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Calcul direct de solutions multi valuées de 1’espace des
phases pour des équations d’Hamilton-Jacobi

Résumé : Nous présentons une méthode pour la résolution exacte et complete de systemes
Hamiltoniens qui utilise uniquement ’équation dHamilton-Jacobi correspondante
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1 Introduction

We are interested in the direct computation of multi valued phase-space solutions of time
dependent 1-D Hamilton-Jacobi equation (9,5, (21,22) denotes the partial differentiation of
g with respect to 1) :

{ ¢u(t, ) + H(t,7,0,4(t,2)) =0, in Q= {(t,2) e R xR, t >(2)}

1

¢(v(z),2) = ¢°(z), forz € R .
Cauchy data, in the form of a continuous function ¢°, is prescribed on the curve I' =
{(z,v(z)), = € R} which is Lipschitz regular. The restriction to a subset of R is discussed
in section 4.5. The function H(t,y,p) is called Hamiltonian. It is assumed to be continuous
up to its second partial derivatives and strictly convex and coercive in its last variable p.
The phase-space solution of this equation is defined using the corresponding Hamiltonian
system :

= H p(s,y(s,2°),p(s,2°))

= —H y(s,9(s,2°),p(s,2°))

=p(s,2°).Hp(s,9(s,2°),p(s,2°)) — H(s,y(s,2°),p(s,2°))

,a°) = 2%, p(y(2°),2%) = p°(2°), ¢(0,2°) = ¢°(a”), for 2° € R.

The dot stands for time derivation () = %. We come back on the determination of p°
and give additional conditions on ¢°, v and H in section 2.1 (in the simple v = 0 case,
p°(z) = ¢%,(«°)). This system of ODEs generates, for all z° € R, bicharacteristic strips
(y(s,2°),p(s,2°)) lying in phase-space R, x R, and depending continuously on ¢ and z°.
The projections of the strips onto R, : y(s,z°) are called bicharacteristic curves.

An important quantity is the oriented measure of an infinitesimal area (in time and
space) transported by bicharateristics :

Oy(s,

20
D(y(s,z%)) = ds A dy(s,2°) = 50 )(ds A dz0). (3)

As long as :
D(y(s,=°) #0 (4)

is non zero along a curve y(s,z°), the bicharacteristic field remains locally regular. It is
possible to construct a smooth function ¢(¢,z) in a neighborhood of this curve such that :

¢u(t,z) + H(t,z,¢,(t,z)) =0,

RR n-° 3414



6 Jean-David Benamou

This result justifies labeling solutions of (2) as phase-space solutions of (1). Note that, in
the case of single valued phase space solutions (1) is equivalent to (5) and ¢ = ¢.

Under reasonable hypothesis, it is always possible to solve directly the PDE (1). A gen-
eralized theory of wviscosity single valued solution exists for such equations (see [CL83] or
[Bar94] for a comprehensive review of such methods). It is complemented by a large number
of numerical studies proposing stable finite differences or finite elements schemes commonly
referred to as upwind schemes ([OS89] [RT88] [Set96] [SVST94] [Abg96]). This terminology
express the idea that, like for hyperbolic conservation laws, the essential ingredient of these
methods is to take into account the upwind information carried by the bicharacteristics (even
though they are not computed). If bicharacteristic curves do not cross in position space R,
we obtain a single valued ¢ field. In this case, the viscosity solution of (1) matches the clas-
sical solution. When the phase-space solution of (2) is multi valued (i.e. bicharacteristics
cross), the classical solution breaks down and the single valued viscosity solution develops
singularities. The question of whether or not it is possible to compute the multi valued
phase-space solutions using direct resolution of the PDE arise naturally. In other words, we
want the solution of (2) without using the ODE phase-space technique.

This problem has been an active research subject in geometrical optics with potential
applications in high frequency wave modeling for geophysics. The advantage of the PDE
approach is to provide directly the solution ¢ on a regular grid spanning the domain of
interest. A feature not shared by the ODE approach for which there is no a priori control
on the shape of the bicharacteristics. Low density zones, reached by few bicharacteristics,
are particularly problematic. However, the PDE approach only provide a single valued so-
lution. Conversely the ODE approach computes the multi valued phase-space solution along
the bicharacteristics. It is worth mentioning that the process of recovering the multi valued
solution on a regular grid from the phase-space ODE solution relies on sophisticated interpo-
lation and sorting techniques ([LLH96] [KKC94] [VIG93]). Hence the interest in designing
a PDE-based method able to compute the multi valued solution for same or lower cost than
existing ODE-based method. Such a method can find direct application in imaging tech-
nique such a migration or inversion ([GB93] [SS94] [BG85] [Bey85]). The link between first
arrival travel-time and upwind viscosity solution of the Eikonal (Hamilton-Jacobi equation)
solution was noticed in ([Vid88]) and assessed in ([TS91]). Then, several PDE-based al-
gorithm were proposed to recover the multi valued solution : Some ideas presented in this
paper are connected to [EFO95], we mention the link in section 7.2, 7.3; the identification of
the different branches of the multi valued solution as “local” viscosity solution was studied
in [Ben96] ; [Sym96] proposes to sort adjacent local viscosity solution with selected sources,
also in order to recover multi valued solutions. A partial analysis of these algorithms can
be found in [Ben97]. A different approach based on a kinetic formulation of the problem
and called the moment method has been pursued in [BL96] [ER95]. Finally let us mention
related works trying to cope with the difficulties associated with multi valued travel-time

INRIA
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fields : [EFO] [per].

The idea of this paper is that the multi valued phase-space solution can be split into
solutions of (1) using condition (4). We are considering each of the different branches of the
multi valued solution as PDE-solutions with ad-hoc boundary and initial conditions. The
method relies on the generic classification of singularities of Lagrangian/Legendrian sub-
manifolds associated to first order Hamilton-Jacobi equations ([AGZV86] [1zu93]). We show
that, based on this generic qualitative information, it is possible to automatically detect
singularities giving rise to multi valued solutions and adaptatively generate all branches of
the solution.

Organization of the paper :
Section 2 : The problem is reformulated in the framework of calculus of variation. The
bicharacteristics can then be interpreted as extremals of a least action principle. The dis-
tinction between minima and other type of extremals rely on the notion of conjugate points.
The value function taken by the action along the bicharacteristics solves the multi valued
Hamilton-Jacobi equation.
Section 3 : We review the differential geometry approach to the problem. In this framework
bicharacteristics span a Lagrangian/Legendrian submanifold in phase-space. The singular-
ities of the projection of this manifold onto position space R, called caustics, give rise to
multi valued solutions of (1). A generic classification of these singularity is available.
Section 4 : We review the PDE-approach based on viscosity solutions. Viscosity solutions
can be characterized using deterministic optimal control theory. We also show it is possible
to derive a PDE which, when coupled to (1) can be used to locate caustic/conjugate points.
Section 5 : We provide a theoretical justification of the splitting of the multi valued solution
into viscosity solutions of (1). This is based on the generic classification of section 3 and on
the characterization both of the multi valued solution in section 2 and the viscosity solution
in section 4.
Section 6 : describes the core of our algorithm and its numerical implementation. We ex-
plain how it can be used recursively to treat the general case.
Section 7 : We discuss potential generalizations and open problems.
Section 8 : We apply our method to geometrical optics and provide numerical results. Sec-
tion 9 : Conclusion.

Section 2 to 4 are to be considered as preliminaries needed to understand our main
result in section 5 and the numerical algorithm in section 6. These preliminary results are
sometime shared and often scattered between different schools and communities. We tried,
in order to make this paper self content, to give a minimal overview of the material needed.
These sections are not to be considered as a detailed review or a rigorous exposition of the
results of these different theories.

RR n-° 3414
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2 The Calculus of variation approach

We review here classical results of calculus of variation which can be found, for instance, in
[GF63] [You69].

2.1 Finding the extremals
Let us first introduce the Legendre transform H* of H as :

L(t,z,v) = H*(t,2,v) = sup {pv — H(t, z,p)}
PER,

The coercivity and convexity assumptions ensure that L is well defined, proper and satisfies :

H(t,z,p) = Sélﬂ%) {pv— H*(t,z,p)}. (6)

A classical duality result states that L, and H, are inverse functions. Then, the strict
convexity of H implies :
Lww>0 (7)

is a positive definite matrix (simply a scalar in 1-D). Equation (6) is the classical La-
grangian/Hamiltonian duality needed to obtain the following result : finding the multi
valued solution of (2) is equivalent to finding, for all (¢,z) € Q, the extremals of the mini-
mization problem

t

inf JH2) (q, :/ L(s,y(s),9(s))ds + ¢° (). 8
{a€R, y(.)EC(R); y(v(a))=a, y(t)==} (e.9) 7(a) (5:3(2). 9(2)) ¢() ®)

The admissible curves y(.) are smooth (C' in the framework of “weak extrema”) and con-
strained to connect a point of T': (y(a), @) for some a € R, to (¢,z) in . The extremals of
this problem are characterized, for all «, by the system :

Lo(s,5(5),5(5) = S L o(t,y(s),9(s)) =0,
y(v(a)) =
3 Lu(v(a), e ( (@) + - 9)
7,2(0)(L(7(0), @, 5(1(e))) = §(v(@)) Lo (7(a), @, 5(1(2))) = 9% (),
y(t) =

These equations express the cancellation of the first variation of J with respect to a and
y. We use the compact notation J, = 0 and J, = 0. The first line of (9), called the
Euler /Lagrange equation, corresponds ezactly to the first two ODE in system (2). The fol-
lowing lines, called the transversality conditions, determine the initial conditions on y and p.

We can identify the solutions of (2) with the extremals of problem (8) set for (¢,z) =
(t,y(t,z°)). More precisely :

INRIA
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Proposition 2.1 We have, for all t and all 2° :
TG @,y (., a) = 0,
Tt (a0, y(.,2%)) = 0.

Proof : Setting p(s) = L ,(t,y(s),y(s)), and using (7) it is a classical exercise in the calculus
of variation to recover the ODEs of system (2) from the first equation of the proposition. It
is now enough to show that the initial conditions of (2) and (9) match. It is obvious for the
initial condition on y. Concerning p we must check the third equation of (9) to be equivalent
to to setting of p° in (2). More precisely we want :

P’(@) = Ly(v(@), @, 9(v())). (10)

We first have to specify how we chose the initial condition on p® in (2) such that our phase-
space solution corresponds to the Cauchy data ¢° of (1). It is known that classical solution
to (1) can always be defined for arbitrary small time. It means that, in a neighborhood of
T, we can write ¢ ,(s,y(s,a)) = p(s,a) (see (5)). Diflerentiating the initial condition and
using the equation in (1) we get that p° must satisfy :

~Va(@)H(y(a),a,p°(a)) + p° (@) = ¢, (a). (11)

If v,.(a) = 0, we unambiguously have p°(a) = ¢% (). Under the additional assumptions :

—Y,2(@)H(y(a),o,p) + p— +00 as p — +00, if v, >0,
p)+p— —00asp— —oo, if 7, <0, (12)

—YVe(a)H(v(a), e,
equation (11) has a unique solution p°(a) satisfying —v,;(a)H ,(v(a),a,p’(a)) > 0. It
guarantees that the bicharacteristics point into Q (we recall that § = H,). Replacing p°

in (11) using (10), we exactly recover the transversality condition on p in (9). This proves
(10).

Remark 2.2 We want to emphasize that the bicharacteristics can therefore be globally called
extremals of our variational problem (8). We mean that curves are extremals for any end
point (t,y(t,2°)) t > v(2°). See also remark 2.5.

Remark 2.3 A sufficient conditions on H to satisfy (23) is , for example, H(t,z,p) ~
Clp| when p — Foo (H is coercive) and |7,z| < &. We can relaz these assumptions with
additional hypothesis on ¢°.

2.2 Conjugate points and sufficient conditions for a minimum

Condition (7) :
e Lo, 9(s),3(s)) > 0 (13)

RR n° 3414



10 Jean-David Benamou

holds for any extremal curve y(.,z°%), between y(v(2°),2°) and y(t,2°) for all t. A necessary
and sufficient condition for this curve to be a minimum for the minimization of J*¥(®)(a, y) :

JEYEE) (20 4 40)) = inf Jt2) (),
(@9 27) {a€R, y(.)ECT(R); y(v(a))=a, y(t)=a} (e3)

is the absence of conjugate points on this portion of curve. The presence of a conjugate
point on the curve exactly means that the second variation of J(*¥(:2°) with respect to y
is a non positive definite quadratic functional. An important remark is :

Conjugate points can be shown to be points where the non degeneracy condition (4) fails.
Such points also corresponds to caustic points (next section).

Remark 2.4 There is an intimate connection between conjugate/caustic points, the occur-
rence of multi valued solutions and consequently the failure of the classical Hamilton-Jacobi
interpretation (1).

Remark 2.5 Let us consider the case of only one conjugate point y°* = y(t°,x) on an
extremal curve y(.,z) starting at s = y(z°). The above results asserts that for t > t° this
curve is not a minimum. However, it is a minimum before the conjugate point (until t > t°).
Considering the same curve y(.,z) but starting at s = t°, we know there are no conjugate
point on this section. Therefore, for the portion of curve lying after the conjugate point, the
curve 18 4 minimum.

2.3 The value function and the Hamilton-Jacobi equation

Another important feature of problem (8) is the interpretation of the value function as the
phase-space solution of the Hamilton-Jacobi equation (1) along the extremals :

JEva) (20 4 20)) = (¢, 2°) (14)

As pointed out in the introduction, this interpretation fails as soon as multi valuedness
occurs. Basically this means that bicharacteristic curves cross in position space R,. One
must carefully distinguish between two situations. The failure of the local condition (4) at a
caustic point precisely means that the projection of neighboring bicharacteristic strips onto
position space cross. Crossing between such projections of bicharacteristic curves may also
happen for curves that are not close in phase-space. In this case the bicharacteristics cross
in position space (y) with different momentum (p). It generates singularities called kinks
(or shocks by analogy with hyperbolic conservation laws) in the viscosity solution (see also
section 5.2).

INRIA
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3 The differential geometry approach

Simplectic differential geometry is a useful tool to classify multi valued solutions of first
order Hamilton Jacobi equations. We do not get into the details and follow closely [IK] and
[KSV] to provide material needed in the sequel of the paper. Fore more on this topic one
can see [AGZV86] [Izu93] [Dui74]. An intuitive presentation of simplectic geometry can also
be found in [Arn92].

3.1 The Lagrangian/Legendrian submanifold and its projection

The Hamilton-Jacobi equation is defined as an hypersurface :
E(H) = {(t,y,¢,¢,p) € J'(R x R",R); ¢+ H(t,y,p) = 0}

where J'(R x R",R), the space of 1-jet bundle of function of n variables, can be con-
sidered as R® for n = 1 (our paper). Any “geometric” multi valued solution of E(H) :
A = {(s,y(s,2°), ¢(s,2°), —H(s,y(s,2°), p(s,2°)); ¥(s,2°) 5. t. s > 7(2°)}, is a Legen-
drian submanifold in J*(R x R®,R) lying in E(H). The similar framework of Lagrangian
submanifold lie in phase-space and omits the phase function ¢. In this case and for 1-D prob-
lems, A = {(s,y(s,2°), —H(s,y(s,2°),p(s,2°)); V(s,2°) 5. t. s > y(2)} is a 2-dimensional
submanifold lying in the 4-dimensional phase-space (t,y,q,p).
Next we introduce the canonical projection mapping :

o: J(RxR,R) — RxR* xR
(t7y7¢JQ7p) - (t7y7¢)

Finding the generic singularities/caustics of the solution consists in determining with respect
to the time parameter ¢ the location y of the generic bifurcations of the “wave fronts” :
t — II(E(H) N A). These so-called stable singularities (we refer to the above references for
the “not so obvious” notion of stability) corresponds to the points where D(y(s,z°)) (see 3)
changes its sign and therefore fails to satisfy condition (4). The change of sign in D(y(s,z°)
indicate that the infinitesimal area has shrinked to 0 and then changed its orientation. It
happens at points where the Lagrangian submanifold “folds” in phase space and the its
projection II onto position space becomes singular.

3.2 Generic classification of caustics

It is possible to classify for the stable singularities of the projection II. Modulo a diffeomor-
phism of the phase-space coordinates (t,y,q,p) into normal coordinates for which we use
the same notation, we know the exact analytical canonical form of the Lagrangian manifold
A in the neighborhood of such singularities/caustics. In the 1-D case (our paper) there is
only one possibility, classified as the Az singularity and called cusp. The canonical form of
the phase function is :

1 1.
o(t,y,q,p) = Zp“ - §tp2 + yp. (15)

RR n° 3414
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The restriction of the manifold A in phase- space (t,y,q,p) (Lagrangian submanifold) is
locally described by :

— 3
y = —p° +1p,
{ (16)

q=—3p

Finally, condition (4) can be shown to be equivalent to g;gz = 0 which, in our case reads :
t = +3p°. (17)

Remark 3.1 Similar classifications exist in higher dimensions. In 2-D, one must consider
two additional generic singularities called Ay and fo. These different types of singularities
can be traced back to the different degeneracies of a Jacobian matriz which generalizes (3)
(more in section 8.1). Information on the hierarchy in the apparition of singularities, called
adjacency of singularity is available.

3.3 Detailed structure of the cusp

We proceed to explain the analytical form of the singularity and the multi valued solution.
Degeneracy condition (17) coupled to the manifold equations (16) gives the equation of the
caustic curve in the (¢,y) space :

2
3%
This curve, pictured in figure 1, is called the cusp and is the only local generic singularity of
II in our case. It is formed of two convex curves Cr and C1 joining at a singular point (¢1, 1)
we call the cusp vertex. It is also possible to plot the multi valued phase function ¢(¢,y).
The variable p is eliminated from (15) using the first equation of (16). This equation has
exactly three real roots depending on (t,y) inside the cusp (i.e. for —Zy? <t < 2y).

2 2

o

t==+—5vy

On the caustic, two of these roots are identical and at the cusp vertex the three are the
same. Figure 2 a) shows for successive times the plot of the phase ¢ as a function of y. One
can observe the bifurcation at time ¢; leading to a triple-valued (triplication) phase function.
Point S indicate a kink (or shock) in the associated viscosity solution and points C' a caustic
point. Caustic points separate the solution into three single valued branches (figure 5).

We are also interested in the bicharacteristic curves. Recall that they satisfy g(s,z%) =
H ,(s,y(s,z°),p(s,2°)) Using that bicharacteristics lie on ANE(H) we get, using the second
equation in (16) :
H,(ty,p) =—q,=p.

Therefore, the three solutions for p of the first equation in (16) correspond locally to the
vector field §. We represent this multi valued vector field in figure 2 b) (the y scale is no
the same as in a)). As expected, problems occur at the caustic points where p, becomes
infinite. Note, however, that the solution stays smooth in phase space (p,y). One can also
precisely identify each branch of ¢ to the corresponding branch of p (more details on this in

INRIA
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section 5) and check that ¢, = p holds locally.

Using this information, we plot (figure 2 c¢)) 6 of these bicharacteristics in (t,y) space.
Until time ¢; the solution is smooth and single valued, the bicharacteristics do not cross.
At time t; a singularity appears at the cusp vertex. Characteristics cross there, p , become
infinite and the phase function has a singularity but there is no multi valuedness yet. After
this time, the “triplication” develops. Each characteristics eventually touch tangentially the
caustic (at points C) and then cross, at each point inside the cusp, two other bicharacteris-
tics which have not yet touched the caustic (points T'). At the S points two bicharacteristics
cross with same associated phase before they have reached the caustic, except at the cusp
vertex. Reaching the caustic for a bicharacteristic does not mean to cross the caustic but to
touch it tangentially. This is where the Lagrangian submanifold folds in phase-space.

Finally let us mention two useful identities satisfied by this analytical solution. On the
caustic, we have :

{ (¢,t7¢,y)"/ = 07
(18)

0 0
(Gyésm,ow )’ Bpé:gﬂ )) =(0,0)L.
where v is the normal to the caustic curve in (t,y) space. The first equation means that
contour lines of ¢ in (¢,y) space are orthogonal to the caustic and the bicharacteristic
curves tangent to the caustic (see figure 2 ¢). The second one that the projection (II)
of bicharacteristic strips cross at the caustic, i.e bicharacteristic curves cross with same
momenta p and D(y(s,z°) changes of sign.

Remark 3.2 The curves plotted in figures 1 to 6 give qualitative informations on the struc-
ture of the cusp and the geometric solution. They do not correspond to actual plots of the
above analytical formulae.

3.4 Cusps interactions

The multi valued geometric solution can, of course, be much more complicated. It occurs
when several cusps are present. We show in figure 3 different possibilities with two cusps.
The first situation a) is when the two cusps have no overlap. The solution simply develops
triplication in each of these cusps. Case b) shows the possibility of an overlap between the
cusps. The multi valued solution has five branches in the overlap. Finally case c) corresponds
to the apparition of a new cusp in the last branch of the first one. Again there are 5 branches
inside the new cusp. We further discuss these topics in section 6.5.

4 The PDE approach

The multi valued solution we want to compute has now been clearly identified through
different approaches. We are about to investigate the nature and properties of the solutions
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which can be recovered by simply solving the Hamilton-Jacobi equation considered as a PDE.
While the theory goes back to [CL83], a review on this subject can be found in [Bar94] and
also [FS93].

4.1 Viscosity solutions of Hamilton-Jacobi and the optimal control
characterization

We are interested in the viscosity solution of problem (1) because the output of stable
numerical schemes for such equation are known to converge to this class of solution (we
refer to [RT88] [Bar94] [Abg96] for references on convergence studies). The viscosity solution
moreover coincides with the classical smooth solution when there are no singularities. The
results of this section have been adapted from [Bar94]. It relies on Bellman’s equation for exit
time deterministic optimal control problems. Let us consider, for (¢,z) in 2, the dynamical

system :
{ #t2)(s) = w(s), fors>t,

2B2)(t) =z, =

where v(.) is a L™ function taking its value in R. We define the exit time minimization
problem :

wit.a) = int( | " L(s, 2 (s), v(s))ds + 6 (=) (7))} (20)
vl. t

where 7 = inf{s > t; s = y(2(t®)(s))} is the first exit time of Q trough T. Then, 1 is the
unique viscosity solution of the Hamilton-Jacobi-Bellman equation :

{ w,t(t,ﬂf) + SuvaR{w,w(ta .’L’)U - L(t,ﬂ;,’v)} =0,inQ= {(t,:p) e Rt x R, t> ’Y(il')}
Y(y(z),z) = ¢°(z), for z € R.

(21)
which is, of course, equivalent to (1) (use (6)).

Remark 4.1 Theorem 5.3 in [Bar94] is originally formulated for a 2-D Dirichlet problem.
It can easily be rewritten as a 1-D time dependent problem. The original theorem also
includes an actualization cost depending on a parameter X\ > 0. We can here relax this
condition and take A = 0 because we are in the unstationary case.

4.2 The bicharacteristics interpretation

We make the link with the calculus of variation approach of section 1. Let us recall that
extremals of problem (8), solutions of (2), are C! curves :

(2% = (@) —t

0

22
20 — y(t,2°) = =. (22)
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On the other hand, admissible curves for problem (20) have Lipschitz regularity and satisfy :

A9 () 0 — 1 = (2D (1)) (exit time)
1 (23)
z —> 2t ’:”)(7').

Changing the time parameterization of (23) in order to match the structure of (22), it is
possible to reformulate the optimal control problem (20) :

Proposition 4.2 Problem (20) is equivalent to :

13

9 ) = [ Loy(e)i(e)ds + (). (24)

inf
{a€R, y(YJEWL+=(R); y(v(a))=a, y(t)==} v(a)

Proof : We simply remark that any admissible curve (23) can be expressed as an admissible
curve y(.) for (24) through the change of variable

o = 2 (r),
t=27r—t!, (25)
y(s) = z(tl’”)(s — 7+ th).

A reciprocal change of variable shows the converse to be also true. Under this change of
variable, the cost functions for these two problems are identical.

The difference between (8) and (24) is the regularity of the admissible curves. In [GF63],
curves (22) are called “weak extrema” because, the C' topology restricts the number of
admissible curves compared to the C° topology for instance. Extrema, for this last topology
have been studied under the name of “strong” extrema. We extract from [GF63] the following
result explaining the link between weak and strong minima, :

Proposition 4.3 Let y(.,z°%) be an minimum for problem (8). It means in particular that
(7) is satisfied and there are no conjugate/caustic points on this curve, (i.e. (4) is satisfied
for v(z°) < s < t). Then,

y(.,z°) is a strong minimum for problem (8).

The immediate corollary of this result is : Lipschitz (W1%+>) curves being C°, such a
minimum is also a minimum for problem (20) (via proposition (4.2)). It also provides extra
(C1) regularity for the minima of problem (24). If only one curve solution of (2) reaches
point (¢,z) from (y(z°),2%) then the minimum is an absolute minimum and the viscosity
solution 1 satisfies (thanks to (14)):

P(t,x) = o(t,2°) (26)
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If more than one minimal bicharacteristic reaches (¢, z), we note (y(z?), 2?);=1. 1 the k initial
points of these curves. Then, the viscosity solution 1) selects the absolute minimum out of

the relative minima :
P(t,z) = .mlink o(t,z?) (27)
1=1..

4.3 A 2-D Dirichlet/Neumann problem

A mentioned in remark 4.1, we can consider the 1-D time dependent Hamilton-Jacobi equa-
tion as a 2-D stationary equation. The results of section 4.1-4.2 can be extended to a more
general problem (encountered in section 5) set the 2-D (¢, z) space :

(¢, &) + supyep{¥,«(t, z)v — L(t,z,v)} = 0, in Q,
Y(t,z) = ¢°(z), on TP, (28)
($4,0,2)v =0, on TV

where the boundary conditions on Q = T'? UT¥ are mixt Dirichlet/Neumann boundary
conditions and v is the exterior normal. Like in section 4.1, ¢ can be shown to solve the
exit time optimal control problem (19) (20) with exit on I'’. The dynamical system is un-
changed except when curves reach I''V where they are reflected symmetrically with respect
v (see theorem 5.10 in [Bar94]).

Using the arguments contained in section 4.2, it is possible to show that (26) and (27)
hold if we consider the bicharacteristic curves y(.,2#°) which are minima. Note that C*
curves only satisfy the reflecting boundary condition when tangent to a convex boundary.
It is exactly be the case for the bicharacteristics reaching the caustic (see (18) and figure 2

c).

Remark 4.4 This problem corresponds to the free boundary problem of section 6.2. The
free boundary is exactly the Neumann boundary of (28). We explain how we can numerically
revert to a 1-D time dependent problem in section 6.4. See also remark 5.4.

4.4 A transport equation for caustic detection

The locus of conjugate/caustic points is needed for our purpose of building the multi valued
phase-space solution using the viscosity solution ). Even though section 3 provide a generic
description of the caustic, this is a qualitative information. We derive here a numerically
usable equation to compute D(y(s,z°)) (see (3)).
Th dy(s,2°%) 9p(s,2°)
e components actually needed to compute D are (55—, =52c—). We assume the
domain, we are interested in, has constant D sign, this is the case until D = 0. It automat-
ically closes the domain at caustics. These quantities can, on one hand, be computed by
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Computation of multi valued H.-J. solutions 17

differentiating system (2) with respect to z°

4

B (5,2°) = Hpy (5,05, 2°), pls, 2°)) Z(5,2°) + ..
H py (5,95, 2°),0(5,2°)) 2 5,2°),
V28 (5,2%) = —H yy (5,05, 2°), pl5,5°)) i (5,20) — . (29)
H 4 (5,05, 2°), (5, 2°)) 2 (,2°)
£ (

(22 (y(2%),2°) = 0, 2 (y(a°),2°) = 25 (a).

On the other hand, instead of solving this set of ODE, we can derive a partial differential
equation equivalent to (29) (like deriving (5) from (2)). Let us set introduce a nww variable,
defined in time and space (.7 is the transpose of .) :

8(t,y(t,2°)) = (61’((92?0), 81&?0) )",

and

Ataoatpto,a) = (i bnn ) e )

Then, §(¢,z) can be uniquely defined everywhere (in the viscosity sense) and can be shown
to satisfy the transport equation :

{5(t$)+H(tw¢) 2(t,2) = A(t, 2, 9,2 (2))-6(t, ),
5(1(z),2) = (0, & (2)), forz € R

This system, when coupled to (1) gives the necessary information to compute D(t,z) =
6(t, z)[1] (the first component of §. In section 5, we use this coupling technique until we
encounter a curve where D = (. This strategy defines a free boundary problem.

(30)

Remark 4.5 The key idea of his section is to replace the Lagrangian unknown D(y(s,z°))
by the Eulerian quantity D(t,x) depending on time and space. It is legitimate to do so using
our method because it avoids dealing with multi valued and singular solutions (at caustics).

4.5 Outgoing Boundary conditions

An interesting by-product (also for higher dimensions) of section 4.1 is the construction of
outgoing boundary conditions to “close” our, yet unbounded, domain 2. Let us “close” the
domain 2 say on the “left” using a curve I'*® = {(¢,2%); t > v(2*)}. We further assume
that the bicharacteristic curves satisfy :

7(s,2°)) <0, on T, (31)
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i.e, on I'*, bicharacteristics can only exit the new domain Q% = QN {(¢,z); = > z>*°}. We
now introduce the Dirichlet problem :

¢,t(t7 .'L') + SUPUER{¢,z(t, .’E)U - L(t,m,v)} = 07 in QOO;
Y(t,z) = ¢°(x), for (t,z) €T, (32)
P(t,z) = +oo, for (t,x) € T'™.

For simplicity, we used I" and T'*® to denote respectively the parts of the boundary of Q2
corresponding to the old I' (Cauchy data/source) and to the new out-going boundary.

The optimal control characterization of section 4.2 (20) and condition (31) show that
the viscosity solution of (32) matches the restriction of the viscosity solution of (1) to Q.
Simply because the exit cost in (20), actually an entering cost for the bicharacteristics, takes
an infinite value on I'*°. It therefore bars out any admissible curves starting on I'*° and
only takes into account curves issued from T' as in the original unbounded problem.

Remark 4.6 In practice = C on T (C big) is sufficient. Problem (32) can be seen as
a Dirichlet problem with discontinuous boundary conditions. Fven though this problem does
not seems to satisfies the classical hypothesis for the existence and uniqueness of a viscosity
solution, numerical experiments indicate the problem is well posed and indeed corresponds to
the deterministic optimal control characterization (section 4.1). The condition ¢ = co also
corresponds to Soner boundary condition [Son86].

5 Splitting the multi valued solution

Our main objective is to show how a multi valued solution can be split and computed
using viscosity solutions of (1). We use the information on the structure of the solution
provided in section 3.3 and actually perform the analysis for any cusp caustic, which is
locally diffeomorphically equivalent to the generic singularity Ajs.

5.1 Smooth single valued solution

We focus first on the simplest case where the phase-space solution of (2) coincide with the
classical smooth solution of (1). In this case (4) is satisfied in all Q (D keeps constant sign).
All bicharacteristic curves are actually absolute minima for problem (8) and (26) ensures
that the viscosity solution of (1) is indeed the classical solution we are looking for. On figure
2 ¢), this is the case until time ¢ = ¢; when the cusp vertex appears.

5.2 Singular single valued solution with shocks

If one just continues to solve for the viscosity solution after ¢ = ¢;. The solution forms a
kink (or shock) curve where the bicharacteristics cross with same phase (before they reach
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the caustic). The kink curve separate the cusp in two (figure 4). This can be inferred
from (27) and section 3.3. See also [IK] on the generic classification of viscosity solution for
Hamilton-Jacobi equation.

5.3 Multi valued solution

We turn to the solution with Cauchy initial data prescribed on ¢t = ¢1, precisely when the
solution becomes multi valued. We note ¢! the initial data. It can be computed as indicated
in section 5.1.

Let = x1, the position of the cusp vertex (by analogy with #; its time coordinate), be
known. Then the caustic can be separated at the cusp vertex in two parts. A right and and a
left part noted Cr = {(v“"(z),z); for z > z,} and Cr = {(v°!(z),z); for z < z,} where
76T and = 7¢! are the equation of the caustic (given). We classify the different smooth
branches of the geometric multi valued solution as pictured on figure 5 :

e —( : is the portion of the solution corresponding to the bicharacteristics, issued at
t = t; from the left of the cusp vertex (x < x1), until they reach Cr.

e —(C'r : is the portion of the solution corresponding to the bicharacteristics, issued at
t = t; from the right of the cusp vertex (x > x1), until they reach CI.

e +(C' : is the solution associated to the remaining portion of the bicharacteristics (issued
from Cl and Cr after the caustic).

Note that —Cl, —Cr and +C patched together constitute the phase-space multi valued
solution in the sense of (2). We note the corresponding phase functions ¢~¢!, »~¢" and
©TC. We can also define their respective domains Q=% Q=¢" and Q*C :

Q= = {(t,) € [t1, +oo[xR; t >y " (z) for x >z},
Q=" = {(t,2) € [t1, +oo[xR; t > () for x <z}, (33)
0+C — Q-ClnQ-Cr
and define the PDE problems corresponding to each of these solutions :

o —(l:
V%t @) + H(t,z,93C (¢, 2)) =0, in Q7

¢_Cl(tlam) = ¢13 fOT z < x1, (34)
(q&;Cl, $.°Y).v =0, on Cr,
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o —(Cr:
Qﬂ;CT(t, z) + H(t, 2,99 (t,2)) =0, in @,
YO (t1,x) = @', for x> x, (35)
(677, ¢2°7).v =0, on CI

o +(C:

P19t o) + H(t,z, 90 (7)) = 0, in Q+C,

)

Yro(t, z) = CYt,z), on Cr, (36)
YOt z) =97 (t,z), on CL.

In figure 6, we plotted these different domains and indicated respectively by I'yy or I'p the
Neuman or Dirichlet boundaries.

Assuming the geometry of caustic cusp known, our main result is :

Theorem 5.1
Ol = =Cl jp Q=C1

w—Cr — SO—CT in Q—Cr’ (37)
¢+C - ‘P+C in Q1C.

Proof : Caustic points are conjugate points (section 2.2). Therefore, the bicharacteristics
before and after these points are minima (remark 2.5). The equalities for —C1 and —C'r
are a direct consequence of section 4.3 and identification formula (26). We recall that the
bicharacteristics touch tangentially the caustic (18) and therefore satisfy the modified dy-
namical system of section 4.3 (i.e. satisfy normal reflection on the caustic).

For the last branch +C, we must check that the solution of (36), defined using the
boundary data from (34) and (35), corresponds to the bicharacteristics after they reach the
caustics. We proceed as in section 2.1 : the Cauchy initial data on the caustic have to
match the initial conditions of system (2) restricted to the bicharacteristics issued from the
caustic (i.e. the caustic is a source curve). Initial conditions on y and ¢ are satisfied by
construction.

Concerning p, we derive a condition of type (11) from the equation and the initial con-
dition. We remark that : i) we can use this last argument both “before” the caustic in (34)
and (35) and “after” in (36). ii) We stay on the same side of the caustic. iii)Final/initial
Cauchy data on the caustic are the same for (35) and (36).

The Dirichlet matching between the solutions —C' and +C on the caustic therefore cor-
responds to the continuation of bicharacteristics at the caustic points. The initial condition
for the bicharacteristics associated to the +C branch on the caustics correspond to the
restriction of the bicharacteristics “after” the caustic (proposition 2.1).
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Finally we know bicharacteristics to be minima for the variational problem (8) “after”
the caustic (remark 2.5). We conclude again using (26).

Remark 5.2 We omitted to check the initial conditions of each of these problems satisfy
hypothesis (12). This will always be true, for example, under the assumption of remark 2.3.

Remark 5.3 We used two different type of boundary conditions on the caustic. First, ho-
mogeneous Neumann conditions as obviously the Dirichlet data is not yet known. The PDE
problems are well posed thanks to the remaining part of the boundary on which we have
Dirichlet data. Then, for +C, Dirichlet data since this is known from the previous solves.

Remark 5.4 Problems —C' are 2-D Dirichlet/Neumann problems in the sense of section
4.8. Because of the shape of the domain, Dirichlet data cannot be transformed into initial
Cauchy data for a time dependent equation. We explain in section 6.4 how to treat this
difficulty. Conversely the last problem is a true 1-D time dependent problem. The Dirichlet
data can be used as an initial Cauchy data and reciprocally.

6 The automatic algorithm algorithm and its imple-
mentation

We explained in the previous section that any cusp geometric solution can be reduced to the
resolution of (34), (35) and (36). We show here how this can be done without any a priori
knowledge on the geometry of the caustic. This information is provided by the transport
equation (30) coupled to the Hamilton-Jacobi equation.

6.1 The single valued part

Smooth initial data ¢° is prescribed on t = to (I'). We solve the coupled system (21)-(30)
(initial conditions for (30) can be computed from (11)). We do so until we detect a point
(t1,21) such that D(ty,z1) = §(t1,21)[1] = O (figure 2). This is a cusp vertex and we have
reached time when the smooth solution becomes singular. We call (¢!,4') the solution on
this line t = ¢; and stop. Should we continue to march in time, the viscosity solution would
develop a kink as mentioned in section 5.2 (figure 4).

6.2 The —C branches : a free boundary problem

We only describe this step for the —C1 branch (—Cr can be deduced by symmetry). We
have to solve (34) with an additional difficulty : we do not know the shape of Cr. To do so,
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we define the free boundary problem :

( w;Cl(t,a:) + H(t,2,9,% (t,2)) = 0, and

579t x) + H p(t, 2,930)65° (¢, 2) = A(t, 2,9, (2)).67C (¢, 2), ...
{ in QFB(y=C1 §-C1y, (38)
YO t,2) = @', and

\ 6_Cl(t17$) = 61(t17m)7 fO’I' z <,

where the domain depends on the solution by the intermediate the associated D function
(see section 4.4). If D is positive on t = ¢; , we have:

QFB (= 67C) = {(t,z) €]t*, +oo[xR; D(t,z) > 0}. (39)

We know that D vanishes and change its sign when a bicharacteristics reach the caustic
tangentially (18). It is in particular the case at point (¢;,z;) and at all the points on C'r.
The solution of problem (38) therefore satisfies :

QFB(wfc’l’éfC’l) — ch’l‘

We further know (still (18)) that the trace of the normal derivative (in (¢,z) space of the
phase function on the caustic satisfies :

(6,905 .v =0, on Cr.

Therefore, problem (38) is equivalent to (34). We detail the numerical strategy for solving
(38) in section 6.4.

Remark 6.1 The bicharacteristic interpretation of section 4.2 and 4.3 holds for the free
boundary problem. We use here the a priori knowledge on the structure of the solution —CI
which predicts that bicharacteristics are minima precisely up to the free boundary.

6.3 The +C branch

Once the —C solution is known on the caustic (Cl and Cr) we can simply use equation
(36). We can again couple this equation to transport equation (30). In this case the initial
conditions for § can be given by the —C branch (but in any case correspond to (18)).

6.4 1-D treatment of the free boundary problem

As discussed in section 4.3 and remark 4.4 problem (38) is a 2-D problem because : i) the
free boundary (corresponding to Cr) is not known a priori; ii) even if we knew the geometry
of C'r, we do not know the value of the solution on this curve and therefore can not use it
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as Cauchy initial data for the time dependent problem.

When the tangents to the caustic have maximal angle of 45° and minimal angle of 0°
with the ¢ axis, we propose the simple numerical procedure :

Let (¢7,06) be a discrete numerical approximation at points (n * d¢,i * dz) discretizing
the domain. At time step n, the solution is given for ¢ < i, i, is the space index of the
caustic. We then compute the upwind viscosity solution (¢?+1, 6;”'1) still for ¢ < ¢.. Remark
this part of the solution is correct because the bicharacteristics point right-wise. We now
distinguish two cases (figure 7). Either 67"'[1] = 0 in which case i. remains the index of
the caustic (figure 7 a)); or 6Z+1[1] # 0 (figure 7 b)). In this last situation we proceed as
follow :

e We assume the caustic makes a 45° angle with ¢ axis therefore linking points (n*dt, i *
dz) and ((n + 1) = dt, (i, + 1) * dx) (the discretization must satisfy dz = dt).

e As homogeneous Neumann boundary condition are satisfied by ¥~C! on the caustic
(34), o7 11 = ¢:-i+1 is a reasonable approximation (figure 7 b)).

e We march in time, starting again at n * dt but for ¢ < ic + 1. We obtain the solution
qb?c";ll at the new caustic index i, + 1.

o We set 6:1111 =(0,0)T on the caustic (18) and iterate the process.

The question of accuracy and consistency of this process has not been investigated (it ap-
proximates the caustic using vertical and 45° slope segments). Its implementation gives
satisfactory numerical results (section 8). It could also be adapted to treat more general
caustics.

Another possibility to solve the free boundary problem is to use upwind derivative d¢; =
%. It approximates the slope of the caustic. Caustic position at time level (n+1)*d¢
should be "' =47 + dt x d¢; . We can define the missing values (¢}+',67"") for i <i <
in*! using various (interpolation or bicharacteristic) techniques. One can also decide to use
variable steps dx to improve the discretization of the caustic curve.

6.5 The algorithm for multiple cusps

The previous sections explain how to deal with a simple cusp. For more complicated situa-
tions such as described in section 3.4, we need to define a strategy. For two cusps we first
distinguish between case a) b) and c) of figure 3. Case a) and case b) are identical from the
algorithmic point of view :

e Once one of the cusp vertex is detected, we apply the strategy of section 6.2-6.3. This
generates three branches associated to the first cusp. Let us call them : a (I or
and ;.
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e The same strategy is applied to each of the lateral branch ¢; “and (i Or_1f a second
cusp appear say in the left branch, it bifurcates into three new branches noted 5 ot
P3¢ and 93 .

o Branches 7" and ¢; " actually merge and are restricted to Q7N Q5" (using the
domains definition (33)) :

-Cl _ ,,—Cr —Ci —Cr
P =y, on QT N QY.

We recover 5 different branches on the overlap of the cusps when it is not empty. The
right case is dealt with identically. If the second cusp arise at the same time as the
first one, the procedure is unchanged.

Case c) is different :
e Same start as first point above.

e We then look for a cusp vertex appearing in the ;" ¢ branch and simply apply the
same (section 6.2-6.3) strategy. It gives a second cusp solution again noted 5 ot
5 " and $F°.

e Since the apparition of the second cusp, the 'zﬁfc branch bifurcates into the two —C'
branches 5 Cl and Yy €T We eliminate N ¢ and Py “l and vy Cr are respectively
supported in Q79 N Q, % and Q7Y N Q, 9" and again get 5 branches.

When more than two cusps interact (i.e. more than 5 branches) A recursive treatment of
all branches should be possible according to their =C type and following these two strategies.

7 Generalizations

7.1 Generalization to 2-D Hamilton-Jacobi equations

The results of section 2 and 4 also hold in higher dimensions. The generic classification of
singularities (section 3) gets more complicated : the number of possible cases increases (3
in 2-D) and caustics are surfaces. Definition (3) generalizes to :

D(y(s,2°)) = dy; A dys A ds = det( dzf A dz$ A ds.

8yi(s,w°))
0
Oz}
This Jacobian matrix carries information on the type of singularity encountered and is
computed by the transport equation. We believe it is possible to work out a splitting similar
to the one carried out in section 5 for each type of singularity. Then one should carefully
study the possible interaction of these singularities to check that an automatic adaptative
algorithm can be implemented. The resolution of the Hamilton-Jacobi equation and the
transport equation in higher dimensions is possible [Em96].
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7.2 Application to scalar conservation laws

In 1-D, it is well known that it suffices to derive (1) and set u = ¢ , to recover the scalar
conservation law :

{ wyi(t,z) + Hp(t,z,u(t,z) =0, in Q={(t,z) e Rx R, t >~(z)}
u(y(z),x) = ¢?z($), forz eR

We recover for instance Burgers equation from the Eikonal equation with homogeneous
slowness index. Under this transformation, the algorithm presented solves the same multi
valued phase-space problem (as can be seen from line b) of figure 2. The outgoing boundary
condition (section 4.5) can be used to truncate the solution at caustic points. The infinite
(or large) Dirichlet condition is interpreted as the extension of the solution using a steep
slope at caustic points. A discrete time marching scheme using such an extension should
be very accurate in recovering the smooth solution. We can also think of detecting shocks
from the multi valued solution (in the spirit of [Bre84]).

7.3 Reflections

It is interesting to note that the same patching technique can be used to treat reflection of
bicharacteristics on a fixed boundary. The reflection can be symmetrical with respect to the
normal (as for caustics) but may also obey more sophisticated reflection laws (see Theorem
5.10 in [Bar94]). This technique was originally proposed in [EF0Q95] for geometrical optics
(normal reflection). Note however that the introduction of such boundaries may generate
new types of singularity and complicate somewhat the generic classification [Izu].

7.4 Shock and caustic detection : an algorithmic classification of
branches

The other possibility to split the multi valued solution in the case of the cusp for example
is:

First compute the global viscosity solution (in Q).

Detect the kink (shock) using an ad-hoc algorithm.

Generate a new solution from the kink using it as source curve.

Finish the computation by patching the solution at the caustic as proposed in section
5.

The first three points of this program are proposed in [EF095]. The full procedure is more
complicated and more delicate to implement (kink detection is not always robust) than the
algorithm of section 5. It leads however to an interesting conjecture for stationary Hamilton-
Jacobi equations :
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Any multi valued solution for such problems can possibly be recovered iteratively by
successive viscosity solutions using the following strategy :

e Initialize the process by computing the viscosity solution in all the domain.

e Detect all kinks and caustics. For caustics use the transport equation as in the free
boundary problem (38).

e Use the trace of the solution as boundary condition on kinks and caustics for a new
iteration. In the case of shocks these condition are isotropic. For caustic, we must
restrict the domain of resolution to the side of the previous solution.

e Go back to the second point and iterate until no kinks and caustics are detected.

The interested reader can convince himself that this algorithm works on simple examples
involving one or two cusps (see also [BKB]). We think that this algorithm moreover satisfy
the following nice ordering property :

Let (¢*) be the successive solutions, k being the iteration index. They are not necessary
all supported in the full domain . We adopt the convention that, wherever a function ¢*
is not defined, it takes the value of its “parent” (¢*~!) (this rule can, of course, be applied
recursively). Then :

For ki <ky <...<k, we have

¢k (z) < ¢*2(2) < ... < P (2),Vz € Q.

8 Application to geometrical optics

8.1 The 2-D problem

We restrict to a particular form of stationary Hamilton-Jacobi equation and refer to the
introduction and the references therein for a discussion on the underlying motivations. The
Eikonal equation can be written :

1
5 (@ (215 32) + ¢, (21, 32) —n(21,22)) = 0, (21, 22) ER” x R, (40)

where n = % is the slowness index (c is a smooth (C?) strictly positive function modeling

wave velocity in the medium). We add for simplicity a source boundary condition on z; = 0:
$(0,22) = ¢°(22), 22 € R. (41)

Point or parameterized curve source conditions can also be considered.
In this case, the 2-D Hamiltonian is H(z1,%2,p1,p2) = 5(» + p3 — n*(z1,22)) and has

many equivalent forms. The corresponding Hamiltonian system is still (2) (y and p are
vectors) and the time parameterization of these ODEs depends on the particular choice of
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the Hamiltonian. Bicharacteristic curves are called rays and the contour lines of the phase,
normal to rays, fronts. We also have locally :

9(s,2°) = p(s,2°) = (3,2, (y(5,2)), $,2, (y(5,2))).- (42)

8.2 A paraxial restriction on rays

It is possible to greatly simplify this problem under the assumption :

@z, <0.

According to (42), it means that rays/bicharacteristics only propagate in the z; < 0 direc-
tion. In this case (40) can be reduced to :

§01 (31,22) + (8%, (@1,22) = n2(@1,22) = 0, (21,35) € R* xR (43)

We recognize a 1-D time dependent problem. It exactly fits the framework of (1) (with
(41)). We can therefore apply our method to the particular Hamiltonian :

H(zy,x2,p2) = \/Pg —n?(xy,x2).

where z; stands for the time variable —¢ and x> for . This function satisfy all the assump-
tions on H (including remark 2.3).

This approach has been extensively studied in [SVST94] [SS94] [Em96] for 2-D and 3-D
problems. A truncation technique has been developed to eliminate potential turning rays
and an adaptative Runge-Kutta method is used for time accuracy. We use a 1-D matlab
implementation of this algorithm.

8.3 Numerical test

Our test problem corresponds to case c) of figure 3. We programmed the automatic detec-
tion and generation of the two successive cusps in matlab following the strategy described
in section 6.5.

The velocity profile ¢ is analytically given by (figure 8) :
c(t,z) =14+ 0.2 sin(r x 0.5 t). x sin(r * 3* z), for(t,z) € [0,3] x [0, 1].

The corresponding bicharacteristic curves y(.,z°) are represented in figure 9). They corre-
spond to a point source condition :

y(oaa) = (07055)7
p(0,8) = n(0,0.55) * (cos(8), sin(6)),
©(0,8) = ¢°(x°), for 0 € [0.3*,0.7 x 7).
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Here 6 is the initial “shooting” angle of each ray. One can recover equivalent initial condi-
tions (in the form (2)) on ¢t = dt (after one time step) using a ray approximation. Note that
there is no symmetry in the solution. Rays form two envelopes corresponding to the cusped
caustics.

Figure 10 represent the solution for the first cusp, i.e. the solutions ('gbel,éfCl[l])
(¢;7,6;°7[1]) and (79,6 C[1]) (see section 6.4 and 6.5). We display on the left the
contour lines of the phase (sampled every 0.01s.) and on the right, a color map of the value
of D. The fronts are correct and correspond to the generic splitting of figure 5. A kink
is distinguishable in the +C branch. It actually bifurcates to generate a new cusp. The
determinant of the Jacobian D, simply 6%0[1] in this case, is negative for the —C branches,
0 on the caustic and positive for the +C branches. We recover correctly the free boundary
and the position of the second cusp vertex (a white spot) is detected.

Figure 11 represents the solution for the second cusp, i.e. the solutions (7!, 85 °'[1])
(¥ 7,85 “"(1]) and (37, 85 [1]).

We aggregated all fronts in figure 12. One can clearly see the two cusps developing along
time. In order to check the accuracy of our method we compared with a result obtained
using a two point ray tracing method [KKC94]. It is an iterative method (computationally
expensive) able to find all rays between two prescribed points. We compare the time traces
at t = 2.5. It means that we plot the value of the multi valued phase function ¢(1.8,z) for
x € [0.1]. On the left of figure 13 is our solution and on the right the two point ray tracing
obtained on a coarser mesh. The two are in good accordance.

8.4 Link with Keller-Maslov theory

There is a methodological link with this theory. Roughly speaking, Maslov use the generic
classification of singularity to evaluate oscillatory integrals near caustics. These oscillatory
integrals arise as ansatz of solutions for high frequency asymptotic solution of the wave and
Schrodinger equation. For more on these topics, see [Dui74].

The geometrical theory of diffraction [Kel58] [Lud66] gives the same approximation of
the reduced wave equation near cusped caustics. The decomposition of the solution in a
neighborhood of the caustic actually corresponds to section 5. The main difficulty in classical
geometrical optics is the computation of the amplitude of the high frequency asymptotic so-
lution. The “classical” amplitude is proportional to \/LB and blows up at caustics. Based on
the decomposition of the phase function, geometrical theory of diffraction provides modified
transport equations for the amplitudes which remain valid near caustics. Our method com-
putes all needed quantities to solve these modified transport equations. It should therefore
be possible to get the correct amplitudes near caustics (more details in [Ben97]).
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9 Conclusion

We hope that the reader which has reached this point is convinced that it is possible to
automatically perform phase-space (R, x R,) computations only in position space R,. We
did not try to obtain the weakest assumptions under which the presented results hold, but
instead chose to set the problem in such a way that the combination of the different used
theories work.

We finish by listing the advantages and disadvantages we see to this method. We want
to emphasize two of the nice feature of the algorithm :

It splits the multi-valued solution into smooth single valued solution. These solutions
can not only be computed by upwind schemes but also are easy to compute because they
are smooth (no kinks). This algorithm is optimal in term of computational cost. Whatever
the scheme used, we are guaranteed to discretize and work exactly on the projection of the
support of the solution in phase-space. The transport equation penalizes the cost. However,
for geometrical optics for instance, this equation has a physical meaning and its solution is
a sought for quantity.

The main difficulty is the the implementation. Relatively simple in 1-D, the automatic
detection of caustics and the sorting and patching of different branches is possible but
certainly difficult in 2-D.
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Figure 4: Singular solution (with kink)
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