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Abstract: Our goal is to introduce a Newton method to compute the sta-
tionary points of a total energy with respect to the shape. We produce a
precise description of the second order shape derivative which is given by a
symmetrical boundary integral operator, useful for numerical calculations. We
apply this method to a particular shape optimization problem, the electro-
magnetic casting problem. The algorithm to compute the shape gradient and
the shape Hessian is adapted to a MIMD computer with distributed memory
using M.P.I. message passing interface.
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La méthode de Newton en optimisation de
formes tridimensionelle.

Résumé : L’objet de ce travail est d’introduire la méthode de Newton dans le
calcul d’un point critique d’une énergie par rapport a la forme. Nous donnons
ici une description précise de la dérivée seconde qui est un opérateur intégral
sur le bord, adapté au calcul numérique. On applique cette méthode a un
probleme de formage électromagnétique en trois dimensions. L’algorithme de
calcul du gradient et de I’Hessien par rapport a la forme est adapté a un
ordinateur de type MIMD avec mémoire distribuée.

Mots-clé : optimisation de formes, méthode de Newton, magnétoformage.
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1 Introduction.

In numerical simulation of electromagnetic casting one approach is to consider
models where the computation of the free boundary amounts to solve a shape
optimization problem. The functional to be minimized is the total energy of
the phenomenon under consideration.

Typically we want to compute a shape 0* such that

O = argmin{ £(Q) : Q@ € O} (1)

where O is a set of admissible domains and F is a cost function depending on
the solution of a partial differential elliptic system. Our interest is to obtain
numerically by a Newton method a point 2* which satisfies the Kuhn-Tucker
conditions. To compute first and second order shape derivatives we introduce
an appropriate Banach space, see [9], [12], [13] and [4].

The simplified model of the 3-dimensional electromagnetic shaping problem
studied here concerns a bubble of liquid metal levitating in the electromagnetic
field created by given conductors. Under suitable assumptions, the equilibrium
configurations of the liquid metal are described by a set of equations involving
a relation at the boundary between the electromagnetic, superficial and gravity
forces. The equilibrium shape is shown to be the stationary state of the total
energy under the constraint that the volume is prescribed. Here the total
energy depends also of the solution of an exterior Neumann Problem, see [14]
and [21].

In a previous work [15], we introduce classical Quasi-Newton methods as-
sociated with penalization techniques to solve our optimization problem. Such
methods involve only first derivatives of the cost function and the resolution of
an exterior Neumann partial differential system. If Newton’s method is used,
the computation of the second order shape derivatives is also dominated by
the P.D.E. system resolution, the evaluation of the second order derivatives
does not change the order of computational complexity.

In [9] we introduce a precise method to compute first and second order
shape derivatives. Under suitable regularity assumptions, the first and second
order derivatives are boundary integral operators. We then introduce an in-
tegral representation of the solution of the exterior Neumann boundary value
problem, see [15], [8].
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4 Arian Novruzi and Jean R. Roche

Numericaly, we construct a sequence of domains determinated by their
boundaries. We consider piecewise linear surfaces with n nodes. The integral
equation is solved by a Galerkin finite element method.

Numerical estimation of the integral equation and the computation of shape
Hessian needs O(n?) floating point operations. Then to minimize the compu-
tational time taken by each iteration we introduce a parallel implementation
of this sections of our algorithm. To this end we adapt the software to a
MIMD computer with distributed memory using M.P.I. messages-passing in-
terface. We present several numerical exemples, where we analyse the iteration
evolution and the efficiency of our parallel algorithm.

2 The Electromagnetic casting problem.

We denote by w an open and bounded domain in IR? filled by the li-

quid metal. Let Q be its exterior and I' = dw its boundary. We assume that the
frequency of the imposed current is sufficiently high so that the magnetic field
does not penetrate into the metal and the electromagnetic forces are reduced
to the magnetic pressure acting on the interface.

Under the above assumptions, the surface I' is characterized by the following
equilibrium equations.

V-B=0 in (3)
B-vr=0 on T (4)
B(o) = Olel ) at o (5)
| BII” o
+oH+pg-z3=A on T (6)
2,&0

where jg is the current density, B the magnetic field, o the magnetic permea-
bility, p the density of metal, x3 the height variable, H the mean curvature of
I', o the surface tension and v the unit normal vector oriented towards 2. The
constant A and the surface I' are the unknowns of the problem.

The total energy of the system ( see [15] ) is given by :

Elw)=— BQdI+U/d’y(I)—|—/ng3d$ (7)
210 Ja r w

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 5

where B is a solution to (2)-(5).
With some usual hypotheses, a critical point of F(w) under the constraint that
the volume of w is prescribed satisfies the nonlinear equilibrium relation (6)
which characterizes the boundary T'.

To compute the magnetic field B we set B = B' + Vi where B! is given
by the Biot-Savart law. Then the scalar potential ¢ is the unique solution of
the following exterior Neumann problem:

—Ap=0in Q
ai =—B'vonT (8)
ov
[p(z)| = o(1) as |z| = oo

The solution of (8) can be represented by a single layer integral representation.

THEOREM 2.1 The solution of the exterior Neumann system (8) is given by
the following integral representation:

o) =1 [ iy )

F|l’—y|

where q is the unique solution in H'/*(T) of the following second kind Fredholm
equation, see [10] and [2].

B = 000+ 1= [T g veer o)

For a proof of the theorem see [15].

3 The Algorithm.

3.1 Shape Derivatives.

Let Q € IR® be a open and bounded set of class C*°, locally in one side of 9Q),
see [12].

RR n" 3367



6 Arian Novruzi and Jean R. Roche

Let © be the set:
0 = G ) ()

the set of k-times differentially functions. This set is a Banach space with the
standard norm.
In © we define the following function w et I™:

w:0 — P(IR?) |
{ w:l—wll)={0z):z€Q} (12)
I':0 — P(R?) |
{IVGAFWFZW@%xeaQ} (13)

where P(IR?) is the set of all subsets of IR®. Let Q(6) be the complementary

set in IR® of w(#).

Then we assume that the cost function E is real valued defined on the set:
oz{wcﬂiaeeo*ﬁmnzw} (14)
where Q7! is the subset of © given by:

O-1 = {0 € 0, is a diffeomorphism of class C* (15)
o 15
from @) onto his image}

Instead of the functional F we consider the cost function G defined in the
following way:

G:0'€e®—= R
(16)

G@):Eow@):EQ@@)

Now we consider Fréchet derivatives G' and G" of G, see [11], [12], [4], [5].

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 7

DEFINITION 3.1 [Ifforf € O~! exils a continuous linear operator of L(O™!, IR)
denoted € — G'(0)(€) such that:

{ G0 +€) = G(0) + G'(0) () + (6, Ello-
limg0€(6,6) =0
G'(0)(€) is called the first Fréchet derivative of G at 6.

DEFINITION 3.2 We say that G has a second derivative in 0 € O~ if there
exists G7(0) € L2 (O™, IR), such that:

{ G'(0 +n)(§) = G'(0)(§) + G"(0)(&,n) + €(0,&,m)lInllo- (18)
lim, 0 €(6,&,n) =0

In the following of this section we introduce the definition of the shape
derivative of functions, in particular of the solution of the exterior Neumann
problem(8).

Let W?(Q(0)) be the closure of D(Q(#)) for the semi-norm:

. 2
6= ll>—
i e

0
2 1
e -|Ir (19)
The exterior Neumann problem (2.7) have a unique solution in W?2(£2(8)), see
[19] .
Let be IH the set of all the function u € W?2(£()) for all § € O~.

H= [] W Q) (20)

gcoO-!

(17)

Let ¢ the function defined in the following way

p: 0" - H

00— (0) e W(Q(H))
the solution of (8) in Q = Q(6).
DEFINITION 3.3 The function ¢ : 6 — ©(0) is called locally differentiable from
Ot in W2(Q(0)) if for any U C Q(0)) the function ©(0) restricted to U is
differentiable from O~' in W*(U). The value of this derivative in the direction
£, is noted ¢'(0)(§).

In the next section we introduce the Newton method applied to the Karush,
Kuhn and Tucker(KKT) first-order necessary conditions.

(21)

RR n" 3367



8 Arian Novruzi and Jean R. Roche

3.2 Newton Lagrange method.

To describe the Newton method studied in this paper, we introduce the La-
grangian ( see [3] ) :

L(8,A) = G(0) +A(m(0) — mo) (22)
- —iuw) + 0Ly (0) + pgLa(8) + ALy(0)
with:
L(0) = B*(0)dx , Ly(0) = dzx 23
(0) /W) (0) (0) /m) (23)
La(0) = xzdr , L4(0) = dr — mg 24
(0) /W) (0) /W) (24)

where § € O7', A € IR, m() is the volume of w(#) and myg is the given
volume. A critical point of the energy G with the constraint m(6) — mgo = 0
is the first argument of the couple (8*, A*) solution of the following first order
KKT necessary conditions:

D(6,A) = ( m%()e,_Ag% ) ~ 0. (25)

The Newton method to compute an approximation of (6*, A*) consists in com-
puting a sequence of solutions (6%, A*) of a linearized form of (25). This leads
to the following algorithm :

6°, A° given
(9541, AFF1) = (6%, A%) + (60F, 60 6)
where (§0%,§A%) € O~ x IR satisfies
D(0%, A*) + H(0%, A*)(66%,6A%) = 0 in L(O7L, R) x IR
where H(6*, A¥) is given by:
L”(@k Ak) m'(@k)
k kN ’ ¢
et = (100 @)

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 9

The computations are carried out for the corresponding discretized formulation
of problem (26). The domains w(#) under consideration are characterized by
the boundary dw(#),= I'. In practice we consider domains with piecewise
linear boundaries.

3.3 Shape derivatives of L.
Given €,7,0 in O~' we introduce vector fields :

V() =¢o007 (z) (28)
and

W(z) =506 (). (29)

The i-th component of V' is denoted V;. With this notation the j-th partial
derivative of V; is denoted D,;V; and DV is the matrix [D;V;].

It is also convenient to employ the summation convention, that is that in
any expression repeated indices indicate summation from 1 to 3.

For any regular function ¢ : IR® — IR the vector dg = (419,29, d3g) is
defined by:

6g = Dg —v(Dg.v) = ([Dig — viv; Djliz123) (30)

so that dg is merely the component of the gradient of ¢ in the tangential
direction at I', ( see [20] ) .

If ¢ is the solution of the exterior Neumann problem (8), the shape deri-
vative ¢'(0)(€) is the solution of (see [12]):

—AG(0)(€) = 0 in 0

899/(9)(5) — BI(S(VI/) _ (VV) <82_90 + 9B

5 52 5 )] inl (31)

P"(0)(€) (@) = O(|z[™") as || = oo

For simplicity, let us denote the shape derivative ¢'(6)(¢) by ¢}, .

We compute a solution of (31) by the same technique used to solve the
exterior Neumann problem (8).

Using the formal framework introduced in the previous section we compute
first and second order derivatives of L(6,A).

RR n" 3367



10 Arian Novruzi and Jean R. Roche

THEOREM 3.1 Let 0.&,m € O7' and L given in (22). Assume that the deri-
vative '(0) exists. Assume that the current density j, is bounded in IR® with
support in Q(6). Then :

1

L(0.0)(0) = 5 -

[+ b+ pgza = Ve (32)

and

632

L0, A) (€ m) = / BV )W vy

INQ

— (v-6V-WHv-6W-V+V.év- W)B d~
ING)

- 2 o D& (0)(¢) - D' (0)(n)d

+ o [ [(6:Vi)(6:W;) — 6:V;6,;Widy

Aﬂ\b

v 0;V)(v - 6;W)]dy
+ Pg/xz‘/i(Vi5jo —v0iWj) + Ws(V - v)dy
r

+ A/‘/Z(I/Z(S]W] —Vj(Sin)d’y (33)
r

where V and W are given in (28) and (29).

A complete proof of (32) is given in [6], [7], we give here a sketch of the
procedure used to demonstrate (33), more detail can be find in [8].

Proof: The shape derivative of integral functions have been studied by J. Simon
[12]. In our context we obtain:

Lo)e) = - / , 2Dol0) + BY)- D) (E)dr (34)

+ / BQ(V -v)dy
()

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 11

where (6) satisfy (8) and ¢'(8)(€) is solution of (31). Because the Green
theorem the first term in the second member is nil, hence,

LO© = [ BV (3
r'(9)
Using the same technique we obtain the second order shape derivative:
LY(0)(&,n) = 2B - B'(0)(n)(V - v) + B*(V'(0)(n) - v)dy

/
- /F BX(V - §(W - v))dy
I

+ (9)(W . I/)(—HB2(V v))dy
e f o R R A AR E)

Using the notation introduced in the beginning of the section we obtain , see

[20]:
av;

Vi(@)(n) v = —(DV-W)-v=—uyDV, - W =—1,;(6V; + 5 v)-W
= —(5V-W)-V—(aa—‘:-1/)(W-V) (37)
and

VS(W-v) = V- (Wi + Wibwy) = vi(SW; - V) + (V- S )W,
= (W-V)v+V-ov-W (38)

Therefore,
0B*

(—HB*+

LO)En) = )V )W vy
(9) v

_ / (v-6V-WHv-0W-V+V-dv-W)Bdy
/F 2B - B(0)(n)(V - v)dvy (39)

RR n" 3367



12 Arian Novruzi and Jean R. Roche

Note that in I'(6):

0% 0%

(SZDZQ,O = D“(p — I/Z'V]-Djigo = A(p — W = _W (40)
- oB! 0B1
8B} = D;B! —vyv;D;B} = divB' — R (41)
Since:
[ BB (12
()
0*p 0B!
= — / . 1y, . — . -
= [ D B8 ) =V G+
we have:
[ BB vena =~ [ gy gy (13)
r'(8) £(6)
Therefore,
" aB2 2
LY(0)(&n) = (5= —HB)(V -v))(W - v)dy
() 31/
— (V-(SV-W—I—I/-(SW'V—I-V'(SV-W)BQCh/
()
- 2 [ DAY DO (14)
Q(6)
In [20] E. Giusti proof that for 8,£, 7 € O~ we have:
Lo = [ v (15)
r'(6)

and

LUO)(E.6) = /F(€)<w>2—5ivm+<u-5jv><u-5jv>dv (46)

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 13

Hence using the same technique we obtain:

Ly(0)(&n) = (47)
()
Introducing a change of variables and if 6,7 € O~! we have:
Ls(0+¢) = / (x3 4 Va(z))det[I + DV]dx (48)

w(6)

where V(z) = (Vi(z), Va(z), Va(z)) = £ 0 67! (z). But the shape derivative of
det[I + DV] is given by tr[DV] and the second order shape derivative is equal
to tr[DV]tr[DW] — tr[DV.DW]. Then

L0)(¢) = / | (15(0) + astr DV )i (19)
= / z3(Vw)dy
r'(6)
and
LY(0)(€.) = / | FVWiw = 8 W) £ WV (50

Using the same techniques to compute the shape derivatives of L4(8) we obtain

Lo = [

w

tr[DV]dx = / V.wdy (51)
()

and

Li0)(&n) = /(tr[DV]tr[DW] — tr[DV.DW])dx (52)
= / ‘/2(5sz2 - (SinVj)d’y
(o)

Finally, adding (35),(45),(49) and (51) we obtain (32) and adding (44),(46),(50)
and (52) we obtain (33).

RR n" 3367



14 Arian Novruzi and Jean R. Roche

According to (32) the variational formulation of the continuous problem
(2)-(7) consists in finding (6*, A*) such that:
L'(07, A)(§) =0 (53)
for every £ € O~! admissible.

The fact that L'(6,A) and L”(6,A) are a boundary integral equation makes
numerical approach possible.

4 Numerical Method.

4.1 Discretization.

We want to evaluate numerically an approximation of the optimal domain 2*
such that the discretized shape first order necessary condition (32) vanishes
for all admissible vector field. To this end we construct a sequence of domains
w(6*%), more precisely, we consider a sequence of domains defined by their
boundaries T* = Jw(#*) that converge towards a critical point. By I'* we
mean a piecewise linear closed surface, that is, a union of triangles T; in IR®.
The nodes of the surface I'* are denoted by z**.

At each vertex z* of I'* is associated a direction Zi* € IR®. We construct a
continuous piecewise linear vector field Z* from I'* in IR? such that Z**(z/*) =
(SZ'7]‘ZAi’k.

The support of Z* is equal to the union of the triangles for which z** is
a node. At each iteration we compute the following vector field:

ZMa) = wiZ(x) (54)
i=1

and the updated surface I'**! is then given by:

M ={X=c+ ZUZZ”C(?),UZ € R,z € I'"} (55)
=1
where @' = (uy, -+ .u,) € IR" are the unknowns which determine the evolution

of the surface I'*.
This method of evolution of the boundary has the important advantage
that there is only one degree of freedom at each node.

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 15

4.2 Integral equation.

To compute the shape gradient we solve at each iteration the exterior Neu-
mann problem (8). Due to theorem 2.1 we solve numerically the second kind
Fredholm equation (7) by a Galerkin method.

If we note g(x) an approximation of g(z) such that ¢ € C°(T*) and is
piecewise linear, then

qz) = Z AE) (56)

where W;(z;) = d;; and is linear in each triangle.
Then we obtain ¢* = (q1,- - ,q,) € IR" as the solution of the linear system:

Ag=1b (57)

where:

i = [ e @)

+2wﬁymw%uMﬂw (58)
and
b= —in [ (B(a) - vle) Wila)r(o) (59)

The matrix A is a general, non-symmetric and dense thus the LU factorization
is used to solve (57). The a;; coefficients are numerically computed by a
Newton-Cotes method using & x k quadrature points. The support of the

basis functions W;(x) is limited to the triangles which have z"* as a vertex. In

our discretization the number of triangles associated to a vertex z* is six in

almost all the cases. Then the evaluation of the a; ; coefficients by a quadrature

formula needs 6 x k x k x n? floating point computations of the integrand.
The LU factorization of A needs @ floating points operations because A

is dense while the subsequent forward-backward solution requires 2n? flops.

RR n" 3367



16 Arian Novruzi and Jean R. Roche

The implementation of the Newton method requires at each iteration the
numerical solution of the exterior Neumann system (31) when we replace V'

by Zk(x) = 2?21 uZZ”“("E)

Then we set:

P (@ Z Uiy (60)

=1

and we obtain n systems similar to (8). The only difference are the second
members of the equations because the boundary Neumann condition is not
the same for each Z"*(z). Thus the numerical solution of the n systems re-
quires 2n® flops because the LU factorization of A is known at this step of the
algorithm.

4.3 The Numerical Algorithm.

To analyse the algorithm we give a scheme of the computational process.

1. We give an initial shape I'” and a Lagrangian multiplier A°.
2. For k=0,........ to convergence do :

a) Compute the perturbation direction basis Z"*, i = 1 n.

eees
b) Solve the integral equation (10).

b.1 - Compute the coefficients of the matrix A.

b.2 - Compute b;, 1 =1,--- ,n

b.3 - Factorize the non symmetric matrix A.

b.4 - Solve the linear system to compute g.

¢) Compute a numerical approximation of the first shape derivative.

c.l - Compute Vi and B! at all the quadrature
points of the surface I'*.

c.2 - Calculate numerically the integral (32) when
V=Zki=1...n

c.3 - Compute the volume m(w*) and its shape derivative.

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 17

c.4 - Calculate a numerical approximation of

D(T*, AF)(ZF),i =1, ,n.

d) Compute a numerical approximation of the second order shape de-

rivative.
L"(TRY(Z%, Z3%) for 4,5 = 1, | n.
d.1 - Compute Vo', ,,1=1,--- ,n at all the quadrature points.

d.2 - Calculate the integral (33).

e) Solve the symmetric Newton system(26) to compute
u = (ug, - ,uy) € R™.

f) Update the surface I'* to obtain ['**1.

We will study the complexity of the algorithm as function of the number of
nodes needed for the piecewise linear representation of the surface I'* ( n is
also the number of degrees of freedom of the problem).

First we look for the number of flops required to compute de gradient. In
section(4.2) we remark that the evaluation of a;; by a quadrature formula
needs 6 x k X k x n? flops and the numerical solution of the linear system (57)
requires ? + 2n? flops. Thus, setting & = 3 the numerical solution of the
integral equation (10) needs O(n?) flops.

The support in T'* of the perturbation vector field Z"*(z) is exactly the
same than the basis element t;(xz). Then the numerical computation of the
gradient coefficient

1 :
— [ (B*+ oH + pgzs — A) (7" - v)dy (61)
2p0 Jr

requires O(n) flops. Consequently the gradient evaluation adds O(n?) flops.
Summarizing, the number of flops needed to perform step a), b) and c¢) of the
algorithm are of order O(r?).

The step d) is devoted to the evaluation of the Hessian. The computation
of the Hessian needs n(n2_+1) computations of the second order shape derivative
L"(TRY(Z0F Z38) i =1, .. n,j = 1,...,n.

The Hessian matrix coefficients are given in (33) when V is replaced by

Z%% and W by Z7k,

RR n" 3367



18 Arian Novruzi and Jean R. Roche

The boundary integral L"(T*)(Z"*, Z7*) is composed of two terms. The
first one is classical in finite element calculations, needs O(n) flops.
The second term which is not zero for all z and j is the following:

fﬂ(ek) V'(0)(€) - V' (0)(n)d
= fﬂk Vc,o’Zi,k . V@’ijkd:ﬁ.

By the Green formula and using the fact that ¢’ is solution of (31) we obtain

(62)

the following boundary integral form:

!
szmk

Jou NVl - V@l = = Jru g -~ dy(a) (63)
= - frk(Z27 'V)(V99 + Bl) ’ (5¢ZJ,k)d7(I)'

In order to compute (33), it will be necessary to evaluate V', ., thus we have
to solve the n exterior Neumann problems (31). In section (4.2) we remark

that the solution of the n systems requires 2n° flops.

Having solved the n exterior Neumann problems the evaluation of (33) adds
O(n) flops.

In conclusion we have that the numerical computation of the Hessian needs
only O(n?) floating points operations.

The resolution of the linear system (26) by a LDL" numerical matrix de-
composition needs also only O(r®) flops, see [1]. Thus the complexity of a
Newton iteration is similar to the complexity of a gradient method, namely
O(n?).

In fact, at each iteration, solving the integral equation takes about forty
five percent of the C.P.U. time in a sequential computer. The table 4.1 gives
the percent of the most C.P.U. time consuming sections of the algorithm in a
sequential mode using an example where n = 1024.

TABLE 1: Example, n=1024.
a; j LU Vg@ Vg@l L”
% |37 |34 7.6 |32 |13

Consequently to take advantage of the relative independence between the
coefficients of the gradient and the coefficients of the Hessian matrix, we intro-
duce a parallel version of the code using message-passing on a MIMD computer.

INRIA



Newton method in 3-dimensional Shape Optimization Problems. 19

5 Parallel implementation.

The main problem in a parallel approach using the message-passing program-
ming model in MIMD computers is the impact on the total time of the C.P.U.
time spent in interprocessor communications. Then the goal is to obtain an al-
gorithm with an optimal ratio between communication cost and floating point
operations cost.

To determine the theoretical performances of the parallel code we introduce
a simple model of the speedup behaviour.

We denote by ¢; the amount of time needed to compute a floating point
operation, by t. the time needed to communicate a floating point number.

The sequential C.P.U. total time is denoted by ¢; and we assume that

ts = Oy(1)n't;. Let t(N,) be the total time when we run the code in N, process
ls
MIMD computers. We assume t(N,) = N + O.(1)n“t,.
P

Then the speedup s(N,) = ) can be modeled as:
P

s(N,) = O:(1)n't, _N 1 (64)

O L O (et 14 Ny QB tepes

le . .
We assume that the ratio 7 s independent of n.

t
Then if ¢ —t < 0 the speedup increases with the number of unknowasn

and has an asymptotic maximum N,. If ¢ —¢ > 0 the speedup decreases when
0.(1)
0:(1)"

n — oo . If ¢ —t =0 the speedup depends on the ratio

N,
We denote by e(N,); e(N,) = M

the efficiency. Then to obtain a maxi-

p
mum of efficiency when we parallelize the section of the algorithm where
c—1<0.

5.1 Computation of the matrix A.

The algorithm of sequential computation of the a;; coefficients for 7,5 =
1,2,...,n is a classical finite element routine to "assemble” the stiffness matrix
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A. We denote by n_element the number of finite elements used to represent
['*. In the sequential case the code takes the following form:

do ey = 1,n_element
do ex = 1,n_element

Cif 2% € T., and 29* € T., then
A(i,5) = A1, 5) + Jp, S, ‘I’z’(fﬂ)‘l’j('y)%dv( )dy(y)

Cifer=cey
AL G) = AGL )+ fr, fr, Wil@)W5(y) U220 4y (2)dy (y)
+2m frk z)W;(z)dy(z)
enddo
enddo

Following the message_passing programming model, we introduce for A a scat-
tered column data structure. The columns of A are distributed across the
processors following a one dimensional static wrap mapping scheme. Let n de-
note the number of given equations. Each column j of A denoted A; is stored
in the processor number p = mod(j — 1, N,).

Then we propose the following parallel version using M.P.1.:

C each processor runs the following code
do ey = myid, n_element, N,
do ex = 1,n_element
Cif 2% € T., and 29* € Ty,

Ai3) = A G) + Jp,, Jr, Wil@) 5(y) U252 dy (2) dy (y)

Cifer=cey
Ai,j) = u>+ S, Sy, i) W (y) ULy (2) dy (y)
+2m o Wi(2)V;(2)dy(2)
enddo
enddo

At this stage each processor has an incomplete copy of A. In the next part of
the algorithm we complete at each processor the computation of the coefficient
of his own columns.
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doj=1,n
its_j= the number of the processor owner of j-th column
if myid = 1ts ; then
receive the column A; and update
the values of coeflicients a; ; for all ¢.
A=A+ A;
else
Send the column A; to process its_j

endif
enddo

This algorithm needs O(n?) communications but does not repeat any calcula-
tions. The theoretical speedup is given by:

2
S(Np) _ Ot(l)n tt - N 1

Ot n2 - P cOc
QIte 1 O, (1)n2t, L+ Vi G

(65)

In our case Oy(1) is the number of floating point operations needed to compute
the integrand of the a; ; coefficient form at a quadrature point.

5.2 LU decomposition.

We factorize the matrix A by a standard Gauss decomposition with a partial
pivot searching. Thus the process myid will execute the code:

dok=1,n
if mod(k, myid 4+ 1) = 0 then
find the partial pivot
.make the permutation if necessary
.broadcast the column Aj and the index pivot
endif
myj=min{ j such that j.N, + myid+1>k+1}
do j = myy,n, N,
perform the elimination step in column j

enddo
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enddo

The amount of time needed to factorize A in N, processors is given by t(N,) =
]Q—; + n%t. then the speedup :

1

s(Np) = Npm (66)
pn3 tt

converges to N, when n — oc.

At this step, each processor knows its own column of U and all the matrix
L. Using this distribution of the data we perform the solution of the two linear
systems LUg = b by using a classical parallel algorithm, see [16], [18].

5.3 The Hessian computation.

Before computing the Hessian we solve the n exterior problems(31). In sec-
tion (4.2) we remarked that the matrix of the linear system associated to the
discretization of (31) is the same for all problems. Only the right hand side
differs between two exterior problems. Then we make use of the same LU
decomposition to solve in parallel the n problems. To this end we broadcast
the U matrix to all the processors and we solve with each processor 2n/N,
linear triangular systems.

Once all the linear systems are solved in parallel, we broadcast the results
to all the processes. In conclusion we need O(n?) transmissions and O(n?)
flops to compute and distribute the results of the n exterior systems (31).

The data structure adopted for the Hessian H is the same as the one used
for A. Each column H; is stored in the processor number p = mod(j — 1, N,).
In fact we separate the numerical structure of H two different parts, the first
one non sparse and second the one sparse, this last one depending on the
perturbation vector field Z%*. Then first we compute the non sparse part of
H, each processor running then the following code:

do j = myid,n, N _p

doir=1,n

H(i,j) = = [u(Z"" - v)(Veo + BY) (0l dy(z)
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enddo
enddo

The other terms of the integral (33) are computed using the scheme used to
7assemble” A. Each processor running now the following algorithm:

do 100 ey = 1,n_element
C let be J = {j/z"* € T.,}
If J(){ the set of column of H stored in myid processor }
go to 100
else
do ex = 1,n_element
C let be I = {7 such that "% € T,.,}
for: € I and 5 € J do
H(i,7) = H(i,7)+all the others term in the integral (33).
enddo
endif
enddo

This procedure needs O(n?) flops. Then the total computation of H needs
O(n?*) communications and O(r?) flops. Then the speedup goes to N, when
n — 0o.

Because the data structure of H is the same as that of A we perform a
parallel LDL' matrix decomposition of H using the same methodology than
the one used in the LU decomposition of A.

6 Numerical results.

This section will be devoted to the analyse of various examples in shape opti-
mization.
We write the energy (7) as:

E(w) = Bm/ 32(9)d$ + a/ dvy + Bg/ zsdx
() r'(e) w(f)
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where the constant B,,, 0 and B, are given constant. In all the cases studied
the current density jg is non zero only in one dimensional wires.

In all the cases we observe the evolution of ||['* — I'*||z> which is the L?
error between a ’right solution” I'* obtained after a great number of iterations
and I'*, the domain at iteration k.

We also study the evolution of the norm of the Lagrangian shape gradient
|L'|| 2, |mi — mo| the error between the volume of the domain at iteration k
and the given volume my.

We start with a discretize sphere which is considered as a first rough ap-
proximation of the free surface, see figure 6.1.

BN
Gl

FIGURE 6.1: Initial free surface for the first example.

The first example concerns a bubble where the magnetic field B is created
by eleven wires in a non symmetric configuration.

We present two numerical cases. The first one with 466 nodes converges
after 10 iterations. In the second case we discretize the free surface with 722
nodes and 1440 triangles. The free surface obtain is non symmetric. In figure
2 we plot the evolution of the || L'|| 2 in the two cases, with a logarithmic scale.
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"n=466"

"n=722" -

2 4 6 8 10 12 14

FIGURE 6.2: Evolution of the ||L'||z2 in the cases n = 466 and n = 722 during 15 iterations.

4 P e e P B 4 PP M T
1 0.28160745 | 0.538742 | 0.000015 0.25110406 | 0.372630 | 0.000002
2 0.18938252 | 0.063276 | 0.067681 0.16177495 | 0.042990 | 0.068132
3 0.06923706 | 0.042613 | 0.095329 0.07439711 | 0.011917 | 0.056972
4 0.04567913 | 0.010282 | 0.002560 0.04414708 | 0.004039 | 0.002251
5 0.03178702 | 0.007892 | 0.000690 0.02783905 | 0.003162 | 0.000682
6 0.02448614 | 0.006620 | 0.000131 0.02026516 | 0.002739 | 0.000240
7 0.02172659 | 0.006003 | 0.000040 0.01508798 | 0.002484 | 0.000101
8 0.01944490 | 0.005557 | 0.000011 0.01145004 | 0.002307 | 0.000040

0.00881417 | 0.002172 | 0.000021
0.00684190 | 0.002062 | 0.000010
0.00531275 | 0.001969 | 0.000013
0.00408282 | 0.001887 | 0.000005
0.00305502 | 0.001813 | 0.000000
0.00216839 | 0.001745 | 0.000000
0.00138062 | 0.001683 | 0.000007

©

0.01717505 | 0.005230 | 0.000003
10 | 0.01495014 | 0.004965 | 0.000007
11 | 0.01274491 | 0.004741 | 0.000011
12 ] 0.01055950 | 0.004545 | 0.000010
13 | 0.00839523 | 0.004368 | 0.000016
14 | 0.00625499 | 0.004207 | 0.000005
15| 0.00414133 | 0.004058 | 0.000017

e e
e o ho o > © 0~ O N

TABLE 6.1: First example. The ||[[* — T¥|| 12, || L'|| 12, [mo — my| values for 466
and 722 nodes.

In figures 6.3 — 6.6 we plot the evolution of the free boundary for the first
example. The first iteration are critical to achieve a good approximation of
the free surface. This shape is the result of the contradictory action of the
magnetic pressure, the surface tension forces and the gravity. The result is a
non symetric shape.

The figure 6.2 shows that the rate of convergence is superlinear at the first
iterations and it becames linear after four Newton iteration. Also we observe
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that we obtain a better approximation of the Euler necessary condition with
722 nodes.

FIGURE 6.5: Itération 03. FIGURE 6.6: Itération 15.

The second example, (see figure 6.7), concerns a bubble where the magnetic
field is created by 10 wires with a non symmetric configuration.

In table 6.2 we observe the behaviour of |I* — I'*||z. which is the L? error
between a "right solution” I'* obtain after a great number of iterations and a
very fine discretisation of the free boundary. The ||L'|| 12 rate of convergence to
zero is superlinear the first iteration and it becames linear after four iterations.
In figure 6.8 we follows the behaviour of ||L'|| 2 during 15 iterations.
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FIGURE 6.7: Initial free surface for the second example.

L —THle [ 02z [ Imo—my] |
1 || 0.550346136093 | 0.18274675 | 0.00000858
2 | 0.363416433334 | 0.03846094 | 0.14281559
3 || 0.234483063221 | 0.01779965 | 0.14949131
4 || 0.166946530342 | 0.00816778 | 0.02791786
5 | 0.099322676659 | 0.00461759 | 0.01086760
6 || 0.047078490257 | 0.00309315 | 0.00307322
7 1| 0.020525963977 | 0.00248215 | 0.00065947
8 || 0.014611248858 | 0.00217972 | 0.00006342
9 || 0.011999816634 | 0.00199168 | 0.00003862
10 || 0.009782091714 | 0.00185390 | 0.00002670
11 || 0.008058317937 | 0.00174668 | 0.00001287
12 ]| 0.006706404500 | 0.00166098 | 0.00002193
13 || 0.005340330768 | 0.00159163 | 0.00000334
14 ]| 0.003977795132 | 0.00153530 | 0.00000191
15 || 0.002631784417 | 0.00148988 | 0.00001240

TABLE 6.2: Second example. The evolution of the ||[* — T'*||z2, ||L/||z> and

|mo — mg| in the case of 722 nodes and 1440 finite element.
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-0.5 T
"n=722" ——

-1.5

-2.5

R 4 6 s 10 12 14
FIGURE 6.8: Behaviour of the ||L/||z2 in the case of 722 nodes and 1440 finite
element.

In figures 6.08 — 6.11 we plot the free boundaries achieve at intermediate
iterations. In the first iterations we observe a finite deformation, the following
iterations are devoted to fit the free surface.

FIGURE 6.8: Itération 01. FIGURE 6.9: Itération 02.
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FIGURE 6.10: Itération 03. FIGURE 6.11: Itération 15.

Both examples studied in this section shows that we have a superlinear rate
of convergence at first iterations. After that the effects of errors is that the
residual || L/||zz is no longer reduced in a significative manner as stagnation of
the iterations. In fact instead of L'(6*) and the Hessian H (6%, A*) we compute
a numerical approximation L'(6%, A*) 4+ 6% and H(0% A*) + n*. Tf ||6%]];2 = €
is due to floating-point roundoff, there is no reason to expect that ||L'||z2> will
be smaller than € in general, see [23]. Thus the numerical computation of the
solution of a 3 dimensional shape optimisation problem at low cost is possible
using a Newton method because the complexity of a iteration is similar to the
complexity of a Quasi-Newton method, namely O(r?).

6.1 Efficiency Results.

In this section we report the efficiency results obtain in the SILICON GRA-
PHICS PowerChallenge Array R10000 at 180Mhz of the High Performace Com-
puter Center Charles Hermite. Table 6.3 the efficiency of code computing the
coeflicients a; ; are reported when we consider 1,2,4 and 7 processors with dif-
ferent numbers of degrees of freedom. We observe that the results are better
than the theoretical prevision, we obtain an efficiency near 1.

RR n" 3367



30 Arian Novruzi and Jean R. Roche

n 1 2 4 7
466 1.00 {095 |0.92 |0.90
594 1.00 {095 |0.93 |0.90
722 1.00 {096 |0.95 |0.925
850 1.00 | 0.98 |0.95 |0.935
1042 | 1.00 | 0.99 |0.98 |0.95

TABLE: 6.3: Example 2, Efficiency of parallel code in computation of A.

In table 6.4 we report the results obtained in the parallelisation of the LU
matrix decomposition. Here the maximum efficiency obtained is 0.75 because
of communication cost.

n 1 2 4 7

466 1.00 | 0.87 | 0.67 | 0.51
594 1.00 | 0.91 |0.77 | 0.60
722 1.00 {091 |0.80 |0.61
850 1.00 {094 |0.82 |0.65
1042 | 1.00 | 096 |0.87 |0.75

TABLE 6.4: Example 2, Efficiency of parallel LU decomposition code.

In table 6.5 are reported the results of the code computing the second order
shape derivative of the Lagrangian. We obtain an efficiency near 1 which is
consistent with the theoretical previsions.

n 1 2 4 7
466 1.00 | 0.98 |0.98 |0.96
594 1.00 | 0.98 |0.98 |0.96
722 1.00 | 0.99 ]0.99 |0.97
850 1.00 {099 |0.99 |0.98
1042 | 1.00 | 0.99 |0.99 | 0.988

TABLE 6.5: Example 2, Efficiency of parallel code in computation L”.

In fact each step of the code was parallelized using the message-passing
programming model, using MPI interface in the SILICON GRAPHICS Power-
Challenge Array R10000 at 180Mhz. Table 6.6 reports the efficiency obtained

when we run all the code.
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n 1 2 4 7

466 1.00 | 0.95 |0.86 |0.77
594 1.00 | 0.97 |0.89 |0.77
722 1.00 1 0.99 |0.89 |0.80
850 1.00 {099 |0.89 |0.80
1042 | 1.00 099 091 |0.81

TABLE 6.6: Example 2, Global Efficiency of the parallel code.

In summary the efficiency results presented here show that considering
Newton’s like algorithm in shape optimization allow us to take a maximal
advantage of the architecture of the MIMD computers. There is one reason
to explain this fact: the complexity in the floating point approximation of
the Hessian and the gradient is dominated by the complexity of the algorithm
solving the P.D.E.’s. and we can parallelize very efficiently the P.D.E.’s solving
code and the Hessian evaluation code.

Acknowledgement. This work has been supported by the High Perfor-
mace Computer Center Charles Hermite of Nancy.
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