Thermodynamic Limit and Propagation of Chaos in Polling Networks

Abstract : {${\P\n,¸N\geq 1 }$ is a sequence of standard polling networks, consisting of $N$ nodes attended by $V\n$ mobile servers. When a server arrives at a node $i$, he serves one of the waiting customers, if any, and then moves to node $j$ with probability $p_{ij}\n$. Customers arrive according to a Poisson process. Service requirements and switch-over times between nodes are independent exponentially distributed random variables. The behavior of $\P\n$ is analyzed in {\em thermodynamic limit}, i.e when both $N$ and $V\n$ tend to infinity, with $U\egaldef\lim_{N\rightarrow\infty}V\n/N,\ 0
Type de document :
Rapport
[Research Report] RR-3398, INRIA. 1998
Liste complète des métadonnées

https://hal.inria.fr/inria-00073291
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:26:56
Dernière modification le : samedi 17 septembre 2016 - 01:35:39
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:25:20

Fichiers

Identifiants

  • HAL Id : inria-00073291, version 1

Collections

Citation

Franck Delcoigne, Guy Fayolle. Thermodynamic Limit and Propagation of Chaos in Polling Networks. [Research Report] RR-3398, INRIA. 1998. 〈inria-00073291〉

Partager

Métriques

Consultations de la notice

134

Téléchargements de fichiers

115