Problems of Adamjan-Arov-Krein Type on Subsets of the Circle and Minimal Norm Extensions

Abstract : We study some generalizations to subsets of the unit circle of Adamjan-Arov-Kr- ein type problems and mainly the one of extending a given function to the missing part of the boundary so as to make it as close to meromorphic with $N$ poles as possible in the $sup$ norm while meeting some gauge constraint. To make our analysis computationally effective, a generic non--multipleness result of the singular values of Hankel operators is established which allows us to provide a convergent resolution algorithm in separable Hölder-Zygmund classes.
Type de document :
Rapport
RR-3335, INRIA. 1998
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073354
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:36:23
Dernière modification le : samedi 27 janvier 2018 - 01:31:25
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:43:38

Fichiers

Identifiants

  • HAL Id : inria-00073354, version 1

Collections

Citation

Laurent Baratchart, Juliette Leblond, Jonathan R. Partington. Problems of Adamjan-Arov-Krein Type on Subsets of the Circle and Minimal Norm Extensions. RR-3335, INRIA. 1998. 〈inria-00073354〉

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

115