Irregularity of Optimal Trajectories in a Control Problem for a Car-like Robot

Elena Degtiariova-Kostova 1 Vladimir Kostov
1 PRISME - Geometry, Algorithms and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We study the problem to find (a) shortest plane curve(s) joining two given points with given tangent angles and curvatures. The tangent angle and the curvature of the path are continuous and the derivative of the curvature is bounded by $2$. At a regular (i.e. of the class $C^3$) point such a curve must be locally a piece of a clothoid or a line segment (up to isometry a clothoid is given by Fresnel's integrals $x(t)=\int _0^t\cos \tau ^2d\tau $, $y(t)=\int _0^t\sin \tau ^2d\tau $). We prove that if the distance between the initial and final points is greater than $320\sqrt{\pi }$, then a generic shortest curve contains infinitely many switching points.
Type de document :
Rapport
RR-3411, INRIA. 1998
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073279
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:25:39
Dernière modification le : samedi 27 janvier 2018 - 01:31:30
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:41:04

Fichiers

Identifiants

  • HAL Id : inria-00073279, version 1

Collections

Citation

Elena Degtiariova-Kostova, Vladimir Kostov. Irregularity of Optimal Trajectories in a Control Problem for a Car-like Robot. RR-3411, INRIA. 1998. 〈inria-00073279〉

Partager

Métriques

Consultations de la notice

203

Téléchargements de fichiers

248