1 and > Pigkjn <4 (70)
(k)eD

Using this notation, and after some basic computation, we can re-write (67)-(68) in the
following form :

r . . Bn)
Bl = Z ( ORPitk,j+1( )B.n+1.
2 T n r n i+k,j+1
’ (k,1)€D Y1 O + o 2 (kD Pitk,i+1(B™) ’
T 2
Ny Cp7,
h 1,5 (71)

+ T
ot =1 C}?Qi,j + a5 X (kpep Pithi+(B")

T
W =3 Ogcpwk,m(cﬁ) o
W\ ao + (BT = Na)i s+ ap Yenep Pirkg+1(CR) |0 TEEIT
+

- (72)
ac + (B™ = Nu)i; + ap Y nep Pitk+1(CH)
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To simplify notations, let us denote by V7, € RT+1 the vector defined by :

n __ n \t
Vi,j ( Clz,jv . 7CTi,j)

1]7

where the superscript denotes the transposition symbol. Let (Mij,;+1(V™))(k,nep be di-
agonal matrices in R7+! x RT+! and R(V™), ; be a RT*! valued vector such that equations
(71)-(72) may be rewritten in the following form :

Vit = 3 Mo (VIVER L+ RV,
(k,)eD

Now, for W € Ed(ﬂ), we define the linear function Qw(Z) by :

QW : Ed( Q) — RTH

= > Mk iri(W)Zisr it + R(W)y (73)
(k,l)eD
Then we can show that :
—d —d
Qw(E () c& () (74)
Qw is a contractive function on Ed(ﬂ) (75)

The first statement can be deduced directly from relations (71)-(72) and the definition of
?d(ﬂ). Let us demonstrate (75). Let Y and Z be two elements in Ed(Q) Then we have :

QW(Z) = Qw(Y)| < > IMivkjrt W |Zigkjar — Yignjrt]
(k,1)eD

< D0 IMaprjs (W) ) 1Z = Yoo
(k,1)ED

<K|Z-Y|e
where || -||, | | and | - | correspond to usual norms, and K is a constant, independent of W

and 4, 7, k,! which is greater than all the coeflicients of the diagonal matrices M4k j+i1(W)
but strictly inferior to 1. More precisely, we can establish that :

dog dag
me + 4af’ ac + 4af,

K= sup{

Consequently, thanks to the properties (74)-(75), we can apply the classical fixed point

theorem to the function Qw. So, for V" in fd(ﬂ), there exist a unique V**! ¢ fd(Q) such
that :

Vn-l—l — QV" (Vn—l—l)
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/* Initializations (may be changed) */
B'=0
=1 Vh
/* General loop (A stopping criterion could be used
instead) */
for(It=0;It<ItNumber;It++) {
/* k% Minimizing in B *** */
- Compute coefficients (Pitk,j+i)(k,)ep corresponding to
the divergence discretization for B (see (69) with
Appendix B)
- Solve the linear system (71) by an iterative method
(Gauss-Seidel) to find B"t!
/* k% Minimizing in C), *** */
for(h=1;h <T;h++) {
- Compute coefficients (pitk,j+1)(k,)ep corresponding to
the divergence discretization for CJ' (see (69) with
Appendix B)

- Solve the linear system (72) by an iterative method
(Gauss-Seidel) to find C}?'H

} /* Loop on h x/
} /* Loop on It */

Table 1: The detailled algorithm

that is to say V™! is the unique solution of (71)-(72). Moreover V**+! € £%(Q). This
concludes the proof. W

During this proof we needed to write explicitely the discretized equations to be solved.
We give in Tab. 1 a sum-up of the precise algorithm. Notice that it is not necessary to
compute explicitely the dual variables because they are directly replaced into the divergence
operator. To conclude this section, we will notice that if af = 0, the functions (CP™')n_1. T
are in fact obtained explicitly by :

O
Qe + (Bn+1 _ Nh)2

Cptt = (76)

As we can imagine, this case permits important reduction of the computational cost since
T linear systems are replaced by T explicit expressions. We will discuss in Sect. 6 if it is
worth regularizing or not the functions Cy,.
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6 The Numerical Study

This section aims at showing quantitative and qualitative results about this method. Syn-
thetic noisy sequences will be used to estimate rigorously the capabilities of our approach.
The purpose of Sect. 6.1 is the quality of the restoration. The Sect. 6.2 is devoted to the
motion detection and its sensibility with respect to noise. We will conclude in Sect. 6.3 by
real sequences.

6.1 About the Restoration

To estimate the quality of the restoration, we used the noisy synthetic sequence presented in
Fig. 1 (a)(b). Figure 1 (c) is a representation of the noisy background without the moving
objects. We mentioned the value of the Signal to Noise Ratio (SNR) usually used in image
restoration to quantify the results quality. We refer to [38] for more details. We recall that
the higher the SNR is, the best the quality is. Classically used to extract the foreground
from the background, the median (see Fig. 1 (d)) appears to be inefficient. The average in
time of the sequence (see Fig 1 (e)), although it permits a noise reduction, keeps the trace
of the moving objects. The Fig. 1 (f) is the result that we obtained.

To conclude that section, let us mention that we also tried the case aof = 0, that is to say
we did not regularized the functions C},. The resulting SNR was 14, to be compared with
14.4 (af # 0). This leads to the conclusion that regularizing the functions C}, is not very
important. However, this point has to be better investigated and more experimental results
have to be considered before to conclude.

6.2 The Sensitivity of Motion Detection With Respect to Noise

In this section, we aim at showing the robustness of our method with respect to noise. To
this end, we choose a synthetic sequence (see Fig. 2) where a grey circle is translating from
left to right in front of a textured background.

To estimate the sensitivity of the algorithm, we corrupted the sequence by gaussian noise
of different variance (from 5 to 50). We give in Fig. 3 the value of the SNR of the corrupted
sequences for each variance.

Results are reported in Fig. 4 and 5.

The first one presents five typical results obtained for different values of ¢ (0=5,15,25,35,45).
The second one gives qualitative informations concerning the quality of the restoration and
the motion detection. The criterion used to decide whether a pixel belongs to the back-
ground or not is : if Cy (4, j)>threshold, then the pixel (7, j) of the image number h belongs
to the background. Otherwise, it belongs to a moving object. The threshold has been fixed
to 0.25 in all experiments.

We can observe that when the SNR of the data is more than 8 (corresponding to o = 25),
results are particularly precise : The SNR of the background is more than 20 and the error
detections are less than 5 percent. When the SNR of the data is less than 8, the motion
detection errors grow rapidly but the quality of the restored background still remains correct.
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(d) SNR=5.7 (e) SNR—9.8 (f) SNR=14.4

Figure 1: Results on a synthetic sequence (5 images) (a) Description of the sequence (first
image) (b) Last image of the sequence (c) The noisy background without any objects (d)
Mediane (e) Average (f) Restored background (af # 0)

Figure 2: Three images of the initial synthetic sequence (35 images are available)
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20+

15+

SNR(Nh)

10+

Sigma

Figure 3: Signal to Noise Ratio of the data as a function of the variance.

See for instance the last row of Fig. 4 obtained for o = 45 : the triangles on both sides are
well recovered (observe the strong noise in the sequence).

Finally, notice that same parameters (cj, ac, o) have been used for all experiments.
Generally speaking, we remarked that the algorithm performs well on a wide variety of
sequences with the same set of parameters.

6.3 Some Real Sequences

The first real sequence is presented in Fig. 6 (a)-(b). A small noise is introduced by the
camera and certainly by the hard weather conditions. Notice the reflections on the ground
which is frozen. We show in Fig. 6 (c) the average in time of the sequence. The restored
background is shown in Fig. 6 (d). As we can see, it has been very well found and enhanced.
Figure 6 (e) is a representation of the function Cy, (using a threshold of 0.5) and we show
in Fig 6 (f) the associated dual variable dg, .

The second sequence is more noisy than the first one. Its description is given in Fig. 7
(a). To evaluate the quality of the restoration, we show a close-up of the same region for
one original image (see Fig. 7 (b)), the average in time (see Fig. 7 (c)) and the restored
background B (see Fig. 7 (d)). The detection of moving regions is displayed in Fig. 7 (e).
Notice that some sparse motion have been detected at the right bottom and at the left side
of the two persons. They correspond to the motion of a bush and the shadow of a tree due
to the wind.

The last sequence is taken from an highway (see Fig. 8). We give two images (Fig. 8
(a) and (b)) and the corresponding motion detection below (Fig. 8 (c¢) and (d)). Finally,
we show in Fig. 8 (e) the restored background. Notice that there is a black zone at the top
of the road which comes from the fact that there are always cars in that region.
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Figure 4: Left : One image of the noisy sequence. Middle : The motion detection
based on variable C}, at the same time. Right : The restored background B. From top
to bottom : Results for different variances of the gaussian noise (5,15,25,35,45).

34 254
201

15+
25+

SNR(B)

101+

Error (%)

15+

SNR(Nh) SNR(Nh)

Figure 5: Left : SNR of the background as a function of the SNR of the data. Right :
dotted (resp. plain) line : percentage of bad detections for the moving regions (resp. static
background) as a function of the SNR of the data.
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(b)

(e) (f)

Figure 6: Sweeden Sequence : (a) and (b) Description of the sequence (55 images avail-
able). Two people are walking from top to bottom. This sequence is available from the web
site http://www.ien.it/is/is.html. (c) The average over the time. (d) The restored
background B. (e) Function Cj associated to the image (a) (a threshold of 0.5 has been
used). (f) The dual variable d¢, associated to the image (a).
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(e) (f)

Figure 7: INRIA Sequence : (a) Description of the sequence (12 images available). (b)
Zoom on a upper right part of the original sequence (without objects). (c¢) Zoom on the
mean image. (d) Zoom on the restored background B. (e) The function Cy thresholded.

(f) The dual variable d¢,, .
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(©) | @

Figure 8: Highway Sequence : (a) and (b) Two images from the sequence (90 images
available). (¢) and (d) Corresponding Cj, functions. (e) The restored background.
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7 Conclusion

We have presented in this article an original coupled method for the problem of image
sequence restoration and motion segmentation. A theoretical study in the space of bounded
variations showed us that the problem was well-posed. We then proposed a convergent stable
algorithm to approximate the unique solution of the initial minimization problem.

This original way to restore image sequence has been proved to give very promising
result. A straightforward extension to color image sequences has recently been developed.
To complete this work, several ideas are considered : use the motion segmentation part to
restore also the moving regions, think about possible extensions for non-static cameras. This
is the object of our current work.
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A The Half Quadratic Minimization Theorem

This theorem has been inspired by Geman and Reynolds [28] and proposed by Aubert [8].
Theorem 4 Let ¢ : [0, +00[— [0, +00[ be such that:

@o(\/t) s strictly concave on |0, +o00. (77)

Let L and M be defined as: L =lim;_, o % and M =lim;_ q+ % Then, there exists

a strictly conver and decreasing function v :|L, M| — [B1, B2] such that

e(t) = inf (dt* +14(d)) (78)

L<d<M

where : o = lim; 4 <¢(t) - t2$) and (1 = lim;_o, ¢(t) Moreover, for every

fized t > 0 the value di for which the minimum is reached is unique and given by:

_ @)
de ==~ (79)

In addition, we can give the expression of the function ¥ with respect to ¢. If we note
0(t) = ¢(Vt),then :
T(t) = 0((6")71(1) — t(6) 7 (2)

However, notice that this expression will never be used explicitely.
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B On Discretizing the Divergence Operator

Let d and A given at nodes (7,7). The problem is to get an approximation of div(dV A) at
the node (i, 7). We denote by 6°* and §*2 the finite difference operators defined by :

6x1Ai,j = Ai+%,j — A 1.
6x2Ai7j = Al,_]+% - A

Using that notation, Perona and Malik [52] proposed the following approximation :

div(dVA)iJ = i (d 6A> + i (d aA) ~ 6z1(d6ZIAi,j) +6I2(d(5Z2Ai,j)

&vl a—ZL’l (91‘2 6—372
0 di,j—l—l 0
R diyy; =5 dipy; | %A (80)
0 d 0

A
L)]—35

where the symbol x denotes the convolution and S¥ is the sum of the four weights in the
principal directions. Notice that we need to estimate the function d at intermediate nodes.
Our aim is to extend this approximation so that we could take into account the values of A
at the diagonal nodes :

. "gP
div(dVA)is=ap | diy; —5 digy; |+ A
T2
dGiiiry 0 diggjg
+ ap 0 —-Sb 0 * As (81)
d.

-1 (U

i1
WJT 3

where ap and ap are two weights to be discussed, and SP is the sum of the four weights in
the diagonal directions. Approximation (81) is consistent if and only if :

ap +2ap =1 (82)

Now, there remains one degree of freedom. Two possibilities have been considered :

11
(ap,ap) = constant and for instance = (5, Z) (83)
(ap,ap) = functions depending on d (See Figure 9) (84)

To compare these different discretizations, we made numerical experiments with the image
restoration problem where such kind of operator have to be discretized. We recall that for
a given d}', we need to find I**! such that :

"t - N — o div(dP VIt =0
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| T4 w2 o

Figure 9: ap = ap(f) is a w/2 periodic function where 6 is the direction of the gradient of
d. Notice that ap can be deduced from the consistency condition is then computed thanks
to the consistency condition.

We refer to section 2 for more details. The value of df (: %) at intermediate nodes

is computed by interpolation (see [52]).

We tested these different discretizations on a noisy test image using quantitative mea-
sures. We checked that (81) permits to restore identically edges in principal or diagonal
directions. Moreover, we observed that choosing ap adaptatively (84) gave more precise
results than (83). We used this approximation (84) in our experiments.
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