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Abstract: Recently, Caselles et al. have shown in the equivalence between a classical
snake problem of Kass et al. and a geodesic active contour model. The PDE derived
from the geodesic problem gives an evolution equation for active contours which is very
powerfull for image segmentation since changes of topology are allowed using the level set
implementation. However in Caselles’ paper the equivalence with classical snake is only
shown for 2D images with 1D curves, by using concepts of Hamiltonian theory which have
no meanings for active contours. This paper propose a proof using only elementary calculus
of mathematical analysis. This proof is also valid in the 3D case for active surfaces.
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Une preuve simple de ’équivalence entre les contours

actifs classiques et les contours actifs géodésiques
en 2D et 3D

Résumé : Les équations aux dérivées partielles (EDP) définissant I’évolution de courbe
plane permettent, avec une implantation par ligne de niveau, un changement de topologie
par rapport i la courbe initiale et sont de ce fait un outil puissant pour la segmentation
d’objet dans une image. Récemment, Caselles et al. ont montrés I’équivalence entre les
modeéles de contours actifs classiques de Kass et al. et de contours actifs géodésiques qui
définissent une EDP particuliére d’évolution de courbe. Cependant la preuve proposée par
Caselles n’est valable que pour la segmentation d’objet d’'une image 2D avec des courbes 1D
et fait appel a des concepts de la théorie hamiltonienne, sans aucun sens physique pour les
contours actifs. Ce papier propose une preuve utilisant uniquement des calculs élémentaires
d’analyse mathématique, valables aussi pour la segmentation d’image 3D a l’aide de surface.

Mots-clés : contours actifs, géodésiques, EDP
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1 Introduction

Boundary detection using active contour models has been extensively studied during the last
decade. The classical segmentation method introduced by Kass et al [5] for boundary de-
tection consists of estimating snakes by minimizing an energy. Recently, new active contour
models based on curve evolution have been introduced by Caselles et al. [1] and by Malladi
et al [6]. Assuming that the n-dimensional curve (n=1) or surface (n=2) is represented as
the zero level set of a (n+1)-dimensional function, the model is then given by a geometric
flow driven by the so-called mean curvature motion. Automatic changes in the topology
are then allowed, while they are not handled in the classical snake approach. This property
generates a novel interest from researchers for active contour models and shape recovery.
In [2], Caselles et al have shown that the classical snake problem (with no elasticity con-
straint) is equivalent to finding a geodesic curve in a Riemannian space, where the metric
depends on the image. This equivalence is only shown for 2D images with 1D curves by
using the Maupertuis’ principle of least action from dynamical systems. Then the Fermat’s
principle is applied to fix a free parameter.

The goal of this paper is to show that using concepts of the Hamiltonian theory is not nec-
essary to show the equivalence between snakes and geodesic active contours. We show the
equivalence using only elementary calculus of mathematical analysis. Moreover, this proof
is also valid in the 3D case for active surfaces. In the work of Caselles in [3], the geometric
3D approach is extended from the 2D one proposed in [2], but the surface evolution model
is not connected with the classical snake energy one.

This paper is organized as follows. In section 2 we recall the classical energy model (without
the elasticity constraint) and the problem of geodesic computation in a Riemannian space,
according to the metric derived from the image. In section 3 we present the proof of the
equivalence of these two problems in the 2D case. In section 4 the extension of the proof to
the 3D case is derived. Concluding remarks are given in section 5.

2 Two active contour models

Denote C(q) : [0,1] — R? a piecewise C! parametrized curve and I :  — RT an image in
which we want to detect object boundaries, ) is an open set of R2.

2.1 The snake model

We consider the following snake energy:

JI(C):/O I(J'(q)l2dc1+/\/0 9(IVI(C(q)))*dg 1)

where ¢ is a function which defines an edge detector. Therefore, g is a monotonic decreas-
ing regular function such that . li$ g(t) = 0. Solving the problem of snakes amounts to
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4 Aubert & Blanc-Féraud

finding the curve C that minimizes J;. The first term in right-hand side of (1) controls the
smoothness of the curve. We only consider the rigidity term (with first order derivative),
dropping the elasticity term (with second order derivative) which is commonly added in the
general case [5]. In [2], the authors justify the fact that they are rather redundant in the
final equivalent geodesic model developed.

The second term is the external energy and attracts the contour towards the edges of the
object in the image I.

An initial contour is deformed towards the boundary of the object to be detected. The
main drawback of this approach is that this energy model does not handle changes in the
topology of the evolving contour when direct implementation is performed. Moreover this
energy depends on the parametrization of the curve resulting in a non intrinsic approach.

2.2 The geodesic model

In [2], Caselles et al. have shown using deep hamiltonian concepts that minimizing the
criterion J; of (1) is equivalent to minimize the criterion J» defined by:

J2(C) = 2/0 IC"(9)]-9(IVI(C(9)))dg (2)

Jo defines a problem of geodesic computation in a Riemannian space, according to a metric
induced by the image I. Minimizing J, to detect an object consists in finding the path of
minimal new length which takes into account image characteristics. The curve evolution is
obtained by computing the corresponding steepest-descent flow of J>. This geometric flow is
driven by the mean curvature motion. This model allows automatic changes in the topology
when implemented by using the level-sets based numerical algorithm [7]. This is not possible
with the classical snake approach which consists in minimizing J;.

2.3 Goal of the paper

The goal of the paper is to show by using elementary calculus of mathematical analysis
that solving the problem of snakes defined in (1) is equivalent to a geodesic computation
in a Riemannian space defined in (2), without Maupertuis and Fermat’s principles of the
Hamiltonian theory.

More precisely, we define two problems (P;) and (Ps) by:

P it [ @R+ [ o(vIC@))da 3)
@) a2 [ 1C@le(VIC@))s @

INRIA



An elementary proof... 5

where C = {C : [0,1] — R2,C is piecewise C'}. Problem (P;) corresponds to the criterion
J1 with A = 1, which will be assumed for sake of simplicity, without loss of generality.

The goal of this work is to show that (P;) = (Ps). From the inequality a?+b2 > 2ab Va, b
we have

/ C"(g)Pdq + / G(IVI(C(q))2dg > 2 / 1C"(@)]- 9|V I(C(9)))dq
0 0 0

from which we deduce (P1) > (P2). The purpose of the next section is to show the reverse
inequality (P;) < (P2) which is a difficult part for proving that (P1) = (Ps).

3 Proof of the inequality (P;) < (Ps)

The main idea of the proof is the following: let C € C be a given curve, we show that there
exists an other curve Cy, € C such that:

1 1 1
2/0 IC'(q)|~g(|VI(C(q))I)dqZ/0 ICL*(q)Iqu+/0 9(IVI(Cis(0))])*dg ()

Taking the infimum over C' € C successively on the right-hand side and the left-hand side of
the above inequality, (P1) < (P2) is derived.

3.1 Notations, hypotheses and definitions

In this section we define notations and hypotheses.

Denote I the set of the image edges. We assume that I' = J,.; C;,C; € C, J is finite or
countable, C; is piecewise CL.

For the intensity image, we assume the following hypothesis:
I:Q € R? — R such that

(z,y) = |[VI(z,y)] € C°(Q2 —T) (6)
lim VI(z,y)| =+ 7
wolm VI 7

where d is the distance function.

In image processing, an edge is defined as points (z,y) such that |VI(z,y)| = +00. In
this article, we need a more precise definition. We assume that a curve Cy € T is an edge of
the image I if and only if there exists a non negative £ such that

Ve < g9,3a., R, R. > a. > 0, lirr%)as = lir%RE =0
E— E—
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6 Aubert & Blanc-Féraud
with
[VI(z,y)| > 1 if d((z,y),Co) < @ (8
|VI(z,y)| <k, if d((z,y),Co) > R. 9
d((z,y),Cy) > R,
Vi) <IIl i { g = (10
Denote
Vi o= {(z,y) e R*/d((z,y),Co) < a:}
VZ = {(z,9) € R?/a. < d((z,y),Co) < R}
V2 = {(z,y) € R*/d((x,y),C0) > R.}

Figure 1 : example of a curve Cj with associated sets V'

In order to specify edges by zero values rather than by infinite values, which is easier to
handle, we define a function g : Rt — R such that:

9(0)=1 (11)
Jim g(t) =0 (12)
g(.) is regular monotonic decreasing (13)
(z,y) — g(|VI(z,y)|) is Lipschitz with Lipschitz constant K (14)
A typical example of such function g is given by g(t) = ﬁ We equally note:
W(C) = g(IVI(O))) (15)
W(z,y) = g(IVI(z,y)]) (16)

INRIA
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3.2 Proof of (P;) < (Py)

The proof relies on the construction of a curve C., satisfying (5). Let C' € C be a given curve.
Without loss of generality, we can assume that with |C'(¢)| #0 a.e. We first parametrize
C by its arc length s = 7(¢q) = [/ |C’(t)|dt. Define

Cu(s) = C(r7(s)) (17)
we have
|CL(s)| =1 ae. (18)
and (2) is written as follows:
L
R(C) =2 [ WC.(s)ds (19)

where L = fol |C’(t)|dt=length of C. The next step consists in reparametrize the curve
C.(s) and to construct a curve Ci,,(t) satisfying W(C,.(s)) = |CL.(s)| a.e. Denote h the
solution of the differential equation:

B () = W (C. (h(2)
{ h(0) = 0 (20)

According to the hypothesis (14) , (20) has a unique solution h € C! with h’ > 0. Define

s = h(t) (21)
Cis(t) = Ci(h(t))

then we have

ds = B/ (t)dt = W(Cy(h(t)))dt = W (Cix(t))dt (22)
|CLu(B)] = B ()| CL(R(#))] = h'(t) = W(Cu(t)) (23)
and
h~H(L)
5(C) =2 / W2(C, (1)) dt (24)
0

Denoting T = h=!(L), we obtain using (23):

T T .
T (C) =2 /0 W?(C.(t))dt = /0 [W2(Cos(t) + |CL (8] dt (25)
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8 Aubert & Blanc-Féraud

We have shown, starting from C' € C that there exists a curve C,, € C such that

T
2 [ wiewe o = [ 1.0 e o] (26)
0
In order to conclude that (P;) < (P2) we have to examine the two cases T > 1 and T < 1.

3.2.1 T>1

In this case, since the integrands are non negative, we have:
T
RB(O) = [ [WHC..(0) +ICLOP]dt >
0

Aﬁmamnmwmﬁam 27)
hence
> [ wewe @i ) 28)
Taking the infimum over C € C, we deduce (P;) < (P2).

3.22 T«1

This case is not as easy as the previous one. The aim is to extend the curve C,.(t) on
the interval (T, 1) without any additional contribution for J;. To achieve this, we use the
definition of an edge and the hypotheses on ¢ stated in paragraph 3.1. We assume for
clarity that I contains only one contour. According to (8-10), denote & such that ¢ < &o.
We examine the two cases whether the intersection C. NV} is empty or not. Recall that

Jo = fOT [W2(C\i(t)) + |CL,(t)]?] dt. In each case, we derive a lower bound for J; as:
J2(C) 2 (P1) + f(e) with lim f(e) =0 (29)

e First case: 3b € C, N V!
Without loss of generality, we assume that b = C...(T'). We extend C.. on (0,7] by
defining C¢, such that:

€ _ C**(t) ift e [O’T]
CL.(t) = { b=C..(T)ift € (T,1]

Since (C<,) =0 on (T, 1], it is easy to get

1
5(C) =/0 [W2(CL.(1) + [ (CL) (O] dt — (1 = T)W?(b) (30)

INRIA
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But b € V!, then we have according to (7) and (13):

W(b) = (VIO < ()

Then
(@) > [ ez +1E5) 0P at- (1 - T ()

Hence
R(C) > (P1) = (1= T)g(:) (32)

e Second case: Cy, NV =0
Denote b = C,(T) as in the previous case, and b, defined as

d(b, bE) = d(bv Vsl)

and R
C.(t) = Cii(t) + be.

Cl is defined on [0,7]. We extend C. on the interval (7', 1] using

x| Ce(t)ift €]0,T]
C:t) —{ be if t € (T,[l]

Hence, by the definition of C. and noting that C! = C’, we have

/0 1 [W2(Catt)) +CLOP] dt = (33)
/0 L WAC0) +ICLOP) di+ (1 - T,)
and we deduce in a similar way as in the previous case that
/0 CWECL0) + (L (7] de > (34)
/0 WG + 1CLoP] e - (1 - T)¢'(2)

The difference between the left-hand side of (34) and J2(C) is that we have C. rather
than C,, in the first term. The following technical calculus are derived in order to
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10 Aubert & Blanc-Féraud

estimate the difference fOT [W2(C.(t)) — W2(Ci(t)] dt and so to obtain an inequality
similar to (31) in this case. We define two intervals on [0, 7] denoted A, and Asj:

Ay = {t € [0,T]/Csi(t) € V2}
Ag = {t €[0,T]/Cu(t) € V}

Cix Ce = C~€
Figure 2: example of curve Cy, Cyx and C;

Since Ay and Az form a partition of [0,T] we have:
T
| wreaor = [ wreo+ [ wreo) (39
0 Ag Az

In order to calculate the integrals of the right-hand side of (35), each one must be
again decomposed over three sets:

Ay ={teMo/C(t) €V}

AL ={teA3/C(t) eV}, i=1,2,3 (36)
— Calculus over A,
W2(C.(t))dt = | W?2(C.(t))dt + [ W?(C.(t))dt +
A, A} A3
W2 (C.(t))dt (37)
A3

2

We now estimate each integral over each subset A%:

INRIA
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1. Over Al, we have

W2(C.(t))dt = | W?(C..(t))dt +
A} A}
[ rc.ma - wie.. ) (39)
Due to (14),
W2(CL(t)) = WH(Con(®))] < KIC(t) — Cu(0) (39)

from which we deduce, recalling that C,.(t) € V2 and C.(t) € V!:
. W?2(C.(t))dt < . W?2(C,.(t))dt + KT(a. + R.) (40)
2. In a similar way we obtain:
o W2(C.(t))dt < o W?2(C..(t))dt + 2KTR. (41)

3. The integral over A3 is more complex because C,.(t) € V2 and C.(t) € V3.
Adding a new point

C(t) = V2 N [Con(t), Cc(t)].

We can write

W2(C.(t))dt = | W2(Cu(t))dt + / [W2(c‘(t))dt - Wz(c**(t))dt] +
A3 A3 A3
/A W - WG] 42)
We have
/ [W2(C(t)) — W2(C,(t))|dt < KT|C — C,.| < KTR, (43)
A3

RR n° 3340



12 Aubert & Blanc-Féraud

According to (9) and (13) and by Taylor formula there exists a constant K’
such that:

/ [WQ(CE(t)) —WC ()] dt < 2.K'.T.e (45)
a3

Then

W2(C.(t))dt < [ W?(Cuu(t))dt + 2KTR. + 2K'Te (46)
A3 A3

Finally over Ay we have shown that

W2(C.(t))dt < W2(C.\(t))dt + A? (47)
Ao Ao

where A2 = 2KTR, +2K'Te — 0

e—0
— Calculus over As
We proceed as for Aj
W2(C.(t))dt = | W?(C.(t))dt + [ W?(C.(t))dt +
As Al A2
W2(C.(t))dt (48)
Af
1. Over A}, we have
W2(C.(t))dt = | W2(Ch(t))dt +
A3 A3
/ [W2(C. (1)) = W2(Con ()] dt (49)
A3

Cix(t) € V2 and C.(t) € V! so with hypothesis (10)
VI(Can(t)] < IVICL(0)] Vit € A}

Since g is monotonic decreasing we have

W2(Co(t))dt < [ W(Ciu(t))dt (50)

A3 A3

INRIA
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2. For the same reasons we get

W2(Cc(t))dt < | W3(Ciu(t))dt (51)
A2 A2
3. Over A}, we have
W2(C.(t))dt = | W?(Cu(t))dt +
A3 a3
/A [WAC0) ~ WA (1))] i (52)

C..(t) and C.(t) being in V3 we have

W2(C.(t))dt < | W?2(Cux(t))dt +2K'Te (53)
A3 A3

Finally on A3 we have shown that

W2(C.(t))dt < W2(Cx(t))dt + 2K'Te (54)
As Aj

Therefore from (35), (47) and (54) we get
T T
/ W2(C.(8))dt < / W2(Cun(£))dt + A2 + 2K'Te (55)
0 0
and from (34) and (55):
T 1 N N
| .o +ienor s [ [wEw +icior] a-
0 0
(1— T)g(%) A 2KTe (56)

Letting A. = (1 — T)g(%) + A% 4+ 2K'T=, (56) can be written as
J2(C) > (Py) — A.. (57)

By coupling the results (32) and (57) of the first and the second case (according to the
intersection C,, N V), we obtain :

7€) 2 (P —sup (1= 1) (D) 4. ) (58)
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14 Aubert & Blanc-Féraud

that is
2 [ 1C@La(VIC@)da > (Pr) = sup (1= T)g2(1). 4. ) (59)
0

and we conclude that (P1) < (P2) by doing ¢ — 0 and by taking the infimum over C' € C in
(59).
That achieves the proof in the case T' < 1.

4 Extension to surfaces
The proof in the 3D case for surfaces is similar to the one previously derived in the 2D case

for curves. We only sketch below the main points of the proof in this case.
Denote D a regular set in R?, S(u,v) for (u,v) in D be a parametrized surface. We denote

2
E =|% (60)
F =234 (61)
2
G =% (62)

the coefficients of the first fundamental form of S(u,v). The surface element is dA =

VEG — F?dudv, Js is
Jy(S) =2 / W (S(u,v)) VEG — FPdudy (63)
D
and

Ji(S) =2 /D [W? (S(u,0)) + (EG — F2)] dudv (64)

We assume that for all (u,v) in D, g—i and g—f are non colinear vectors, that is EG — F? >
0, Yu,v.
(P1) and (P5) are now stated as follows:

(P1) : éléfg Ji(S), (Pa) : g‘relfs Ja(S) (65)
where S = {S: D — R?, S piecewise C'}. As for the previous case (P1) > (P2). In order to

prove that (P1) < (P2), we proceed as in paragraph 3. Given any surface S, we show using
reparametrizations and extensions, the existence of a surface S such that

J2(S) > J»(S) (66)

INRIA
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from which we deduce that (Pz) > (P1). The proof of (66) is similar to the 2D case’s one,
the only specific point lies on the reparametrization defined in (20).
A change of variable is defined by a one to one function

H:R? — R?
(s,t) — (hi(s,t), ha(s,t)) = (u,v) (67)
Jo becomes
J2(S) =2 /H_l(D) W (S(h1(s,t), ha(s,t))) V EG — F? |detV H| dsdt (68)

In order to obtain a surface Sy, such that S..(s,t) = S (h1(s,t), ha(s,t)) and W (S.«(s,t)) =
VE:«Gy — F2, where E..,G,., F., are defined by (60-62) for S = S,., let consider the
PDE:

W (S(hy1,hs))

det (VH) = NiZEy W (69)

It can be shown [4] that adding the right boundary conditions, there exists a diffeomorphism
solution of (69). For this function H, J; is written as follows:

Ta(S) = / (W2 (Suu(s,1)) + (BunGos — F2,) (5, 1)] dsdt (70)
H-1(D)

We conclude by examining the difference between the measures of D and H~1(D) and by
extending S, if necessary (cf § 3.2).

5 Concluding remarks

e The proof is developed in the case of a single contour in the image. Of course the
demonstration is also available in the case of a countable number of contours.

e We have only shown that J; and J, have the same infimal values but the question of
the existence and the unicity of the infimum remains open. If there exist, we can only
show that a solution of (P;) is also a solution of (P5), but nothing can be said for the
reverse.
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