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Analyse de singularité et
asymptotique des sommes de Bernoulli

Résumé : L’analyse asymptotique d’une classe de sommes qui interviennent en théorie
de 'information peut étre effectuée de maniére simple par analyse de singularité de séries
génératrices. La méthode développée dans ce rapport étend en fait I’applicabilité des tech-
niques d’analyse de singularité & des sommes combinatoires comprenant des éléments tran-
scendants tels des logarithmes ou des puissances fractionnaires.



SINGULARITY ANALYSIS AND
ASYMPTOTICS OF BERNOULLI SUMS

PHILIPPE FLAJOLET

ABSTRACT. The asymptotic analysis of a class of binomial sums that arise in
information theory can be performed in a simple way by means of singularity
analysis of generating functions. The method developed extends the range of
applicability of singularity analysis techniques to combinatorial sums involving
transcendental elements like logarithms or fractional powers.

1. BERNOULLI TRANSFORMS

Let {fi} be a sequence of real numbers and p € (0,1) a real parameter that is
fixed. The Bernoulli transform of fi, (with parameter p) is defined as

n
1 Salf] = (")kk”—k =1-p.
(1) (7] kzzo . ) Jerta g p
Given the coefficients fi, the problem is to estimate asymptotically S,[f].

In probabilistic terms, the Bernoulli transform S,[f] is the expectation of f
under the binomial, or Bernoulli, probability distribution B(n,p) (that is, the dis-
tribution of the number of successes in n independent trials with individual success
probability p). For a sequence fj that is “smooth”, the concentration of the bi-
nomial distribution around its mean pn leads us to expect, as regards dominant
asymptotics at least, that

(2) Sn [f] ~ fl_pnj )

It is possible, but somewhat unwieldy, to obtain detailed asymptotic estimates in
this way. Such estimates are however needed in variance computations or in the
analysis of redundancy of codes [9], where cancellations are inherent. Jacquet and
Szpankowski have considered in [6] a number of cases precisely motivated by infor-
mation theory problems. For instance, a question as natural as that of estimating
the entropy of the binomial distribution, namely,

n
n
k —k
H,,=- E o,k lOgTh k) Tnk = (k)p ",
k=0

is equivalent to the analysis of the Bernoulli transform of f;, = logk!. On a different
register, the analysis of the mean and variance of the logarithm of a binomial
random variable requires the transforms of logk and log® k.

The approach of [6] relies on a chain that is based on exponential generating
functions, Cauchy coefficient integrals, and saddle point estimates under the form of
“analytic depoissonization” in the sense of [7]. In this note, I propose a surprisingly
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2 PHILIPPE FLAJOLET

simple approach that is based on ordinary (rather than exponential) generating
functions and singularity analysis [4, 13].

We restrict attention to coefficients f; that are of at most polynomial growth.
Representative cases meant to illustrate the principles of the approach are

1 /2k 1
(3) £1>=4—k<k), =i, 1 = 7o 10 = logk, S = log(k!)

There H, = 1+ % 4+ 4 % is the kth harmonic number and by convention fés) =

84) = 0. The corresponding Bernoulli transforms are denoted by S,(Lj), j=1..5
and their asymptotic evaluation is summarized by the following statement.

Proposition 1. The Bernoulli transforms of the basic sequences of Eq. (3) satisfy:

_ 5p2 _
s = \/7% <1_ 3gpn2 * 20p1281603§2+ = O(n_lf’»)>
S = plog(pn) +7 + % - 121? + O(%)
@ s = = (1N s D o)
S = log(pn) + I;;nl - pzlgﬁfnt 2 O(n—lg,)
s = log((pn)ymer/2mpn) — p; r 1235;1 +0(%).

To some extent in this range of problems, methods are at least as interesting as
results. Indeed, the method developed below constitutes a useful general-purpose
addition to the toolbox of singularity analysis [4, 13]. As discussed briefly in the
last section of this note, applicability extends to many other situations, for instance
tree recurrences, as considered in [2, 8, 12].

2. SINGULARITY ANALYSIS OF BERNOULLI SUMS

Given a sequence fi and its transform S, = S,[f], the corresponding ordinary
generating functions are

(5) S(z) := Z Sp2", fz) = kazk
n>0 E>0
Then, the binomial theorem implies the fundamental relation,
1 pz
(© st = =1 (2.

as can be checked by the chain of equalities,
1 Pz k_k —k—1 k k(T n—k_n—k
1_qu<1_qz) ik Jep® 2" (1 — qz) nikfkpz P

Recall that singularity analysis [4, 13] ensures the validity of a variety of transfers
from the local properties of a generating function near its dominant singularity
(z — 1) to the asymptotics of its coefficients (as n — o0), for instance,
nf=1

L(p)

h(z) ~(1—2)P (log(1—2)"Y)" = ["]h(z) ~ (logn)" .
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Conditions are that singularities must be isolated and that the expansion of the
function holds “beyond” the circle of convergence in an “indented crown” |z| < R
(for some R > 1) and |arg(z — 1)| > ¢ (for some € > 0).

Now, pz/(1 — ¢z) maps conformally the unit disc on the interior disc of diameter
[—p/(14¢), 1]. Thus, the function S(z) is a priori analytic in the unit disc. Similarly
if f(z) has an isolated singularity at z = 1 and is continuable beyond the unit disc
(in an indented crown), the same property holds for S(z). Then, the observations
just made entail the following property:

If the conditions of singularity analysis are satisfied by the generating
function f(z) of a sequence, then they also hold true for the generating
function S(z) of its Bernoulli transform.

Direct analysis. In simpler cases, these observations are enough to conclude on
the asymptotics of S,, from the relation (6) and derive an expansion to an arbitrary
order. For instance, the first case of (3) has

1 1 1 1
RO = ,
== = S Va9

fH(z) =

1—gz

where the form of S()(z) results from (6). The singular expansion of S()(z) (at

the singularity z = 1) as well as the asymptotic form of SEY (as n — o0) read off
immediately:

SM(z) = ﬁ (1 - % <%) (1—2)+ % (%)2 (1-2)*+0((1 - 2)3))

1 3p—2  25p? — 60p+ 36 1
/Tpn 8pn 128p2n? n3

Similarly, the second case of (3) has

1 1 1 1—gqz
() = log —— @) = —1 1
(=) T et SV = g legT——,
1 1 logp p-—1
2) _
S 1—z10g1—z+1—z+ P +
S = Hy+logp+O(¢") ~ log(pn) +7 + o= — —— +---
2n  12n?

Indirect analysis. The truly interesting cases are the last three sequences in (3).
The analysis then requires the singular expansions of the functions

k
z
(7) L(z) = E ﬁ’ M(z) = E(logk) 2,
E>1 E>1
that have a polylogarithmic flavour [10]. We have
1

1—=z

O = Lz), D) =M@z), fO@)= M(2).

In the next section, we establish a general result to the effect that generating
functions involving k=% and log k satisfy the conditions of singularity analysis; see
Theorem 1 below. Granted this, the singular expansions for the remaining three
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cases of Proposition 1 follow automatically:

@y VT L L VAR =3V —2) o
SH(2) p(l—z)+pC(2)+ e +0(1-2)
(4) 1 1 logp — v 1
SW(z) = ;S log TS + —I—%log(l—z)
1
+ %(1 —2p—logp+ v +log(2m)) + O((1 — z) log(l — 2))
p 1 1 1
5(5)(2) = (1_2)2(10g1_z —|—10gp—"y)+ 1—Z(p_ §)log(1—z)
1 1
+ :((5 —p)(1 —v) + plogp +log\/27p) + O(log(1 — 2)).

The translation by the rules of singularity analysis is then done “at sight” and the
last three estimates of Eq. (4) in Proposition 1 result.

3. SINGULARITY ANALYSIS OF POLYLOGARITHMS

In this section, we show that the generalized polylogarithm of “fractional order”,

0 Lia(2) 1= Y (logn)y =

n>1

(r an integer, v an arbitrary complex number) initially defined for |z| < 1 satisfies
the conditions of singularity analysis. This means analytic continuation as well as
validity of the singular expansion in a sector that “goes out” of the unit circle.
Note that, with the earlier notations of (7), we have L(z) = Liy;50(2) and M(z) =

Lioyl(Z).

Theorem 1. The function Li, ,(2) is analytic in the slit plane C\ [1,+oo[. For
a#1,2,..., the function Li, o(2) satisfies the singular expansion

) = 1=+ o
(©) =
t = —logZ:Z(l_gz) )

=1

as z — 1 in the sector (¢ an arbitrary positive real)
—mte<arg(l—z)<m—e

For r > 0, the singular expansion of Li, ,(z) is obtained by
(10) Lig ,(2) = (1) 630/“ Lia o(2),

and corresponding termwise differentiation of (9) with respect to «.

The proof decomposes into three lemmas. Lemma 1 establishes analytic continu-
ation. This fact is classical and it appears in Ford’s monograph [5] but we recall the
proof based on the classical integral representation (11) as it is needed in the sequel.
Lemma 2 establishes the form of the singular expansion as z tends to 1 while staying
near the real axis; the analysis is then a direct application of Mellin transform tech-
niques [3] to the series representation that defines the polylogarithmic functions.
Finally, Lemma 3 extends the range of the singular expansion to a suitable sector
that goes beyond the disc of convergence; this is achieved by subjecting the integral
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representation of analytic continuation to Mellin transform asymptotics along the
lines of [14].

Lemma 1 (W. Ford, 1936). The polylogarithm Li, »(z) is analytically continuable
to the complex plane slit along the ray [1,400].

Proof. Consider an arbitrary function g(s) analytic in R(s) > 0, of at most polyno-
mial growth there. The case of interest here is g(s) = s~ *(logs)" that is of small
growth. The associated series

n>1

admits, by the residue theorem, the integral representation

1 1/24ic0 T
(11) G(—y) = / o()y" —— ds;
1

21w . sin s
/2—ioc0

see Lindelof’s monograph [11]. By the fast decrease of the reciprocal sine kernel
along vertical lines, the integral (11) giving G(—y) converges and is analytic in y
provided that y has an argument that lies in an interval [—7 4 ¢, 7 — €], where ¢
is an arbitrary positive quantity. Since G(z) is obviously analytic in the unit disc,
this proves, by uniqueness of analytic continuation, that G(z) is in fact analytic in
the complex plane slit along the ray [1, +00). O

The next two lemmas relie crucially on properties of the Mellin transform, as
detailed in [3, 14]. The Mellin transform of a function h(?) is classically defined as

h*(s) = /OOO h(t)t*~! dt.

The following properties are essential.

— HaRrRMONIC PROPERTIES. The transforms of harmonic sums and harmonic
integrals have a factored form: if

FO =Y NS0, GO = [ Ak

then

FA(s) = (2 Aku,;s) THONENEIOE ( [ dk) P (o).

These properties derive from the rescaling rule for Mellin transforms and are
detailed in [3] (Theorem 1, p. 10, Lemma 2, p. 24) in the case of sums, as well
as in [14] (Theorem 4, p. 152) in the case of convolution integrals.

— MAPPING PROPERTIES. The Mellin transform maps terms in the asymp-
totic expansion of an original function at 0 or 400 to singularities of the
transformed function. The correspondence fares both ways: from original
to transformed functions it is called the “Direct Mapping Property” and its
proof is based on integral splittings; from transformed to original functions,
it is called the “Converse Mapping Property” and it is based on a residue
evaluation of inverse Mellin integrals, so that it holds under conditions of
smallness of the transform at +ico. These mappings are described in [1], as
well as in [3] (Theorems 3 and 4, pp. 16-22) and [14] (Theorem 5, p. 153).
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Lemma 2. The functions Li, ,(z) satisfy the singular expansions (9) and (10), as
z — 1 in the domain (¢ an arbitrary positive real)

{|Z|<1}U{Z | —%+€<arg(1—z)<g—e}.

Proof. First, the asymptotic expansion as z tends to 1 from the left results from
standard Mellin transform techniques applied to the sum defining Li, ,(2), as ex-
posed in [3]. In the case of Li, o, the Mellin transform of A(t) = Liy o(e™") is by
the Harmonic Property for sums (see also Example 9 of [3])

A (s) = (s + a)(s).

The “singular series” of A*(s) (that collects dominant contributions at singularities)
results by separate consideration of the singularities that are simple poles, at s =
1 — « and at s = —j, for integer j:

(12) X<(s) < (1 — ) _1+Q+Z

a—j) 1
jvos+i

In accordance with the Converse Mapping Property, the asymptotic expansion as
t — 0, with ¢ real positive, follows by a residue evaluation of the inverse Mellin
transform: the map is 1/(s + w) — t*, and the result is the first line of (9) with
z=c¢e"t.

The asymptotic expansion (9) remains valid provided that ¢ stays in a sector of
the right half-plane R(¢) > 0 originating at 0, with an opening angle that is strictly
less than w. This holds because the inverse Mellin integral still converges there
and the residue evaluation that supports the asymptotic expansion of the original
function A(t) applies in such a sector [3]. Thus, the singular expansion of Li, o(2)
as z — 1 continues to be valid in the stated region, that is inside the unit disc.

The same reasoning applies to p(t) = Lia »(e™*) whose Mellin transform is

r

w(6) =10 (-1 gttt ) )

and it is easy to check that differentiation with respect to a propagates throughout
in the argument used for the case r = 0. O

As a last step, one has to show persistence of the singular expansion in an
indented crown that goes “outside” of the disc of convergence |z| < 1. Here is
roughly what goes on: when y approaches —1 from above or below, the integral
giving G(—y) goes from a regime where it converges exponentially fast to a regime
of slow convergence or even divergence. For Lij/s o(2) and Lig1(z), the situation
is then analytically similar to what happens with the Laplace integrals of small
arguments (w — 0),

[e'e} e—wt [e'e}
dt, / e~ “log(l +t)dt;
/0 e i g(l+1)

see Chapter 3 of Wong’s superb book [14] for a general theory.

Lemma 3. The functions Li, .(2)satisfy the singular expansions (9) and (10) as
z — 1 in the domain (¢ an arbitrary positive real)

{z | e<arg(z—1)<m—e€}U{z | —m+e<arg(z—1) < —¢} .
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Proof. By symmetry, it is enough to consider z in the upper half-plane J(z) >
0. The proof starts from the integral representation (11), taken with y = —z
approaching —1 from the bottom. We develop it in the case of Liy g, the other case
being similar.

First consider the situation where y = —z lies on the unit circle and set, in the
notations of Lemma 1,

y= ei(—7r+t)’
with ¢ real and positive. Then, with s = % + iw, one has
) 1 +oo 1 ,n.ei(—7r+t)(1/2+iw)
| y) = G(oe-mHy = _ L LI duw,
(13) Gly) = Gl—e ) 27 J_ o g(Q +iw) cos(imw) w

As a function of w, the integrand in (13) decays exponentially when w — —o0, and
this decay holds for any fized t > 0, since

ei(—7r+t)(1/2+iw)
(14)

Set G(—y) = G~ (—y) + G*(—y) where Gt and G~ represent respectively the
contributions in (13) arising from the positive and from the negative part of the
integration line. Then, given the uniform exponential decay of the integrand at
w = —oo, the quantity G~ (—y) is an analytic function of ¢, and as such it admits a
standard series expansion in powers of . On the other hand, G*(—y) experiences
a phase transition when ¢ approaches 0, as the exponential decay of the integrand
at w = 400 ceases to hold; see (14). More precisely, with y(t) = G*(—y), the
form (13) yields

26(7r—t)w

T eTw + e—Tw :

cos(imw)

+oo
(1) :/0 e~ " h(w) dw,

where h(w) is analytic at 0 and admits a full asymptotic expansion at co. For
instance g(w) = w~'/? corresponds to

(15)

1
h(w) = ——(1+(m—)w+--+), h(w) = —(1—1
() 2, =5+ (r =Dt o), hw) = (=i o=
A standard method for the analysis of such integrals, see [14], is once more Mellin
transforms. (The method parallels the treatment of harmonic sums in [3].) By the
Harmonic Property for sums, the Mellin transform of y(¢) is

(16) 7*(s) = T(s) /000 h(w)w™* dw.

Then, by the Direct Mapping Property, the existence of standard asymptotic ex-
pansions of h(w) at 0 and +oo (as illustrated by the typical expansion (15)) entails
that 7*(s) is a meromorphic function in the whole of the complex plane. In ad-
dition, the fast decrease of I'(s) towards +ico legitimates the use of the inverse
Mellin integral and of companion residue evaluations, in accordance with the Con-
verse Mapping Property. Thus y(¢) that represents G*(—y) admits an asymptotic
expansion as t — 0 that is of the form

(17) () ~ Y st (logt)’,
(5:)

1 1
11—
(1+ 4w

_|_)
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f(X) Ezpectation Variance
% 1)%_22;21 (p_;2£€—2)+... ;3—1131’_1_(21)—;2?(131)—3)_1_

log X log(pn) + pzl_ml _ (» —1211))(2];2— 5) o lp—np N (p _21]32(52_ 3) N
VE (el 0o odn ) 1 o ety

TABLE 1. Mean and variance of functions f(X) of a binomial
random variable X € B(n,p). (By convention, f(0) =0.)

where the exponents § form an unbounded nondecreasing sequence. Given the
already noted analyticity of G~ (—y), an expansion of type (17) also holds for G(z)
in terms of t = log(1/z), when z — 1.

Finally, because of the fast decay of the Gamma function at oo in the trans-
form (16), the asymptotic expansion in (17) remains valid when ¢ tends to 0 inside
any cone of the complex upper half-plane originating at 0 with an opening angle
strictly less than .

At this stage, one has thus established the ezistence of an asymptotic expansion
of type (17) for G(z) when z — 1 from above (or from below, by symmetrical
arguments). Such an expansion —we do not need to determine it explicitly— holds
in a region that overlaps with the interior of the unit disc. Thus, this asymptotic
expansion of G(z) as z — 1 must coincide with that of (9) and (10). The validity
of the singular expansion (9), (10) is thus now ensured outside of the unit. O

For completeness, we mention that similar arguments yield the expansion of
Liy 0 when m € {1,2,...}, with z = ¢™* (there is a double pole at s = 1 — m),

. -nHm —1) .
Lip, 0(2) = ﬁtm—l(logt — Hpnoq) +j>0%m_1 %C(m — ),

an exact representation due to Zagier and Cohen [10, p. 387]. More generally, one

has
Lip,r(2) = Res ((=1)7¢")(s + m)D(s)t™)) + >

:1—
T g0, j#m—t

(-1

J!

where Res(.) denotes a residue. Thus, in such cases, a “special term” comes in that
is provided by a residue at a multiple pole.

4. CONCLUSION

Generalized polylogarithms constitute a useful addition to the singularity analy-
sis toolbox. The approach developed in this note is also well-suited to computer
algebra and barely twenty instructions in the Maple system suffice to perform auto-
matically all the formal computations underlying Proposition 1. Table 1 illustrates
this further by providing detailed asymptotics estimates obtained in this way of
mean and variance of the inverse, logarithm, and square-root of a binomial random
variable.

Clearly the method applies to functions whose coefficients admit an analytic in-
terpolation that is of polynomial growth in a half plane and has smooth asymptotic
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properties at infinity, typical examples being

S Lene

n>0 n? +1 ’ 77, + Py
This makes it possible to analyse a whole range of combinatorial sums that involve
“transcendental” elements. Direct consequences (see Case 5 of Proposition 1) are
the estimation of the entropy of the binomial distribution,

np = logn—|— —i—log\/Qﬂ'pl— +O

as determined to arbltrary order by Jacquet and Szpankowskl in [6], or an alterna-
tive derivation of some of Krichevskiy’s estimates regarding the redundancy of the
“add-# rule” in universal coding (see [6, 9]).

Another instance of such transcendental elements is the tree recurrence of Knuth
and Pittel [8] that arises in union-find algorithms

n 1 n k k-1 n—=k n—k—1
Tpn = €y + Epnkrk; Pnk = —< ) <_) ( ) )
— n—1\k n n

and cases like ¢, = n” are of interest. Similarly, the tree-shape parameter consid-
ered by Fill, Meir, and Moon [2, 12] leads to the recurrence

n—1

2
rn, =1 — Ti.
n ogn + n Z Tr
k=0
Such tree-recurrences become amenable to singularity analysis thanks to Theorem 1

employed in conjunction with closure under Hadamard products. This will be
explored in a future note.
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