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Abstract: Numerical method for detection of unstable periodic orbits on attractors of nonlinear
dynamical systems is proposed. This method requires the similar techniques as the data assimilation
does. This fact facilitates its implementation for geophysical models.

Some low-period orbits of the Lorenz model have been calculated explicitely. The orbits encoding
and application of symbolic dynamics is used to classify and identify the detected orbits and find the
whole set of fundamental cycles. Application of the cycle expansion theory to the fundamental cycles
set allows to approximate some attractor characteristics difficult to calculate directly.
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Orbites périodiques instables et ’attracteur du modéle de Lorenz.

Résumé : Une méthode numérique de détection des orbites périodiques instables sur ’attracteur
d’un systéme dynamique non linéaire est proposée. Cette méthode utilise les méme techniques que
I’assimilation de données. Ce fait simplifie son implémentation aux modéles géophysiques.

Quelques orbites périodiques du modeéle de Lorenz sont calculées explicitement. Le codage de ces
orbites et "application de la dynamique symbolique est utilisé pour leur identification afin de trouver
tout ’ensemble fondamental des cycles. L’application de la théorie des expansion des cycles permet
d’approcher les caractéristiques de 'attracteur qui sont difficiles a calculer directement.

Mots-clé :  Orbites périodiques instables, attracteur, systéme dynamique non linéaire, modéle de
Lorenz, modéle géophysique.
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1 Introduction.

Numerous recent studies have been focussed on the properties of chaotic solutions generated by non-
linear systems. One of the major fields where this kind of solutions is extremely important is the
atmospheric and oceanic dynamics. The importance is based on the necessity to deliver the weather
forecasts and the limited time of deterministic forecasting of chaotic systems. The success of long-range
forecasting depends on the understanding of the sources and nature of the variability of the system
beyond the timescale of deterministic prediction.

Low frequency variability of nonlinear dynamics of the atmosphere has long been discussed. After
discovery of deterministic chaos [Lorenz, 1963] the interpretation of the atmospheric and oceanic cir-
culations, their variability and predictability have been developed by tools of the dynamical systems
theory.

One of the approaches to apply the dynamical system theory is to extract local characteristics of the
strange attractor. It is well known that the behaviour of a solution can differ a lot on different parts of
the attractor. The attractor inhomogeneity leads to the phase spatial variability in the predictability
time scale. This variability can result, for example, from the proximity of trajectories to unstable
stationary points and their stable and unstable manifolds. This idea has been quantified in various
ways by using local phase space information.

The study of this kind of inhomogeneity for atmospheric and oceanic dynamics has been started by
the work of [Charney and De Vore, 1979], who showed that a system of atmospheric flows in a rotating
channel with a spatially inhomogeneous forcing can have several unstable equilibria.

The theory of multiple equilibria [Charney and De Vore, 1979] of the atmospheric circulation
developed in order to explain and classify quasi stationary atmospheric regimes can be considered as a
good example of the application of dynamical systems theory to the climate. The question of multiple
weather regimes has been addressed in numerous analytical and observational studies since half of
century ago.

The earliest notions of their classifications relate to high and low circulation indices [Rossby, 1939,
zonal and meridional circulation indices [Blinova, 1943, blocked and zonal flows [Berggren et al., 1949],
[Rex, 1950]. These empirical classifications have been revisited and their properties have been explained
basing on the hypothesis that when a system passes a state close to one of multiple equilibria, quasi
stationary atmospheric regime results.

Each hyperbolically unstable equilibrium forms a region in the phase space where the system
trajectories slow down before being ejected along an unstable manifold. The reasonability of this
hypothesis has been confirmed by the comparison of the results of cluster analysis of the solution of
the barotropic model with its equilibria [Mo and Ghil, 1988]. The analysis shows closeness of the
clusters centroids with the equilibria.

Using a truncated barotropic model of the atmosphere [Legras and Ghil, 1985] demonstrated that
recurrent quasi stationary states occur in the vicinity of unstable stationary points in the phase space
of the model. The lifetime of this regime depends on a particular trajectory in the phase space [Mo and
Ghil, 1987], however the mean regimes lifetime related to the stability characteristics of the adjacent
stationary point [Dymnikov et al., 1990]. This fact allows to obtain a priori estimates of the regimes
lifetime. The climatic average of the barotropic model solution has been analysed in [Dymnikov and
Kazantsev, 1993]. It is shown that this average can be developed by the set of equilibria with a rather
good accuracy.

Essential results are recently obtained also for theoretical investigations of the phase space struc-
tures. Theorems for the existence and uniqueness of a solution, existence of the finite-dimensional
attractor for geophysical models have been proved in [Temam, 1988], [Dymnikov and Filatov, 1990,
[Bernier, 1994]). Analysis of the number of equilibria in the phase space of the model has been per-
formed in [Filatov, 1992]. Mathematical analysis of climatic processes can be found in [Dymnikov and
Filatov, 1996]. These works provide us with a good theoretical basis for the forthcoming researches.

RR n- 3344



4 FE. Kazantsev.

However, the applications of this theory to the climatic models analysis possesses one principal
“shortcoming”. Despite the fact that there exists multiple equilibria, their vicinities cover a very small
part of the attractor only. Thus, the model spends much time out of these vicinities where its behaviour
can not be explained by means of this theory.

So far the analysis of equilibrium points of chaotic models has been so fruitful, one can try to study
another kind of “particular solutions” of a nonlinear system. This kind of solution is the periodic orbits
(or limit cycles) which also can exist on the attractor of the system. As well as equilibria discussed
above, they can be as stables and unstables. However in practice, unstable equilibria and unstable
periodic orbits only call a particular attention in the studies chaotic system, because any stable solution
used to form a regular attractor with no chaos.

Similarly to quasi stationary regimes which are explained by the motion near unstable equilibrium,
we can speak of quasi periodic regimes, or intermittent appearances of oscillatory modes, which may
be explained by the motion near unstable limit cycle.

The periodic orbits for geophysical model have attracted some interest already ([Itoh and Kimoto,
1996],[Jiang et al., 1995],[Dymnikov et al., ]). However all these papers address the stable periodic
orbits on the bifurcation diagram and the transition to chaos.

There exists the principal difference between stationary solution and periodic orbits. The number of
equilibria is usually finite for a geophysical model. Moreover, it is always finite for a finite dimensional
approximation of a model. So far the nonlinearity is quadratic, the number of stationary points is
bounded by 2V where N is number of degrees of freedom of the discretisation. So one can hope to
find all equilibria of the model. However the number of periodic orbits is usually infinite even for
discretised model. To say more, one of definitions of the chaotic system [Devaney, 1987| used the
density of periodic orbits on some set V' to define the latter as a set specificallywhere the behaviour of
the system is said to be chaotic. Following this definition, if we speak of a chaotic system, its periodic
orbits are dense in some V, hence they are of infinite number. This is the case of Lorenz system
[Lorenz, 1963], which is composed of 3 ordinary differential equations only.

Despite we can not find all the periodic orbits, we can find and analyse some of them, with lowest
period. The situation is similar in some sense to the analysis of equilibria where we can not prove we
found all of them and we have to analyse equilibria we have found only.

One can say that for some purposes only a limited number of low-period orbits may be suflicient.
This point of view is argued in [Hunt and Ott, 1996b|, [Hunt and Ott, 1996a]. However, this conclusion
does not hold generally and some applications may require long-period orbits also [Zoldi and Greenside,
1997a). In this case it may be possible to apply the cycles expansion theory [Arutso et al., 1990al,
[Arutso et al., 1990b] in order to manage all the periodic orbits set.

To treat periodic orbits of a geophysical system we need first to detect some of them numerically.
This requires an efficient algorithm of the unstable periodic orbit search, applicable to geophysical
models.

To develop such an algorithm and to analyse its properties and difficulties of its application we use
first an extremely simple chaotic model with a strange attractor, namely the Lorenz model [Lorenz,
1963]. This model has been carefully investigated for a last three decades, we know much about its
attractor.

In the first section of the paper the method of unstable periodic orbits search is proposed. The
second section is devoted to the analysis of their properties related to the predictability and attractor
of the model.

INRIA
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2 Instable periodic orbits of the Lorenz model.

The Lorenz model [Lorenz, 1963] writes

—i/ = —zz+4rz—y with parameters b = 4, (1)
de _ oy ro= 45.92.

This model with the parameters given possesses 3 unstable stationary points:

(0,0,0), (£/b(r — 1), /b(r — 1), 7 = 1)

There exists a strange attractor in the model phase space which has a dimension about 2.06.

The advantage of this model is its simplicity. Its attractor, bifurcation diagram, stationary points
and periodic orbits have been studied carefully. Much information about this model has been collected
in the book [Sparrow, 1982]. In particular, there has been proposed to use the Newton method to
locate unstable periodic orbits on the attractor.

However, the initial conditions for this method must be chosen in a rather close vicinity of a
periodic orbit, otherwise the method diverges. To simplify the choice of the initial point, there has
been proposed in [Zoldi and Greenside, 1997b] to use dumped-Newton method. This method differs
from the classical Newton method by the fraction o < 1 of a Newton correction éz is added only to
update the unknowns,  — z + adz. This method found to be more efficient to find periodic orbits
due to less restrictive choice of the initial guess.

However realisation of this method requires O(N?) operations per iteration due to necessity to
calculate the matrix of the Newton process and solve a system of equation with this matrix. This fact
limits its use by low-dimensional systems only. In fact, this kind of methods works well for the Lorenz
system and even for higher dimensional systems, however the number of variables must not exceed
100.

Several methods based on the stabilisation of an unstable periodic orbits have been proposed also.
There has been discussed in [Barreto et al., 1997] the possibility to find a “window” in the parameter
range of the model where one of its periodic orbits become stable. However, the possibility to find these
kind of “window” depends on the number of positive Lyapunov exponents on the attractor, and if the
last is sufficiently large, the search of such “window” may become difficult or impossible. Moreover, it
may be difficult to know also to determine whether periodic orbits are subjected to smooth variations
only or bifurcations may occur resulting in disappearance of the orbit.

In [Schmelcher and Diakonos, | a method of stabilisation of orbits based on a universal set of
linear transformation, namely special reflections and rotation in space. However, the application of
this method to a high dimensional system may not be eflicient due to very large number of possible
transformation to try.

Our purpose is to develop an efficient method which would be applicable to geophysical systems like
atmospheric and oceanic models. First, we can remark the great progress achieved in the variational
data assimilation techniques. For many model the data assimilation based on a functional minimisation
has been developed and applied. Moreover this minimisation uses gradient-type methods requiring as
many operation per iteration as the model does. If we formulate the problem of periodic orbits search as
a functional minimisation problem, we can apply the technique similar to variational data assimilation
for this model.

Let us consider the functional

J(f?, T) — Hf(éaTQ) _gHQ (2)

where (£, T) is a solution at time 7" of the system (1) with initial conditions £. Euclidian norm used

N
here ||Z||* =< #,7 >= ) a7
RR n° 3344 =1



6 FE. Kazantsev.

One can easily see that for every periodic solution of period T the value of this functional J(g, T)
is equal to 0 for all orbits originating at any point on this periodic solution. The functional J depends
on N + 1 variables: N components of vector £ and period T

To minimise .J we calculate first its gradient at a given point gand for given T in the N 41 variables
space.
To simplify notations let us denote:

e the right-hand-side of (1) by F(x)

e the matrix of the tangent linear model by G ;(€,1) = %%
i

Using these notations we get:

0. ABET) - &2
(G*=1)x (B&T)=¢&) |, t=1,...,N
VIETI=1 a | = olBET) - P )
SN Wy IBET) =7 -
) IB(ET) - dIf < O BEn) - &>
oT

where G* is the adjoint to GG linearised with respect to the orbit E(E, t) . For the Lorenz system the
adjoint model can easily be written:

d - —

_d_f — _O-w—l— <T—B3(€7t))y+B2(€7t)Z
d -

—d—ij = or—y+ Bi({t)z (4)
dz -
dt 1(57 )y z

The last component of the vector VJ(g, T) can easily be calculated

OBET) - - - o
<PBED) BET) - E5=< FBED), BET) - €>
So, to calculate VJ({, T') one need to calculate first E(é’, T), i.e. perform the integration of the
direct model (1). It should be noted here that one has to keep all the orbit for further integration of
the adjoint model. And after that integrate the adjoint model (4) with initial conditions

z |t:T: g(g T) - g

—

in order to obtain the product g*(é(éT) — ). The first N components of the V.J are calculated
eaSﬂy as G*(B(£7 T) - §) - (B(£7 T) - f) .

The gradient of J(&,,T},) allows us to perform the iterational descent from the point &,, 7}, to the
point 57;1, T,+1. The initial point of iterations f_(;, Ty can be chosen as arbitrary point on the attractor
of the model. For example, one can integrate the model for an arbitrary time and take the result of the
integration as the starting point for iterations. There exist 3 possibility of the process development:

e the process diverge (does not converge after some fixed number of iterations),

e the process converge to a minimum with some non-zero J,

INRIA
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e the process converge to a solution already found,
e the process converge to a new solution.

Only fourth item is considered as good, the first three are ignored.

The descent procedure used here is the truncated Newton method developed by S.G. Nash [Nash,
1984]. The truncated-Newton method is preconditioned by a limited-memory quasi-Newton method
with a further diagonal scaling.

Direct (1) and adjoint (4) models have been discretised in time with time step 0.002. 410 periodic
orbit of the Lorenz system have been found using the method presented above. The precision we
require to stop the iterations is J < 107!°. To achieve this precision some 20-70 iterations required
usually. We used 200 iterations as upper limit of iterations, if the number of iterations become larger,
the process is considered as divergent and the result is ignored.

The Lorenz system possesses an obvious symmetry: the transformation z — —z,y — —y,z2 — 2
does not change the system. Hence for any asymmetrical periodic orbit, the orbit obtained as the
result of this transformation is also periodic. And of course, among the periodic orbits there can exist
symmetrical orbits with respect to this transformation.

In figures fig.1 one can see two examples: symmetrical orbit with period T = 0.9149 and two
asymmetrical ones with 7" = 1.7857.

Y Y

30.00 r\ 35.00

25.00 30.00 -

20.00

15.00 1500 1]/

10.00 10.00 /

5.00 T 5.00 - / —

0.00 0.00 o —

5.00 — 5.00 1

10.00 iz , /

15.00 ] 2000 //

25.00 k -30.00 \

30.00 -35.00

2000  -10.00 0.00 1000 2000 X 3000 -2000 -1000 000 1000 2000  30.00%
Figure 1A. Projection on the plan x — y of the sym- Figure 1B. Projection on the plan z —y of two asym-

metrical periodic orbit 7' = 0.9149 metrical periodic orbits T' = 1.7857

In order to provide a numerical evidence of the density of the periodic orbits on the attractor, the
Poincaré section by planes + = 0 and z = r — 1 of all the periodic orbits is shown in the figure fig.2.
One can easily see periodic orbits cover the attractor region.

These sections are used also for the identification of the periodic orbits found. So far we can use
any point on the orbit as its initial condition, this results in “non uniqueness” and provide difficulties
with its identification.

To be capable to distinguish a new solution from already found ones, we look for a point on this
solution for which z = 0, i.e. the points where the orbit intersect the plane z = 0 fig.2A. There exists
at least 2 such intersections, so we choose one for which y-coordinate has the lowest possible value.
This point is obviously unique. We keep this point as the initial point for the orbit and to compare
different orbits it becomes sufficient to compare their initial points.

The second plot we shall use further for the orbits encoding.

RR n- 3344
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z Y
56.00 fo%
54.00 _ :
52.00 — A 35.00
50.00 S 30.00
48.00 ~ e 25.00
46.00 > e 20.00
44.00 5 + 15.00 -
42.00 A 10.00 -
40.00 5 - 5.00
o , ow
34.00 . -5.00
32.00 e -10.00 —
30.00 Ll -15.00 -
28.00 - -20.00
26.00 : -25.00
24.00 -30.00
22.00 '35.00
20.00 -40.00
18.00
-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 20.00 Y. -45.00 -20.00 -10.00 0.00 10.00 20.00 X
Figure 2A. Poincaré section by plane z =0 Figure 2B. Poincaré section by plane z =r — 1

One of interesting features of periodic orbits of the Lorenz model is their distribution on periods.
One can see on fig.3 that periodic orbits are concentrated in groups with periods near multiples of some
elementary period T' ~ k x Ty. The value of this period can easily be calculated as Ty = ﬁ
ﬁ—l)' The value of Ty for
the parameters (1) is equal to Ty = 0.447. It should be noted here that there is no periodic orbits
with period Tp, this orbit has disappeared in the subcritical Hopf bifurcation at r = r* when non-zero
stationary points loose its stability.

The regularity in fig.3 relates to the bifurcation chains the orbits have been generated in, i.e.
doubling period cascade and symmetry breaking bifurcations. This regularity is the best viewed in
the Nusselt number plot versus the solution period. The Nusselt number is a dimensionless spatially
averaged measure of the vertical heat transport of a convection cell. For the Lorenz system this
transport is given by

where r* is the value of parameter r at the bifurcation point r* =

2
N=14+ —ay.
br

In fig.3A averaged Nusselt number N = % fOT N (t)dt is plotted for each periodic orbit found. One
can easily see that each point lies at the intersection of two hypothetic curves: almost straight line
which is almost orthogonal to the T axis, and a hyperbolic-type curve. The strait lines represent the
groups of orbits with periods close to Ty ~ k x Ty. Each hyperbolic curve starts at some low period
orbit and follow all orbits appeared in the certain type of bifurcations.

The set of hyperbolic curves begins with the "upper" hyperbole originating at the orbit with lowest
period T" = 0.91 Each other hyperbole originates at the orbit with higher period and, in some sense, is
parallel to the first one. One can suppose that these hyperboles could be continued to infinite period
and so they contain infinite number of orbits. The upper hyperbole represents the sequence of the most
asymmetric orbits which make one turn around one non-zero stationary point and k turns around the
another one. It is clear that when T" — oo the Nusselt number tends to the Nusselt number of the
stationary point. So the Nusselt number of the stationary point is the horizontal asymptote of this
hyperbole.

Another type of subset is the set of groups of periodic orbits with close periods which form strait
almost vertical lines in fig.3A. If we denote that the first two corresponds to lowest periods, they are

INRIA
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composed of one point each and so they can not be considered as lines. However, the third line is
composed of two points, the fourth one — of 3 etc.

One can distinguish the same type of regularity in the fig.3B where the z coordinate of initial
conditions is plotted versus the period. We remind that the initial conditions have been chosen as
points where the orbit intersect the plane z = 0 (fig.2A) and the y-coordinate has the lowest possible
value. The distribution in z is well delimited by two hyperbolic curves. “Upper” hyperbole correspond
to the orbit which makes & turns around the equilibrium with negative z and y and the “lower” one
corresponds to the orbit which makes k turns around the equilibrium with positive z and y . One can
see that in this case the groups with close periods have more complicate structure than simple lines.

There are more points on the second plot due to the fact that any couple of asymmetrical orbits
has the same Nusselt number and so this couple is presented by one point in fig.3A, while their z
coordinates are different and provide two points in fig.3B.

Nusselt Number z

284 54.00

2.84 52.00 '1_.'
283 : 5000 ; .S 3
. )
. 46.00 ” ;’- .l
2.82

oo g

281 - . S
281 : : 4200

280 . H : 40.00 "
280 I 38.00 it
2.79 : - — 36.00 -
279 1 34.00

278 — ',I 32.00

278 ER— |‘ 30.00

277 — 2800

277 26,00

277

T 24.00 T
1.00 2.00 3.00 4.00 5.00 1.00 2.00 3.00 4.00 5.00
Figure 3A. Averaged Nusselt number vs T. Figure 3B. z coordinate of initial conditions vs T.

To perform the extrapolation of periodic orbits up to infinite period or perform the cycle expansion,
we have to identify them first. This identification will help us also to calculate the number of orbits in
each group. It can be performed by the symbolic dynamics analysis of periodic orbits [Hao and Liu,
1997], [Bedford et al., 1991]. To each orbit a symbolic sequence is associated. Analysis of the Lorenz
model carried out in [Sparrow, 1982] that this coding is possible for some range of the parameter r
and at most one cycle corresponds to each symbol sequence. Following [Franceschini et al., 1993],
we use quasi one-dimensional set in the Poincaré section of the Lorenz attractor by z = r — 1 plane
presented in fig.2B. It is noticed that upward intersections of the orbits may be directly parametrised
by & coordinate. So far upward intersections of periodic orbits occur at |z |> /b(r — 1) only, we
denote by the symbol "A" each intersection occured at > y/b(r — 1) and by "B" at « < —/b(r — 1).
Thus each orbit is encoded by the sequence of symbols "A" and "B".

The number of symbols in sequence is the same for the same group. The orbits showed in fig.1A and
B are encodes by "AB" and "ABBB" respectively. As it follows directly from the nature of periodic
orbits, the sequences "ABBB" and "BBAB" represent the same orbit with different initial conditions
on it. So we do not need to consider these sequences as different. Similarly, "ABAB" represents the
same orbit as "AB" but repeated two times. Taking into account that any orbit intersect the plane
z=r —1 at least twice, we must consider only the sequences

E(k):(0'170'2,...,0']9),Vi0-iE{AvB} (5)

RR n- 3344
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which satisfy:
e ¢ such that 0;0,41 = AB,

o Vi, j (w0 = »U)n6E = E(H'j),

N\ k/i
e Ai# k such that ©(F) = (SW)

The product of two sequences used here is the sequence composed of all their elements: %()§0) =
(O1,...,04,81,...,5;).

The number of possible sequences of length k represents the number of periodic orbits appeared
after k bifurcations. Their periods are close to k X Ty and, hence, this number is equal to the the
number of points in each group of orbits in fig.3B with such periods.

This number can be estimated by the formula [Chassaing, 1997], [Arutso et al., 1990a],

1 ki
N® = E( E ,u(z)?k/) (6)
i:mod(k,i)=0
where

L) 0ifi=1df45% .. 47 and 35 such that a; > 1 _
,u(z)_{ (_1)p+1 lfV] Oéjzl (l')

Group number 1 2 3 4 5 6 7 8 9 10 | 11

Length of sequences | 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Period T 09131822 |27]31]|36/|4.0]451]49 | 54

Number of orbits 1 2 3 6 9 | 18 | 30 | 56 | 99 | 186 | 335

Encoding of periodic orbits by symbolic sequences provides us with the following information and
facilitate the study of the attractor structure of the model. First, we can easily see whether all the
solution with periods T less than some T have been found or not. The number of possible sequences
of length k represents the number of periodic orbits in k-th group, so the number of found orbits in all
groups with periods less than 7" should be counted and compared with the necessary values obtained
from (6). This analysis shows that we have found all 410 periodic orbits with period lower than 5, one
can easily see that 410 is equal to the sum of all possible symbol sequences of length 10 or less.

Second, we can easily get a rather good initial guess for the descent procedure for any solution
which has not been found already and so find it. To obtain the initial guess one can analyse the plots
of the initial conditions as the fig.3B and similar figures for other coordinates. The regularity of these
plots allows and locate approximately the initial conditions for the missed orbits and their periods.
Starting the descent procedure from the approximated initial conditions, we can find the missing orbit.

Using the representation of periodic orbits by symbolic sequences one can obtain easily some cha-
racteristics of the attractor. For example we can easily calculate the topological entropy of the Lorenz
attractor discussed in [Auerbach et al., 1987], [Franceschini et al., 1993] using the formula (6)

In N (k)
=In2

Ky = lim

k—oo

And the third point, more attractor characteristics, which are difficult to calculate directly can

be obtained from the cycle expansion methods. This theory, proposed in [Cvitanovic, 1988], shows

that only a subset of fundamental cycles, which includes the minimal number of cycles only, is impor-

tant,because they are sufficient for a correct description of the topology of the attractor. Any other

cycle can be approximated by elements of the fundamental set. Thus, despite the number of periodic

orbits is infinite on the attractor, we do not need to look for all of them to understand their properties
and the properties of the attractor.

INRIA
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3 Periodic orbits, predictability and attractor.

One of the interesting aspect of periodic orbits is their instability characteristics. As it has been
mentioned in the introduction, the study of the stationary points of the system of the barotropic
atmosphere and the corresponding quasi-stationary regimes of atmospheric circulation brought fruitful
results in the domain of analysis and a priori estimates of the lifetime of such regimes.

In [Dymnikov and Kazantsev, 1993] the theory of instability indices for stationary points has been
applied to estimate the mean time the trajectory spend in an equilibrium vicinity. These theory have
been applied even for real blocking-type regimes of the circulation over north Atlantic and Europe in
[Dymnikov et al., 1990]. There has been shown the relationship between the instability index and the
lifetime of blockings. This theory is based on the supposition that a quasi-stationary regime arises
when the trajectory approaches an unstable equilibrium through its stable manifold and withdraw
from it through the unstable one. So it is natural to deduce that the mean duration of the trajectory’s
stay in the vicinity of an equilibrium is proportional to the characteristics of the unstable manifold of
the equilibrium, as well as the number of intrusions of the trajectory into the vicinity is proportional to
the characteristics of its stable manifold. Hence the mean duration of the circulation regime becomes
proportional to the instability characteristics and the frequency of occurrence of the regime to the
stability characteristics of the corresponding equilibrium.

In this model study we try to develop this idea and apply it to the periodic solutions, and conse-
quently to define quasi-periodic regimes. The observational evidence of the existence of such kind
of regimes, or waves, can be found in any tutorial for a physical systems like atmosphere or ocean.
However, the question is open whether they can be explained by the presence of an unstable periodic
orbit near them.

To measure the instability of the periodic orbit we use the sum of positive Lyapunov exponents as
a characteristic of the divergence rate of nearby trajectories close to the periodic one. They are based
on the eigenvalues of the operator of the tangent linear model linearised around the periodic orbit. For
the Lorenz model (1) one can simply get the tangent linear model as

da z! -0 1 0
d—i — A(B)z', where 2/ = | o' | and A(E(E, t)) =| r—Bs&t) -1 -BiED | (8
2 By(&t)  Bi(&)

where E(é’, t) is a point on the periodic orbit at moment ¢ originating at point 5
The sum of positive Lyapunov exponents can be calculated as the

oo 1 . o ¢ .
K= Jim —1n AX;O \(G3 x Gy) where Gy = exp/o A€, ydt ~ tl;[o(l +rAE D) 9)

The limit appeared in the definition of the Lyapunov exponents causes the difficulties of their calcu-
lation due to necessity to perform very long time integration. However, the use of periodic orbits can
simplify this problem because for any of them this limit can be calculated in finite time thanks to
periodicity. So far we know the same orbit will be repeated all the time, we replace the limit lim_, .,
by lim,,_, ., where n is the number of repetition of the orbit. So

- 1 «\n n 1
K = lim mlniggo)w((GT) x (Gr) ) = Tang;O | \(GT)] (10)
Thus, the Lyapunov exponents are related to the Floquet multipliers and can be calculated within one
period integration.

We shall use the hypothesis that a quasiperiodic regime arises when the trajectory approaches to
an unstable periodic orbit. We suppose also that the mean duration of this regime is related to the
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instability characteristics of the orbit while the frequency of occurences of the particular quasi periodic
regime is related to the stability characteristics of the corresponding orbit.

In order to verify this hypothesis, the mean time spent in the vicinity is estimated directly. We
define e-vicinity of the periodic orbit as a torus centred on the orbit with circular section of radius e.
A set of integration of orbits close to periodic one is performed. In each integration a small arbitrary
perturbation to the periodic orbit is added and the averaged time the perturbed trajectory remains
in the vicinity is measured. Despite the Lyapunov exponents by definition explain the divergence rate
of infinitesimal perturbation, the relationship between them and the time spent in the vicinity is not
evident due to finiteness of a real vicinity and due to possible non-symmetry of the G operator which
leads to the “super-exponential error growth” [Nicolis et al., 1995]. However, the Lyapunov exponents
remain good estimates of the mean time spent in a finite vicinity for Lorenz model. In fig.4A one
can see the relationship between the mean time spent in vicinity of the periodic orbit and its positive
Lyapunov exponent. The radius of the vicinity 0.5, the norm of the initial perturbation 107>. One
can see the correlation between these values remains high (0.96 & 0.05) for as large vicinity as 0.5

To estimate the frequency of occurences of a particular quasi periodic regime directly we should
distinguish the events when the trajectory passes close to the periodic orbit. However, it is not possible
to cover all periodic orbits by non intersecting vicinities and count the number of entrances into the
one of them due to density of periodic orbits on the attractor. Even if we work with a limited number
of low-period orbits, the vicinity radius has to be chosen very small. This leads to a very long time
integration to obtain statistically significant number of entrances in each of them.

Following [Eckhard and Ott, 1994] we address again the symbolic sequences discussed above. A
long trajectory on the attractor was run for 2 millions crossing of the plane z = r — 1. Similarly to
encoding of periodic orbits, each upward crossing the plane by this trajectory was encoded by a symbol
"A" or "B" for z > /b(r — 1) and z < —+/b(r — 1) respectively. In the long symbolic sequence of 2
millions symbols obtained in this way, we look for subsequences of a fixed length which correspond to
one of periodic orbits. It should be noted that there exists n sequences of length n which correspond
to the same orbit obtained by the transposition described by the second item of (5), so we must not
distinguish them. In the same time there can exist subsequences which can not be identified with a
periodic orbit. These sequences are prohibited by either the first or the third items of (5).

So, any part of trajectory encoded by the sequence of length n can which corresponds to the
periodic orbit is considered as close to this orbit. In fact, the trajectory part is not obligatory close
to the periodic orbit in the sense of some norm in the phase space, it only “follows” the periodic orbit
intersecting the plane in the same regions. In fig.5B one can see the comparison of the trajectory
segment encoded by the symbol sequence of length 9 " BBBAABAAA” and the periodic orbit with
period T' = 4.045077 with the same encoding.

However, the probability to find a sequence corresponding to the periodic orbit in the long symbol
sequence and the Floquet multiplier of the corresponding periodic orbit are in a good agreement
as demonstrated in fig.4B. The correlation between is about 98%. Each of five sets corresponds to
sequences of lengths from 7 to 11. So far shorter sequences are composed of lower number of periodic
orbits, the relative probability of their realisation is higher. Thus the sets which represent shorter
sequences are situated higher in fig.4B.

INRIA



Unstable periodic oroils and Atiractor of lhe Lorenz Modael.

Probability x 103

Time 80.00
580 75.00
' 0 70.00
>7 65.00
5.60 60.00
5.50 55.00
5.40 — 50.00
5.30 . 45.00 —
5.20 . 40.00 —
5.10 R 35.00 .
5.00 — 30.00 o~
4.90 L 25.00 —&
3 ) i) 8
480 L, 20.00 =
’ olA 15.00 —
470 A 7 g
L "-'.-lu'-l 10.00 —
4.60 LN M‘h Looo® "
. A -.L‘r'I_ i 5.00 — et
450 . 0.00 Floguet
440 : -160 -155 -150 -145 -140 -1.35 multipl.

1.35 1.40 1.45 1.50 155 1.60 Lyap.Exp.

Figure 4B. Frequency of occurences of a symbol se-
Figure 4A. Mean time spent in vicinity of the per- quence of length from 7 to 11 identical to the periodic

iodic orbit versus its Lyapunov exponent. one versus the Floquet multiplier of the corresponding
periodic orbit.

The idea to approximate the chaotic attractor properties by means of unstable periodic orbits is
not new. The important role played by periodic orbits was noted already by H. Poincaré (1892) et
E. Hopf (1942). This interest is reappeared in modern studies. Possibility of studying the strange
attractors of dynamical systems by means of periodic orbits is discussed in [Auerbach et al., 1987], the
cycle expansion formalism and its convergence is analysed in [Arutso et al., 1990a). One can find some
applications of this formalism in [Eckhard and Ott, 1994], [Franceschini et al., 1993]. An analysis of
periodic orbits for Lorenz model can be found in [Sparrow, 1982].

Unstable periodic orbits have been found for higher dimensional systems (Kuramoto-Sivashinsky
equation with N=100) [Zoldi and Greenside, 1997b]. The first steps have been performed to distinguish
periodic orbits in geophysical systems [Jiang et al., 1995, [Wang and Fang, 1996], [Itoh and Kimoto,
1996].

In this paper we try use low-period orbits to approximate such simple attractor characteristics as
the average of the solution and its moments:

¢

Mi() :tlggo% e (11)
The moments can be calculated directly form the long orbit. However, a long integration of the model
must be performed to obtain a suflicient accuracy due to slow convergence of the limit. To avoid
the necessity of the long model integration we can use periodic orbits to approximate the moments.
Approximation of the first moment of the solution, i.e. its average, has been discussed already [Hunt
and Ott, 1996a/,[Hunt and Ott, 1996b|. However, approximation of higher moments may be important
also in applications.

Approximation of moments by moments of periodic orbits is performed as weighted sums, with
weights equal to the inverses of Lyapunov exponents [Zoldi and Greenside, 1997b]. Thus, less unstable
orbits are weighted more heavily. The approximation of each moment by orbits with period less than
T has a form:

1 1 (T
> KTy Jo" @kt

(12)
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where K} is the positive Lyapunov exponent of the kth orbit and T} is its period.

We compare the moments calculated directly from a long time integration and approximated mo-
ments from all the periodic orbits with periods less than 7. The direct calculation has been performed
for 107 time units. This provides relative error of estimation of about 0.01%. As a quality of approxi-

(z
z variable in the Lorenz model have been calculated directly anzd approximated. The relative error of
the approximation as a function of T, or the number of orbits used is shown in fig.5A. One can see
the convergence of all moments to values calculated directly, however the convergence is rather slow,
approximately as 1/y/N. To ameliorate convergence one can apply dynamical averaging [Cvitanovic,
1995] and the cycle expansion formalism [Arutso et al., 1990a).

. The first 4 moments of the

mation we use the relative error of the approximation:
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o e a
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Figure 5B. Trajectory segment encoded by the sym-
bol sequence "BBBAABAAA” and the periodic orbit
with period T' = 4.045077 with the same encoding.

Figure 5A. Relative error of the approximation of
average z and its moments

4 Conclusion.

The application of periodic orbit formalism to the Lorenz model in this work and former ones cited in
the text, points out the possibility and relative facility to characterise the model attractor properties
through unstable periodic orbits. This fact rises the interest of performing the same type of analysis
for a multi-dimensional PDE system like geophysical models. The numerical method used to calculate
periodic orbits allows to find some low-period orbits for simple models of atmosphere and ocean like
barotropic or multi-level quasi-geostrophic ones. Implementation of this method has another advantage
because it requires the similar techniques as the data assimilation does, which is very well developed
technique for this kind of models.

However, the transfer of these implications to geophysical models does not appear so straightfor-
ward. There exists a number of open questions which originates at principal differences between simple
models, like Lorenz one, and PDE systems. Even if we know that there exist an unique solution and
an attractor of a PDE system, the question of existence of periodic orbits should be studied carefully.

Moreover, the density of periodic solutions on the maximal attractor is even less evident. Hence it
is not evident either the attractor set can be approximated by orbits, or some subset of the attractor
only.
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The orbits encoding, application of symbolic dynamics and possible cycle expansion allow to es-
timate easily many attractor properties and predictability characteristics. In particular, encoding of
periodic orbits allows to know whether all the solutions with periods T less than some T have been
found or not. For any missing orbit we can get a good initial guess for the descent procedure and
thus find it. Application of the cycle expansion theory allows to obtain some attractor characteristics,
which are difficult to calculate directly.

The encoding of orbits of high dimensional system obtained after discretisation of PDE system and
application of the cycle expansion become much more difficult than encoding of the three-dimensional
Lorenz model.

Nevertheless, the application of this methods, even partially, may give a powerful tool of the
attractor and predictability studies for geophysical models.

The author is grateful to Christine Kazantsev and Philippe Chassaing for very helpful discussions.
This work has been accomplished in frames of the Project No.4 of the French-Russian Lyapunov Institut

(INRIA-MSU).
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