N

N

Out-Of-Order Execution May Not Be Cost-Effective on
Processors Featuring Simultaneous Multithreading
Sébastien Hily, André Seznec

» To cite this version:

Sébastien Hily, André Seznec. Out-Of-Order Execution May Not Be Cost-Effective on Processors
Featuring Simultaneous Multithreading. [Research Report] RR-3391, INRIA. 1998. inria-00073298

HAL Id: inria-00073298
https://inria.hal.science/inria-00073298
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073298
https://hal.archives-ouvertes.fr

ISSN 0249-6399

INSTITUT NATIONAL DmRLEN NlOiMLléﬂ ET EN AUTOMATIQUE

Out-Of-Order Execution May Not Be Cost-Effective on
Processors Featuring Simultaneous Multithreading

Sébastien Hily, André Seznec

N° 3391
March 1998

THEME 1

apport
derecherche

RENNEsS

Out-Of-Order Execution May Not Be Cost-Effective on Processors
Featuring Simultaneous Multithreading

Sébastien Hily, André Seznec

Theme 1 — Réseaux et systemes
Projet CAPS

Rapport de recherche n3391 — March 1998 — 16 pages

Abstract: To achieve a high performance on a single process, superscalar processors now rely on very
complex out-of-order execution. Using more and more speculative execution (e.g. value prediction) will be
needed for further improvements.

On the other hand, most operating systems now offer time-shared multiprocess environments. For the
moment most of the time is spent in a single thread, but this should change as the computer will perform more
and more independent tasks. Moreover, desktop applications tend to be multithreaded. Most of the users
should then be more concerned with the performance throughput on the workload than with the performance
of the processor on a single process. Simultaneous multithreading (SMT) is a promising approach to deliver
high throughput from superscalar pipelines. In this paper, we show that when executing 4 threads on an
SMT processor, out-of-order execution induces small performance benefits over in-order execution. Then,
for application domains where performance throughput is more important than ultimate performance on
a single application, SMT combined with in-order execution may be a more cost-effective alternative than
ultimate aggressive out-of-order superscalar processors or out-of-order execution SMT.

Key-words: Simultaneous Multithreading, Superscalar microprocessors, out-of-order execution.

(Résumé : tsvp)

This work done while Sébastien Hily was with IRISA. He was partially supported by a grant from regional council of
Brittany. Sébastien Hily is now with Intel Corporation.

shily@ichips.intel.com, seznec@irisa.fr

Unit"e derecherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
T el"ephone: 0299 84 71 00 - International : +33 299 84 71 00
T el"ecopie: 029984 71 71 - International : +3329984 71 71

A propos de ’exécution dans le désordre et des processeurs
multiflots simultanés

Résumé : Dans cet article, nous montrons que 1’association exécution dans ’ordre et multiflot simultané
permet d’atteindre des niveaux de performance du méme ordre que 1’association exécution dans le désordre

et multiflot simultané.

Mots-clé : Multiflot simultané, exécution dans le désordre

Abstract

To achieve a high performance on a single process,
superscalar processors now rely on very complex out-
of-order execution. Using more and more speculative
execution (e.g. value prediction) will be needed for
further improvements.

On the other hand, most operating systems now
offer time-shared multiprocess environments. For the
moment most of the time is spent in a single thread,
but this should change as the computer will perform
more and more independent tasks. Moreover, desk-
top applications tend to be multithreaded. Most of
the users should then be more concerned with the
performance throughput on the workload than with
the performance of the processor on a single process.
Simultaneous multithreading (SMT) is a promising
approach to deliver high throughput from superscalar
pipelines. In this paper, we show that when executing
4 threads on an SMT processor, out-of-order execu-
tion induces small performance benefits over in-order
execution. Then, for application domains where per-
formance throughput is more important than ulti-
mate performance on a single application, SMT com-
bined with in-order execution may be a more cost-
effective alternative than ultimate aggressive out-of-

order superscalar processors or out-of-order execution
SMT.

keywords: Simultaneous Multithreading, Super-
scalar microprocessors, out-of-order execution.

1 Introduction

During the last few years, the design trend for ge-
neral purpose microprocessors has been to track the
ultimate single process performance. Current micro-
processor architectures are relying on very aggressive
hardware mechanisms to execute instructions out-of-
order. Such mechanisms enhance an application exe-
cution by looking for independent instructions to is-
sue. The ability of a processor to free itself from
the sequential model imposed by the applications has
thus become a key feature determining the level of
performance. Further increase of the performance of
singlethreaded superscalar architectures will depend
on even more aggressive techniques, such as load and
value predictions [2, 18, 17, 23], multiple basic block
fetching [22] and possibly other forms of speculative
execution. This will further increase the design com-
plexity and may lead to longer and longer design and

RR n3391

test cycle. Moreover, beside the high level of com-
plexity reached by the implementation, the effective
performance observed on general-purpose processors
remains relatively low compared to their peak per-
formance. This is mainly due to limited instruction-
level-parallelism (ILP) offered by most applications
[4].

On the other hand, most of the desktop computers
or workstations run multitasked operating systems
(e.g.: Windows95, WindowsNT, Unix). The opera-
ting system keeps switching the execution between
all the active tasks, usually on a time-sharing basis.
For an OS like Windows NT or Solaris, several tasks
can even be executed simultaneously if several pro-
cessors are available. While previously multithreaded
workloads were limited to a scientific environment or
to databases, now, a conventional PC running Win-
dows95 has around 20 threads created before the user
launches any application. Most of these threads are
created by the 32-bit kernel, the task manager, the
16-bit applications manager and the Explorer user
interface (see WinTop under Windows95 and Task-
Manager under WindowsNT) . The number of run-
ning tasks then quickly grows as the user executes
new applications. Even if for the moment few tasks
need and have high activity at the same time, this
will change as the user will be willing to play a game
while downloading a file or to print data and process a
worksheet while writing a report. Moreover, desktop
applications tend to be multithreaded [16]. Appli-
cations such as Powerpoint, Excel, Winword or Nets-
cape create several threads. Most of these threads are
dedicated to real-time activity such as spell-checking
or graphics drawing while the user is working. Web
browsers such as Netscape are especially prolific in
creating threads and while downloading pages, the
task manager shows often several threads working in
parallel. Today, very few threads have intensive CPU
activity, but desktop have more and more complex
tasks running in background. While iconified, Nets-
cape keeps performing CPU-intensive tasks with cer-
tain web pages. Moreover, a lot of applications, such
as graphical applications or data processing could ex-
hibit more very cpu-intensive threads. The absence of
parallel support has prevented their algorithms to be
parallelized but this can be easily done. In the near
future more and more deskstop applications should
then be able to take advantage of a hardware sup-
port for parallel execution.

Such a hardware support on a uniprocessor may
be provided by Simultaneous Multithreading (SMT).
SMT is a new concept of processor for achieving high
performance throughput [24]. It relies on the avai-

lability of independent instructions, from several si-
multaneously active threads, to enhance ILP. The ac-
tive threads can share all the processor resources, and
thus, even when there is only one active thread, the
performance can be high. The sharing gives also to
an SMT architecture a significant performance ad-
vantage compared to a transistor budget equivalent
on-chip multiprocessor [25]. Two alternatives exist
for the design of the superscalar pipeline architec-
ture: in-order execution and out-of-order execution.
In-order execution has been rejected in most of the
recent high end microprocessors because of poor per-
formance compared to out-of-order execution. Never-
theless, the design complexity of out-of-order execu-
tion is very high, and recent examples have shown
that such designs are often delayed.

In this article, we investigate the respective perfor-
mance of both types of implementation in an SMT
processor. QOur study shows that, while ultimate
single process performance requires out-of-order exe-
cution, high-throughput microprocessors may rely
on in-order execution and SMT. When executing 4
threads, in-order execution is shown to be nearly as
effective as out-of-order execution. We then look at
the opportunity of using static instruction reordering
to enhance the performance when executing several
threads simultaneously. We show that the impact of
this reordering is quite low for in-order execution as
well as for out-of-order execution.

The remainder of this paper is organized as follows.
After a short discussion of instruction pipeline in Sec-
tion 2, we describe in detail in Section 3 the simulated
architecture as well as the benchmarks used for the
tests. In Section 4, we compare the respective per-
formance of the two types of pipelines for optimized
codes. Section 5 investigates the impact of instruc-
tion reordering on SMT. Finally, Section 6 presents a
summary of this study.

2 Instruction pipeline

The core of modern microprocessors is constituted of
an instruction pipeline [14]. The execution of instruc-
tions is divided into different successive phases. Ge-
nerally these phases are, the instruction fetch from
memory, a decoding phase, the execution of the ope-
rations, possibly an access to memory and finally the
update of registers. This traditional decomposition
has known an evolution to adapt itself to new ar-
chitectural constraints and the increase of the clock
frequencies. Processors have also evolved in two ma-
jor categories, the first based on in-order execution

of the instructions, the second allowing out-of-order
execution.

Out-of-order execution improves performance by
maximizing the number of instructions issued on
every cycle [13]. Nevertheless, the implementation
implies a very high cost. When executing instruc-
tions in-order, pipeline hazards prevent issuing fur-
ther instructions, yet a lighter control authorizes hi-
gher clock frequencies. These two design philosophies
have been at the origin of the classification of the pro-
cessors into two categories: the "Brainiacs" running
after a greater number of instructions to be executed
in each cycle and the "Speed Demons" looking for
higher clock frequencies [8].

Since several years, the performances showed by
the "Brainiacs" and the "Speed Demons" cover a
large but relatively equal spectrum. The Alpha pro-
cessors (in-order model) have nevertheless kept the
lead in the matter of peak performances. However,
as the integration capacity and clock frequencies in-
crease, complex designs appear increasingly attrac-
tive. Out-of-order execution allows singlethreaded
superscalar processors to reach a significantly higher
degree of instruction level parallelism (ILP) than in-
order execution. Most of the high level micropro-
cessor designers have thus rallied around the "Brai-
niacs" philosophy. The new DEC processor, the Al-
pha 21264, or the latest Hewlett-Packard processor,
the PA8000, execute instructions out-of-order. Ne-
vertheless, the race for complexity requires huge de-
velopment teams (200-400 persons) and leads to the
extension of the development time (3 to 5 years).

There has been a sustained research effort put
on singlethreaded superscalar architectures and new
techniques are emerging to further increase the per-
formances of microprocessors : load and value pre-
dictions [2, 18, 17, 23|, multiple branch prediction
or trace cache [22] ... However, this effort focuses
on increasingly complex mechanisms with more and
more hardware for control and less for true execu-
tion.Moreover, the effective performance observed re-
mains relatively low compared to the peak perfor-
mance. This phenomenom is mainly due to the limi-
ted ILP offered by the applications [4].

Achieving performance on a processor may be ob-
tained by using alternative architectures and espe-
cially by relying on more parallelism. Being able to
execute several processes simultaneously could offer
a significant gain in performance. Simultaneous mul-
tithreading (SMT) is a new architectural concept of-
fering high performance through a better hardware
utilization [25, 24]. In an SMT processor several
threads can be executed simultaneously. Thus, many

INRIA

independent instructions are available for execution
on each cycle. When one thread has no fireable ins-
tructions, other active threads are likely to have ins-
tructions ready to be sent to the functional units.
Issuing opportunities offered by the threads should
preserve high ILP, even when instruction selection
from one thread is limited to the sequential order
of the program. Compared to an on-chip multipro-
cessor, in an SMT microprocessor the active threads
share all the hardware resources, in particular, ins-
truction and data caches may be shared. This gives
SMT a significant performance advantage [25], espe-
cially when the number of threads decreases as when
only one thread is available, it can use the complete
processor to execute. An SMT single-chip processor
can be built adapting an existing superscalar archi-
tecture, thus limiting the design and test cycle. In
[24], Tullsen et al. chose an out-of-order pipeline in
their SMT architecture model. On the other hand,
the model proposed by Goossens and Vu [7] aiming
at a short cycle is limited to in-order execution. To
our knowledge, no studies comparing performances
of in-order and out-of-order executions have been un-
dertaken when several threads are available simulta-
neously. In the remainder of this article, we study
the respective performances of different pipelines in a
simultaneously multithreaded environment as well as
the impact of static instruction reordering on the per-
formance of synchronous multithreaded processors.

3 Experimental framework

A trace-driven simulation model has been used in this
study. Our simulator is based on the Sparc V7 ins-
truction set [20] and has been build from Spy, the
tracing application for Sparcstation written by Gor-
don Irlam [12].

3.1 Simulated architectures

For the simulations, a 7-stage integer pipeline has
been used (ref. Figure 1). First, instructions are
fetched from the memory into an instruction buf-
fer. There is one buffer per thread. The instruc-
tions available in the buffers can then be fed into the
pipeline according to the priorities given to the ac-
tive threads. The highest priority is granted to the
thread having the least instructions in the static part
of the pipeline[24]. The lower this number, the higher
the priority. Intuitively, a low number of instructions
present for a thread gives a good opportunity of exe-
cuting subsequent fetched instructions.

RR n3391

/—* from memory

‘ FETCH_M ‘ FETCH_B ‘ DECODE ‘DISPATCH ‘EXECUTION‘ MEMORY ‘WRITEBACK‘

\—v from thread buffers \\' from the instruction windows

Figure 1: Integer pipeline

Each instruction buffer has a capacity of two cache
blocks (i.e 16 instructions). On every cycle, up to 8
instructions are read from the buffers. Following the
computed priorities, one fireable instruction is selec-
ted for each active thread. If all the issue slots are
not filled and there are instructions left in the buf-
fers, new selections are carried out. Thus, if only one
thread is available, it should be able to fill all slots
in the execution pipeline (i.e. 8 instructions may be
selected from the same thread). When the number of
instructions remaining in a buffer is smaller than the
block size, a prefetch can be made. Figure 2 illus-
trates the instruction selection mechanism for four
threads and a 8-wide instruction pipeline. Such a po-
werful (but complex) fetch mechanism should not be
unrealistic. Other studies, such as in [5], have shown
that complex instruction fetch mechanisms are fea-
sible.

THREADA| |THREADB| |THREADC| |THREADD
PRIO. 2 PRIO. 1 PRIO. 3
INST. A4 NO
INST. A3 FIREABLH
INST. A2
INST.
INST. A1

STATIC PIPELINE : degree 8

INST. A1 INST. A2 INST. A3

Figure 2: Instruction selection

In Figure 3, we illustrate the two simulated archi-
tectures, the first, featuring in-order execution, the
second, out-of-order execution.

In-order execution For the in-order execution
(Figure 3A), the instructions are placed in instruc-
tion queues after the decoding phase. One 32-entry
instruction queue is associated with each thread. On
every cycle, queues are scanned to find instructions
to issue to the functional units. The same priority
rule as described for instruction fetch is used for ins-
truction selection in the queues. Instructions from
a queue are issued in-order until there is a resource

CTXT1 CTXT2 CTXTn

INST.
BUFFER

'

INST.
BUFFER BUFFER

' '

INSTRUCTIONS SELECTION ‘

Y

INST.

CTXT1 CTXT2 CTXTn

INST.
BUFFER

INST.
BUFFER BUFFER

INST.

v '

INSTRUCTIONS SELECTION ‘

Y

v

CTXT:
INST.
QUEUE

CTXT1 CTXT2
REG. REG. |

\ INSTRUCTIONS SELECTION |

CTXT:!
INST.
QUEU

RESERVATION
STATIONS

CTXT1
’ REG.

CTXT2
’ REG.

I I o
:
FLOAT. BRANCH LOAD/
ALU POINT UNIT STORE

UNIT

BRANCH
UNIT

CTXTn
’ REG.

P —|

.
FLOAT.
POINT
UNIT

(A)

(8)

Figure 3: Architectures featuring in-order execution (A) and out-of-order execution (B)

conflict, a data hazard or a branch. The following
queue in the priority order is then selected. When all
the queues have been searched, although functional
units are still available, a new round of selections is
attempted on queues whose selections were stopped
on a branch. This process goes on until all the queues
are empty or blocked because of data hazards or re-
source conflicts or until all the functional units are
busy. Each thread has access to 32 integer registers
and 32 floating-point registers.

Out-of-order execution For out-of-order execu-
tion (Figure 3B), after the decoding phase, the ins-
tructions are placed in reservation stations [9]. The
instructions wait there for the availability of their
operands and functional units. On every cycle, any fi-
reable instruction can be executed irrespective of the
program order. Out-of-order execution relies on re-
gister renaming with 64 physical integer registers and
64 physical floating-point registers per thread [13].
Each reservation station has 16 entries.

Common features These two architectures can
rely on a shared branch prediction mechanism and
a shared memory hierarchy whose characteristics are
summarized in Table 1. In [10], Hily and Seznec
showed that when using a gshare branch predictor,
all prediction structures (except the return address
stack) might be shared without any significant loss of

accuracy (size of prediction structures should be set
up according to the number of threads). Prediction
tables used in the presented simulations are then sha-
red (except return stacks). The relatively small struc-
tures that we used is explained by the lack of kernel
instructions in our traces. For real implementations,
larger structures would be needed [6]. Two branch
predictions on two different threads can be made on
each cycle. The two levels of caches are non-blocking,
meaning that several misses on the same level can be
pending at the same time [15]. The execution phase
of an integer instruction takes one cycle. Floating
point instruction execution phase takes three cycles.
The execution phase can be followed by a memory
access which is done in one cycle when hitting in the
cache. The write-back phase assumes that there are
no conflicts on the result buses. For the out-of-order
architecture, we do not assume a precise interrupt
mechanism, therefore no in-order retirement was si-
mulated.

Both architectures have 4 ALU, 3 load/store units,
2 branch units and 3 undifferentiated floating-point
units. All functional units are fully pipelined.

False branches A specific difficulty on trace-
driven simulations is to correctly model the impact
of false branches on the execution, i.e. the code exe-
cuted following a mispredicted branch instruction. In
our simulations, we have implemented the following

INRIA

Memory latency 30 cycles
throughput 16 bytes every 4 cycles
bus size 128 bits
L2 Cache | Size 1 Mbyte
block 64 bytes
associativity 4
latency 5 cycles
throughput 16 bytes every 2 cycles
L1 Caches | Size 32 Kbyte
block 32 bytes
associativity 2
latency 1 cycle
Nb. of instruction-cache access | 2/cycle
Nb. of data-cache access 3/cycle
bus size 256 bits
Prediction | scheme gshare
BTB 512 entries
PHT 4096 entries
stack 32 entries/thread

Table 1: General characteristics

mechanism to deal with this difficulty: Each time the
prediction is wrong, a false branch is created. This
false branch consists of fake instructions reflecting the
statistical distribution of the instruction previously
executed by the faulting thread. Our simulations take
into account that, these instructions fill slots in the
static pipeline and instruction windows. Therefore,
our model does not favor in-order or out-of-order exe-
cution in the static stages of the pipeline.

However, our model does not reflect the real beha-
vior of the dynamic stages of the pipeline: instruc-
tions are not executed then they do not compete for
accessing the functional units and do not have any
impact on caches. This clearly favor out-of-order exe-
cution. First, for out-of-order execution, instructions
on the wrong-path might lead to (unneccessary) data
cache misses which may waste L2-cache and memory
bandwidth, we did not simulate this phenomenom at
all. On the other hand, for in-order execution, such a
situation can not occur since a branch is resolved be-
fore (or at the same time) any memory access on the
wrong path is presented to the data cache. Second,
on a out-of-order execution, many more speculative
instructions than on an in-order execution processor
are presented to the functional units. Those specu-
lative instructions from the wrong path may delay
instructions from the rigth path of an other thread.

RR n3391

3.2 Benchmark selection

Our benchmark set is composed of Spec95 applica-
tions described in Table 2 (the names of the programs
normally begin with a number that we omitted for a
better readability).

All the benchmarks were compiled using gcc 2.7.2
or 77 SC3.0.1 compilers with the standard -O2 opti-
mization, under SunOS 4.1.4 Operating System and
on a Sparcstation 20. The standard inputs recom-
mended for Spec95 benchmarks were used.

In the remainder of this article, the names of the
composite workloads appearing in the illustrations
are the concatenation of the first two letters of the
executed applications (except for epsi which is ai).
For example, pevo corresponds to the simultaneous
execution of perl and vortez.

3.3 Simulation protocol

We have undertaken simulations for various work-
loads constituted of 1, 2 or 4 distinct applications of
Spec9s. Our study is limited to a multiprogrammed
environment. Workload applications correspond to
the simultaneously executed threads. It was shown in
[11] that with a conventional memory hierarchy, more
than 4 threads would not be cost-effective, even when
using an ultimately aggressive out-of-order execution.
For each of the simulations, the memory hierarchy
is initialized by executing 10 millions of instructions
per active thread in order to avoid the impact of cold

type program name | description
integer go Plays the game Go against itself
m88ksim Simulates the Motorola 88100 processor running Dh-
rystone and a memory test program
compress Compresses large text files (about 16MB) using
adaptive Limpel-Ziv coding
lisp Lisp interpreter
ijpeg Performs jpeg image compression with various para-
meters
perl Performs text and numeric manipulations (ana-
grams/prime number factoring)
vortex Builds and manipulates three interrelated databases
floating-point | tomcatv Generation of a two-dimensional boundary-fitted co-
ordinate system around general geometric domains
swim Solves shallow water equations using finite difference
approximations
su2cor Masses of elementary particles are computed in the
Quark-Gluon theory
hydro2d Hydrodynamical Navier Stokes equations are used to
compute galactic jets
mgrid Calculation of a 3D potential field
applu Solves matrix system with pivoting
turb3d Simulates turbulence in a cubic area
apsi Calculates statistics on temperature and polluants in
a grid
fpppp Performs multi-electron derivatives
waved Solves Maxwell’s equations on a cartesian mesh

Table 2: Spec95 programs

start misses. We then simulate up to 20 millions of
instructions per thread (the simulation stops as soon
as one of the threads has executed 20 millions of ins-
tructions). Notice that in no way our study tries to
exactly characterize SM'T behavior for these particu-
lar applications, but that our goal is to compare, for
given traces, the behavior of different architectures.

Throughout this study, performance will be repor-
ted in Instructions Per Cycle (IPC).

4 In-order versus out-of-order
executions

Our aim is to evaluate the respective performance of
architectures issuing instructions in-order or out-of-
order when several threads are being executed simul-
taneously. Preliminary simulations have been made
with optimized applications running alone to charac-
terize their behavior (peak version of Spec95 applica-
tions).

4.1 Singlethread performance

Figure 4 illustrates the performance obtained for the
singlethread simulation of the applications constitu-
ting our benchmark. Dark bars refer to in-order exe-
cution, light bars to out-of-order execution. The ra-
tio of in-order performance versus out-of-order per-
formance is illustrated by the dots. Dots are connec-
ted to help the reading, but no particular significance
should be attached to this connection.

Despite our aggressive design, the performances ex-
hibited by in-order execution are relatively weak. The
IPC varies between only 1 and 2 whereas the super-
scalar degree is 8 (with 12 functional units). Such
a high number of functional units is not particularly
useful for in-order execution. Qut-of-order execution
allows a significant performance gain. For 6 of the ap-
plications, the IPC varies between 3 and 4. For fpppp,
the IPC is hardly above 1.5, which is mainly due to
two reasons: the simulated code sequence shows a
very low instruction cache hit ratio and execution is
slowed by the numerous dependencies on the floating-

INRIA

100%

integer floating-point

[in-order
Jout-of-order
——1alio

AVERAGE IPC

go
iipeg
mssksim
vortex

ay
TPPPP
hydro2d

mg

suzco

swim
tomcaty
turb3d
waves

)
0
4
g
3
0
]

8 100%

60% | mmin-orcer
Loy | Joutotorder
—4—rao

AVERAGE IPC

10%

im8 pevo apwa fpto fovo suwa fitu apfp

Figure 4: 1 thread, simulation of the pipeline, the
branch prediction and the memory hierarchy

point instructions. For this particular application,
the ratio of in-order to out-of-order performances is
very high (77%). Depending on applications, these
ratios vary between 35% and 77%. On average, ratios
are however lower than 60%, which is quite low and
explains why out-of-order execution has been cho-
sen in most current high-end microprocessor designs.
This performance gap would have been even larger if
more aggressive instruction fetching (eg. trace cache
[22]) had been considered for out-of-order execution.

4.2 Executing multiple threads

Workloads selection 17 applications have been
tested for single application tests. Mixing four
threads would lead to 2380 (C{,) different thread
combinations. This would have consumed too many
computing resources and would have lead to a huge
volume of simulation results (hardly exploitable).
Therefore we prefered to select a few combinations
of benchmarks based on the behavior of stand-alone
applications (Ref. table 3). In-order performance or
in-order /out-of-order ratio were taken into conside-
ration in this selection. For instance, in #jm8, we
put together the best two integer applications. In
apfp, we combined two applications, fpppp showing
the best in-order/out-of-order ratio, applu exhibiting
the worst ratio.

Global performance Figure 5 illustrates simula-
tion results for 2 threads. A sharp increase of perfor-
mance may be noticed. For in-order execution, per-
formance varies between 1.8 and 3.5 instructions exe-
cuted per cycle. A speedup varying between 1.64 and
1.95 is observed (when comparing the IPC correspon-
ding to the sequential execution of the applications
constituting the workloads to the IPC obtained with

RR n3391

Figure 5: 2 threads, simulation of the pipeline, the
branch prediction and the memory hierarchy

the SMT execution). The speedup of 1.95 is obtained
for apwa, a workload mixing two of the floating-point
applications showing the best performances with the
in-order pipeline. When executing out-of-order, per-
formance varies between 2.7 and 5.7 IPC. The spee-
dup factor ranges from 1.4 to 1.76. Factor 1.76 is
obtained for apfp, a workload mixing the best perfor-
ming (applu) and the worst performing (fpppp) appli-
cations for the out-of-order pipeline.

[in-0rder
T160% | Joutoorder
—4—ralio

2%

coffim8 aiapsiwa

fphysuto

cogopevo colimgtu foipevo apsuswwa apfpvowa

Figure 6: 4 threads, simulation of the pipeline, the
branch prediction and the memory hierarchy

The increase of the IPC is even more substantial
in the case of 4 threads running simultaneously (ref.
Figure 6). For in-order execution, performance varies
between 2.6 and 5.3 IPC, while for out-of-order, it va-
ries between 2.8 and 6.2 IPC. The lowest performance
is observed for fphysuto, i.e. 4 floating-point appli-
cations among those having the worst singlethread
performance. The gain remains however important
compared to the sequential execution of the 4 appli-
cations. For workloads made of applications perfor-
ming well in singlethreaded execution, performance
remains very high for multithreaded execution (coij-

2 threads | description 4 threads | description

apfp best and worst ratios coijlim& good int. IPCs

apwa good floating IPCs cogopevo | bad int. IPCs

fpto bad floating IPCs aiapswwa | good flt. IPCs

fpvo best ratios fphysuto | bad fit. IPCs

ijm8 best integer IPCs colimgtu | 2 int.and 2 flt. with average IPCs
litu average integer IPC, bad floating IPC || fpijpevo good ratios

pevo worst integer IPCs apsuswwa | bad ratios

suwa, average ratios apfpvowa | 2 good ratios, 2 bad ratios

Table 3: Mixes of applications, for 2 and 4 threads

lim8, aiapswwa). For a floating-point workload such
as atapswwa, out-of-order execution results in an ap-
preciable performance gain over in-order execution
(the ratio is "only" 78%).

These results illustrate perfectly the constructive
behavior of SMT. Effectively, none of our workloads
observed a performance loss due to the simultaneous
execution of 4 threads. We did not investigate more
than 4 threads as it was shown in [11] that L2 and me-
mory bandwidth would be saturated when trying to
execute 6 or more threads and that supporting more
than 4 independent threads simultaneously would not
be effective.

Performance convergence The most noticeable
point is that the gap between out-of-order and in-
order executions decreases as the number of threads
increases. This gap seems to decrease quite inde-
pendently from the chosen workload. For 2 threads
(respectively 4 threads), in-order execution allows
to reach between 53% and 79% (resp. 73% and
93%) of the IPC observed for out-of-order execu-
tion. The large performance advantage offered by
out-of-order execution on singlethreaded architecture
shrinks when several threads are executed on an ar-
chitecture featuring SMT. This can be explained by
several converging reasons: in the in-order pipeline,
the opportunity to find independent instructions to
fire increases when several threads are executing in
parallel. In the out-of-order pipeline, the speculative
execution of instructions which will be later canceled
consumes resources potentially useful for the execu-
tion of valid instructions from the other threads.

Real performance results should even be more close
for in-order and out-of-order execution: on false
branches, our simulation model ignores the impact of
memory bandwidth wasting and contention to access
the functional units.

4.3 Impact of memory hierarchy and
branch prediction

In order to measure the respective impact of the me-
mory hierarchy and the branch prediction on perfor-
mance, we run three complementary sets of simula-
tions assuming either perfect or effective models of
caches and branch predictor.

Figure 7 presents a synthesis of the average per-
formance for architectures featuring 1, 2 or 4 simul-
taneous threads and executing instructions either in-
order or out-of-order. In the first graphic, only the
pipeline is simulated; branch predictions and the first-
level caches were assumed perfect. In the second gra-
phic, pipeline and branch prediction are simulated
but the accesses to caches remain ideal. In the third
graphic, a real memory hierarchy is simulated with
the pipeline, but the branch prediction is perfect. In
the fourth graphic, the complete processor is simu-
lated, i.e. the pipeline, the branch prediction and
the memory hierarchy. Results for 1, 2 or 4 threads
are not strictly comparable as the workloads do not
correspond exactly to the same mix of applications.
However, the performances are kept in their respec-
tive orders.

These four graphics show that the saturation of
caches leading to conflict and capacity misses and the
limited accuracy of branch prediction clearly impairs
performance :

- Branch mispredictions, despite a quite accurate
prediction mechanism, still results in a high loss
of performance, especially in out-of-order execution:
out-of-order execution favors the speculative execu-
tion of “less likely to be useful” instructions. The
impact of a misprediction however weakens as the
number of threads increases. First, due to the mix of
instructions from several threads in the static pipe-
line, the other threads continue to use the execution
units. Second, less advance is made on execution by
the running threads and less instructions are execu-

INRIA

100% Ppipeline

100% Pipeline
0% +

0%
0% Branch

0%

70% 0%

60% 60%

-1 s0% 50%

AVERAGE IPC

0% 0%

30% 30%

20% 20%
T 10%

0%

10%

AVERAGE IPC

0%

lthread 2threads 4threads

Lthead 2ihreads 4 threads

100% Ppipeline
+

100% Ppipeline
90% +

90%

80%
0%
60%

T 50%

Caches

0% Branch

0%

+
Caches

60%
50%

AVERAGE IPC

AVERAGE IPC

0% 40%

30% 0%
- 20% 20%

10%

0%

Lthread 2threads 4threads ltread 2threads 4threads

Figure 7: Average performance impact of memory
hierarchy and branch prediction for 1, 2 or 4 threads
with in-order or out-of-order execution

ted speculatively.
empty.

The pipeline is then very rarely

- The impact of the memory hierarchy is far more
important. Unlike in branch mispredictions, the pe-
nalty of a cache miss will be potentially “paid” by all
the threads because it consumes memory bandwidth
and may delay any subsequent cache miss either from
its thread or from another. For example for 4 threads,
the average drop in performance induced by the cache
misses is higher than 25%.

When the entire architecture is simulated, one can
observe a significant degradation of the performances.
The combined negative impact of the bad predictions
and the cache misses is however very dependent on
the type of the pipeline and on the number of threads.
Thus, when instructions execute in-order, this nega-
tive impact increases as the number of threads grows;
the loss in the IPC is 19% for one thread and reaches
28% for four threads. For out-of-order execution, this
is the opposite with a decreasing impact when the
number of threads increases; the loss in the IPC is
42% for one thread and falls to 36% for four threads,
mainly due to a lower impact of mispredictions on the
performance. Despite this, simultaneous multithrea-
ding offers a strong gain in performance, as the IPC
reaches an average of 4 for in-order execution, and 4.7
for out-of-order execution. Moreover, when looking
at the first graphic in Figure 7 (perfect branch pre-
diction and ideal cache accesses), one can see that for
4 threads, poor benefits can be expected from using
more aggressive speculative techniques (such as load
value prediction, multiple branch prediction, etc).

RR n3391

4.4 Summary

In spite of a quite aggressive and in a certain way,
optimistic architectural model, the average perfor-
mance observed for a singlethreaded architecture is
relatively low. If the main objective was single-
thread performance, the weakness of in-order execu-
tion would justify the implementation of out-of-order
mechanisms. With four threads, the average perfor-
mance (measured in IPC) achieved by in-order exe-
cution reaches 85% of the one offered by out-of-order
execution.

It should even be pointed out that our simulations
did not take into account various phenomena that
may even reduce this gap. First, the impact of me-
mory accesses performed on a mispredicted branch.
As less instructions are executed on the mispredic-
ted branch in in-order execution, the loss of per-
formance due to memory bandwidth wasting on the
false branch would be higher on out-of-order execu-
tion than with in-order execution. Second, we did not
simulate in-order retirement of instructions. In-order
retirement would further limit out-of-order execution
performance. Third, we assume the same minimum
instruction pipeline length for in-order and out-of-
order execution. A longer pipeline for out-of-order
execution should further reduce the performance gap
between out-of-order execution and in-order execu-
tion. For instance, when assuming the longer pipe-
line structure illustrated in Figure 8 for out-of-order
execution (an extra cycle for renaming registers and a
second one for the selection and issuing phase), our si-
mulations showed that the performance gap between
in-order and out-of-order execution falls to 9 % in
average with 4 threads. Finaly, achieving the same

/—o from memory

‘FEI'CHiM ‘FETCH78 ‘ DECODE ‘RENAME ‘DISPATCH ‘DISF'ATCH ‘EXECUTION‘MEMORV ‘WRITEBACK‘

“—e from thread buffers

Figure 8: Integer instruction pipeline for out-of-order
execution

from instruction windows

processor cycle on the two designs is not straightfor-
ward.

Therefore, the effective performance for the two
execution models should be very close for multithrea-
ded workload (closer than just reported by our simu-
lations). We believe that, even if there remains a
small difference in performance between in-order and
out-of-order executions, this will not be worth the ad-
ded complexity of out-of-order execution. This extra
complexity will lengthen the design and test of the
processor.

5 Impact of instruction reorde-
ring

Applications are generally optimized to allow reaso-
nably efficient execution on the different hardware
platforms from a specific manufacturer. However, the
performance could be enhanced if the applications
were specifically optimized for a given architecture.
Static reordering of instructions [3] could especially
bring a better utilization of the instruction pipeline.
The reordering should benefit far more an in-order
pipeline than an out-of-order one. In this section, we
investigate such optimization. It is shown that unlike
for single applications, instruction rescheduling has a
poor impact on the performance of in-order as well
as out-of-order SMT execution.

Methodology We conducted a new set of simula-
tions on SPEC95 codes which were reordered using
SALTO [21]. SALTO allows to implement assembly-
level code transformations using a description of the
resources and latencies of an architecture. We im-
plemented a simple instruction reordering algorithm.
The rescheduling was limited to a single basic block,
and no attempt was made to get more aggressive anti-
cipation of instructions. Moreover, we did not rename
registers. In this algorithm, an instruction is “execu-
ted” as late as possible, regarding the dependencies
with the following instructions until the end of the ba-
sic block. Figures 9 and 10 illustrate averages IPCs
for respectively 1 thread and 4 threads, in-order or
out-of-order pipeline, with (-reorder) or without (-
order) instruction reordering. For out-of-order exe-
cution, the simulated pipeline is the one represented
in Figure 8. Results presented in this section can dif-
fer a little from those presented in the previous sec-
tions as we did not trace exactly the same sequences
of code: as we did not get the library sources for this
experiment, we chose sections of code where these
libraries are not significantly used.

Singlethread execution and reordering As ex-
pected, for in-order execution of one thread, reorde-
ring exhibits a positive impact on the performance.
This enhancement is particularly significant for swim
(27%), turb3d (15%) and for applu (14%), three
floating-point applications where long latencies (3
cycles) are encountered. However, the benefit of our
reordering algorithm varies a lot with the applications
and on average, the gain in performance is limited to
6%. With the out-of-order execution, the instruc-
tion reordering brings a maximum of 4% increase in

6 100%
floating-point 0%

integer

compress
go
iipeg

s
masksim
vortex
applu
apsi
waves
AVERAGE

‘-mrurdev [in-reorder C—Jooo-pena CJooo-reord —@-ratio —k—rato-reord ‘

Figure 9: Average performances for 1 thread, in-order
and out-of-order execution, with and without instruc-
tion reordering

performance, for hydro2d or mgrid, and the average
increase is limited to 1%.

AVERAGE IPC

0 | | | |
cojfimg alapsiwa cogopevo fohysuto colimgtu fpijpevo apsusiwa apfpuowa

AVERAGE

‘-m-omer [in-reorder C—Jooo-pena CJooo-reord —@—ratio —¥—ratio-reord ‘

Figure 10: Average performances for 4 threads, in-
order and out-of-order execution, with and without
instruction reordering

Multithreading results With the simultaneous
execution of several threads, the impact of reordering
appears unsignificant. The difference in performance
spans from 5% to -1% for in-order execution and from
3% to -1% for out-of-order execution. Moreover, for
out-of-order execution, for 3 of the workloads the im-
pact of reordering is negative. SMT execution does
not appear to take advantage of instruction reorde-
ring, and this, even when the workload is composed of
applications for which reordering can bring a signifi-
cant increase of the IPCs. Thus, reordering offers
no gain of performance for aiapswwae but allows to
increase performance by 7%, 14%, 27% and 5 % on
respectively apsi, applu, swim and waves.

INRIA

These results show clearly that optimizing applica-
tion codes individually gives no guarantee of obtai-
ning better performance under SMT. Interactions of
the applications in the pipeline and at the resource
level are not predictable and can lead to an increase
of the conflicts. Our results concur here with the
results obtained by Lo et al. [19] on software specu-
lative execution. In this way, instruction reordering
is a poor way to increase the performance of in-order
SMT architectures. These results suggest that sta-
tic optimizations of codes aimed at enhancing single
thread ILP on in-order execution processors (func-
tion inlining, loop unrolling, software pipelining, ..)
will not bring the same benefit for a multithreaded
workload.

On the other hand, the poor 2% enhancement of
performance for 4 threads for in-order execution can
be viewed positively. It shows that an in-order SM'T
architecture does not need specific instruction resche-
duling for achieving high performance, but achieves
performance improvement without requiring specific
recompilation, as have done out-of-order execution
microprocessors on single-threaded workloads.

This reinforces the interest of SMT as a way of im-
plementing low-cost high performance processors tar-
geted at high throughput and not towards ultimate
performance on a single application.

6 Summary

Today’s general purpose high-performance micropro-
cessors are based on a superscalar pipeline issuing
instructions out-of-order. The dynamic extraction of
instruction level parallelism permits the processor to
overcome the numerous constraints faced by compi-
lers when scheduling instructions. Such microproces-
sors are often used in a time-sharing multi-process
environment. In such environments, time slices are
successively allocated to different processes. Never-
theless, these processors achieve high performance on
a single sequential application.

In an architecture featuring simultaneous multi-
threading, instructions from different threads share
the pipeline at the same moment. Opportunities to
find independent instructions for execution are the-
refore higher on an SMT processor, which naturally
increases the effective ILP and decreases the resource
wasting due to data and control hazards.

In this paper, we have investigated the respective
performances offered by two types of architectures
both featuring up to 4 threads simultaneously but
one issuing instructions in-order and the other out-
of-order.

RR n3391

First, our simulations have established that des-
pite a quite aggressive out-of-order execution model,
in-order execution may achieve roughly the same per-
formance provided that 4 threads are available for
execution. On a single thread, in-order execution suf-
fers from a 46 % performance gap compared with
out-of-order execution. However, the performance
gap is only around 15% in average when the same
number of pipeline stages and the same clock cycle
are assumed for in-order and out-of-order execution.
Moreover, many of our assumptions for simulations
were optimistic when considering out-of-order execu-
tion: same minimum pipeline length for in-order and
out-of-order execution, same clock speed, .. Then on
real implementations, the small performance advan-
tage of out-of-order execution will be lower, and may
even not exist if higher clock speed is achieved with
in-order execution.

We have also shown that imperfect branch predic-
tion and memory hierarchy have a high impact on the
performance. The use of multithreading decreases
the impact of the branch prediction: less instructions
are involved by a single misprediction. On the other
hand, use of multithreading increases the stress on
the memory hierarchy generating more cache misses
and more memory traffic.

We further pointed out that even for in-order exe-
cution on SMT, the performance for multiple threads
do not rely on a careful instruction scheduling. On
the contrary, such instruction scheduling was shown
to have a negligible impact (if any) on the perfor-
mance of 4 threads.

For users concerned by ultimate performance on a
single process, out-of-order execution will be needed;
further performance improvements will rely on more
and more complex mechanisms such as value and ad-
dress prediction, multiple branch prediction, etc. On
the other hand, if operating systems and applications
continue to evolve to more and more thread and pro-
cess level parallelism, then more and more users will
be more concerned with throughput rather than with
ultimate single process performance. Then for those
users, our study has established that processors fea-
turing SMT and in-order execution will be sufficient.
Even when only 2 threads are available, an SMT ar-
chitecture featuring in-order execution will outper-
form a singlethreaded superscalar architecture relying
on out-of-order execution.

References

[1] Alpha 21164 Microprocessor Hardware Reference
Manual, September 1994. preliminary edition.

2]

(3]

[4]

[5]

[6]

[7]

18]
[9]

[20]

[11]

[12]

[13]

[14]

[15]

[16]

T. M. Austin and G. S. Sohi. Zero-cycle loads:
Microarchitecture Support for Reducing Load La-
tency. In 28th Annual International Symposium on
Microarchitecture, pages 82-92, November 1995.

D. F. Bacon, S. L. Graham, and O. J. Sharp. Com-
piler Transformations for High-Performance Compu-
ting. ACM Computing Surveys, 26(4):345-420, De-
cember 1994.

M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales,
and M. Shebanow. Single Instruction Stream Paral-
lelism is greater than two. In 18th Interernational
Symposium on Computer Architecture, pages 276—
286, May 1991.

T. M. Conte, K. N. Menezes, P. M. Mills, and B. A.
Patel. Optimization of instruction Fetch Mechanisms
for High Issue Rates. In 22nd Annual International

Symposium on Computer Architecture, pages 333—
344, June 1995.

N. Gloy, C. Young, J. Bradley Chen, and M. D.
Smith. An Analysis of Dynamic Branch Prediction
Schemes on System Workloads. In 23rd Annual In-
ternational Symposium on Computer Architecture,
pages 12-21, May 1996.

B. Goossens and D. T. Vu. On-chip multiprocessing.
In Lecture Notes in Computer Science. Euro-Par’96,
volume 2, pages 789-796, August 1996.

L. Gwennap. Speed Kills ? Not for RISC Processors.
Microprocessor Report, page 3, March 1993.

J. Hennessy and D. Patterson. Computer Architec-
ture : a quantitative approach. Morgan Kaufmann
publishers, 1990.

S. Hily and A. Seznec. Branch Prediction and Si-
multaneous Multithreading. In International Confe-
rence on Parallel Architecture and Compilation Tech-
niques, 1996.

S. Hily and A. Seznec. Standard Memory Hierar-
chy Does Not Fit Simultaneous Multithreading. In
Workshop on MultiThreaded Ezecution, Architecture
and Compilation, held in conjunction with HPCA-4,
Colorado State Univ. Technical Report CS-98-102,
January 1998.

G. Irlam. Spa package.
http://www.base.com/gordoni/spa.html, 1994.
M. Johnson. Superscalar Microprocessor Design.

Prentice Hall, 1991.

P. M. Kogge. The Architecture of Pipelined Compu-
ters. McGraw-Hill, 1981.

D. Kroft. Lockup-Free Instruction Fetch/Prefetch
Cache Organisation. In 8th Annual International

Symposium on Computer Architecture, pages 81-87,
May 1981.

D. Lee, P. Crowley, J.L. Baer, T. Anderson, B. Ber-
shad. Execution Characteristics of Desktop Appli-
cations on Windows NT. To appear in 25th Annual

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

International Symposium on Computer Architecture,
June 1998.

M. H. Lipasti and J. P. Shen. Exceeding the Data-
flow Limit Via Value Prediction. In 29th Annual In-
ternational Symposium on Microarchitecture, pages
226237, December 1996.

M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value
Locality and Load Value Prediction. In 7th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
138-147, October 1996.

J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and
D. M. Tullsen. Tuning Compiler Optimizations for
Simultaneous Multithreading. In 30th Annual Inter-
national Symposium on Microarchitecture, December
1997.

LSI LOGIC. SPARC Architecture Manual (version
7).

E. Rohou, F. Bodin, A. Seznec, G. Le Fol, F. Charot,
and F. Raimbault. SALTO: System for Assembly-

Language Transformation and Optimization. Tech-
nical Report PI-1032, IRISA, June 1996.

E. Rotenberg, S. Bennett, and J. E. Smith. Trace
Cache: a Low Latency Approach to High Bandwidth
Instruction Fetching. In 29th Annual International
Symposium on Microarchitecture, pages 24-34, De-
cember 1996.

Y. Sazeides, S. Vassiliadis, and J. E. Smith. The Per-
formance Potential of Data Dependence Speculation
and Collapsing. In 29th Annual International Sympo-
stum on Microarchitecture, pages 238—-247, December
1996.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting Choice: Ins-
truction Fetch and Issue on an Implementable Simul-
taneous Multithreading Processor. In 23th Annual
International Symposium on Computer Architecture,
pages 191-202, May 1996.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simul-
taneous Multithreading: Maximising On-Chip Paral-
lelism. In 22nd Annual International Symposium on
Computer Architecture, pages 392-403, June 1995.

INRIA

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois,
Campus scientifique,

615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de
Beaulieu, 35042 RENNES Cedex
Unit"e de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe,
38330 MONTBONNOT ST MARTIN
Unit"e de recherche INRIA Rocquencourt, Domaine de Voluceau,
Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit"e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles,
BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105,
78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

