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Approximations calculables des
ensembles de descendants et des ensembles de formes
normales

— version étendue —

Résumé : A partir de techniques d’automates d’arbres, nous présentons des approximations
calculables des ensembles de descendants et des ensembles de formes normales d’un systéme de
réécriture. Dans le contexte de la logique de réécriture, un systéme de réécriture est un programme
et une forme normale est un résultat du programme. Ainsi, 'approximation de ’ensemble des
descendants et de I’ensemble des formes normales, fournit des outils pour la vérification des pro-
grammes: nous montrons en particulier comment calculer un sur-ensemble des résultats, comment
montrer la complétude suffisante, ou encore comment prouver la terminaison sous une stratégie
précise, la stratégie de réduction séquentielle.

Mots-clé : Systeémes de réécriture, Vérification de programmes, Descendants, Formes
Normales, Automate d’arbre, Approximation, Complétude suffisante, Atteignabilité, Termi-
naison
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4 Thomas Genet

Introduction

In the context of the programming language such as ELAN [KKV95], ASF+SDF [Kli93],
MAUDE [CELM96], OBJ [GKK*87], a Term Rewriting System (TRS for short) is a pro-
gram. We propose here to use tree automata techniques for proving various properties on
TRSs and thus on programs. For a given TRS R and a set of terms E, these proofs are
based on the computation of approximations of the set of R-descendants of E and the set
of R-normal forms of E. For that, we build an approximation automaton which recognises
a superset of the set of R-descendants and R-normal forms of terms in E. Considering R
as a program and FE as the set of possible inputs of the program, the set of R-descendants
of E represents all intermediate results of the program at every step of its execution on the
given set of possible inputs. The set of R-normal forms of E represents the set of all possible
results obtained by executing the program R on the set of possible given inputs E, when the
program stops. Thanks to those two sets, we show how to prove sufficient completeness of
a program on a set of possible initial inputs, how to achieve some reachability testing on a
program, and how to prove termination of a program represented by a TRS and a strategy
of application of rewrite rules called sequential reduction strategy.

In Section 1, we recall basic definitions of terms, term rewriting systems, and tree au-
tomata. In Section 2, we briefly present sufficient completeness, reachability testing and
termination proof under the sequential reduction strategy. Then, in Section 3, we recall
some undecidability results on the set of descendants and the set of normal forms motiva-
ting our approach by approximation. We also detail the approximation construction which
is based on specific matching and rewriting techniques on tree automata, schematising mat-
ching and rewriting on sets of terms. Feasibility of the approximation construction and its
appropriateness for our purpose is shown in Section 4 on some examples. Some automatic
proofs achieved by our prototype are also presented in Section 4. Finally we conclude on
this work in Section 5.

1 Preliminaries

We now introduce some notations and basic definitions. Comprehensive surveys can be
found in [DJ90] for term rewriting systems, in [GS84, CDG197] for tree automata and tree
language theory, and in [GT95] for connections between regular tree languages and term
rewriting systems.

Terms, Substitutions, Rewriting systems

Let F be a finite set of symbols associated with an arity function denoted by ar : F — N, X
be a countable set of variables, T (F, X) the set of terms, and T (F) the set of ground terms
(terms without variables). Positions in a term are represented as sequences of integers. The
set of positions in a term ¢, denoted by Pos(t), is ordered by lexicographic ordering <. The
empty sequence € denotes the top-most position. Root(t) denotes the symbol at position € in
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Decidable Approzimations of Sets of Descendants and Sets of Normal Forms 5

t. For any term s € T(F, X), we denote by Posz(s) the set of functional positions in s, i.e.
{p € Pos(s) | p # € and Root(s|,) € F}. If p € Pos(t), then t|, denotes the subterm of ¢ at
position p and ¢[s], denotes the term obtained by replacement of the subterm ¢|, at position
p by the term s. A ground context is a term of 7 (F U {O}) with only one occurrence of O,
where O is a special constant not occurring in F. For any term ¢ € T (F), C[t] denotes the
term obtained after replacement of O by ¢ in the ground context C[]. The set of variables
of a term ¢ is denoted by Var(t). A term is linear if any variable of Var(t) has exactly one
occurrence in ¢. A substitution is a mapping o from X" into 7 (F, X), which can uniquely
be extended to an endomorphism of 7 (F, X). Its domain Dom(o) is {z € X | zo # z}.

A term rewriting system R is a set of rewrite rules ! — r, where l,r € T(F,X), 1l ¢ X,
and Var(l) D Var(r). A rewrite rule | — r is left-linear (vesp. right-linear) if the left-hand
side (resp. right-hand side) of the rule is linear. A rule is linear if it is both left and right-
linear. A TRS R is linear (resp. left-linear, right-linear) if every rewrite rule | — r of R is
linear (resp. left-linear, right-linear).

The relation —% induced by R is defined as follows: for any s,t € T(F,X), s - tif
there exist a rule I — r in R, a position p € Pos(s) and a substitution ¢ such that lo = s|,
and t = s[ro],. The transitive (resp. reflexive transitive) closure of —x is denoted by —7
(resp. =%). A term s is reducible by R if there exists t s.t. s =5 t.

A term s is in R-normal form (or is R-irreducible) if s is not reducible by R. A term
s has a normal form if there exists a term ¢ in R-normal form s.t. s —% t. The set of
all ground terms in R-normal form is denoted by JRR(R), and s =% t with t € IRR(R)
is denoted by s —!, t. The set of R-descendants of a set of ground terms F is denoted
by R*(E) and R*(E) = {t € T(F) | 3s € E s.t. s =% t}. The set of ground R-normal
forms of E is denoted by R'(E) and R'(E) = {t € T(F) | 3s € E s.t. s —»} t}. Moreover,
RYE) = R*(E) N IRR(R). A rewriting system R is

(1) confluent if for every s,t,u € T(F,X), s =% t and s =% u implies that there exists
av € T(F,X) such that t =% v and u =3 v,

(2) terminating or strongly normalising if there exists no infinite derivation s; =g s2 =%

. where s1,82,... € T(F,X),

(3) weakly normalising (WN for short) if every s of T (F, X) has a normal form,

(4) weakly normalising on E C T(F,X) (WN on E) if every s € E has a normal form.

The set of function symbols F occurring in a TRS R can be partitioned into the set
of defined symbols D = {Root(l) | I — r € R} and the set of constructors C = F\D. A
constructor term, is a ground term with no defined symbol. The set of constructor terms
is denoted by T(C). Let Ry and Ro be TRSs with respective sets of symbols F; and Fo,
respective sets of defined symbols D; and D,, and respective sets of constructors C; and C,.
TRSs Ry and Ry are hierarchical if 7o "Dy = 0 and Ry C T(F1 \ D2, X) x T (F1, X).

Automata, Regular Tree Languages

Let Q be a finite set of symbols, with arity 0, called states. T (F U Q) is called the set of
configurations. A transition is a rewrite rule ¢ — ¢, where ¢ € T(FUQ) and g € Q. A
normalised transition is a transition ¢ — g where ¢ = f(q1,--- ,qn), f € F, ar(f) = n,
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6 Thomas Genet

and ¢1,-..,q, € Q. A bottom-up finite tree automaton (tree automaton for short) is a
quadruple A = (F, Q, Qf, A), where Q¢ C O and A is a set of normalised transitions. The
rewriting relation induced by A is denoted by —a. The tree language recognised by A is
L(A)={teT(F)|3qe Qg s.t. t =4 ¢}. For a given g € Q, the tree language recognised
by A and gis L(A,q) = {t € T(F) |t =4 ¢}. A tree language (or a set of terms) E is
regular if there exists a bottom-up tree automaton A such that £(A) = E. The class of
regular tree language is closed under boolean operations U, N, \, and inclusion is decidable.

A Q-substitution is a substitution o s.t. Yo € Dom(c), zo € Q. Let (9, X') be the set of
Q-substitutions. For every transition, there exists an equivalent set of normalised transitions.
Normalisation consists in decomposing a transition s — ¢, into a set Norm(s — ¢q) of flat
transitions f(u1,...,u,) — ¢' where uy,... ,u,, and ¢’ are states, by abstracting subterms
s' & Q of s by states. We first define the abstraction function as follows:

Definition 1 Let F be a set of symbols, and Q a set of states. For a given configuration
s € T(FUQ)\ Q, an abstraction of s is a surjective mapping o:

a:{slp|p€Posr(s)} — Q
The mapping « is extended on T(F U Q) by defining o as identity on Q.

Definition 2 Let F be a set of symbols, Q a set of states, s — q a transition s.t. s €
T(FUQ) and q € Q, and o an abstraction of s. The set Normy(s — q) of normalised
transitions is inductively defined by:

e if s=gq, then Normy(s = q) =0, and

e ifs€ Q and s # q, then Normy(s = q) = {s = ¢}, and

o ifs= f(t1,... ,tn), then Norma(s = q) = {f(a(t1),... ,a(t,)) = ¢}UU;, Norm, (t; —

a(t;)).

Example 1 Let F = {f,g,(l} and A= <‘7:7 Q7 Qf7A)7 where Q = {q07q17q27q37q4}: Qf =

{0}, and A = {f(q1) = 90,9(q1,01) = a1,a = a1}
e The languages recognised by g1 and qo are the following: L(A,q1) = T({g,a}), and

£(A,q0) = L(A) = {£(z) | = € £(A,q1)}.

o Let s = f(9(q1,f(a))), and oy be an abstraction of s, mapping any subterm s|,
with p € Posx(s), to distinct states in {qa2,q3,q4}. A possible normalisation of transition
flg(qr, f(a))) — qo with abstraction a; is the following: Norme, (f(g9(q1, f(a))) = q) =
{f(@2) = g0,9(a1,93) = @2, f(q1) = g3,a — qu}.

2 Applications of R*(E) and R'(E)

In this section we present three applications of the set of descendants and the set of normal
forms to program and system verification.

INRIA



Decidable Approzimations of Sets of Descendants and Sets of Normal Forms 7

2.1 Sufficient Completeness

This property has already been much investigated [Com86, Kou85, NW83, KNZ87], in the
context of algebraic specifications. We give here a definition of sufficient completeness of a
TRS on a subset of the set of ground terms E C T (F).

Definition 3 A TRS R is sufficiently complete on E C T(F) if Vs € E, 3t € T(C) s.t.
s =% t, where C is the set of constructors in F.

Usual methods for checking this property on algebraic specifications are either based on
enumeration and testing techniques [Kou85, NW83, KNZ87] or on disunification [Com86].
We propose, here, to check this property thanks to the set R'(E).

Proposition 1 If the TRS R is WN on E C T(F), and R'(E) C T(C), then R is suffi-
ciently complete on E.

This comes from the fact that since R is WN on E, for all terms s € E, 3t € IRR(R) s.t.
s —% t. Moreover, t € R'(E). Since R'(E) C T(C), we have t € T(C).

Example 2 Let R = {app(nil,z) — z,app(cons(z,y), z) — cons(z,app(y, z))}, F = DUC,
where D = {app} and C = {cons,nil,a}.
E RNE)

nil, nil)
cons(a,nil), nil)

nal
cons(a,nil)
cons(a, cons(a, nil)

app E
app

)

;z.p.p(nil, cons(a,nil))

Since R is terminating, R is WN on E and since R'(E) C T(C), then R is sufficiently
complete on E.

On the other hand, sufficient completeness on E does not necessarily imply that R'(E) C
T(C). For example, let R = {f(a) — a, f(a) = f(b)}, C = {a,b} and let E = {f(a)}. Then
R is sufficiently complete on E, since f(a) —x a, but R'(E) = {a, f(b)} Z T(C).

2.2 Reachability Testing

Reachability testing consists in verifying if a term, or a term containing a pattern, can be
reached by rewriting from an initial set E.

Definition 4 Let R be a TRS, E C T(F) and t € T(F,X). The pattern t is R-reachable
from E if there exists a ground context C[], a term s € E, and a substitution o s.t. s =%

Clto].

It is clear that
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8 Thomas Genet

Proposition 2 A pattern t is R-reachable from E if an instance of t is a subterm of an
element of R*(E).

Let us now show what can be the use of reachability testing on a simple example.

Example 3 Assume that we want to compute AP, = #lp)! with the following TRS:

A(n,p) — fact(n)/fact(n — p) Oxz —x
fact(0) — 5(0) s(@)xy = (z*y) +y
R — fact(s(x)) — s(x) * fact(z) 0/s(y) =0
z—0—a s(z)/s(y) = s((z —y)/s(v))
0—-—z—0 t+0—>=x
s(z) —s(y) >z —y z+s(y) > s(z+y)

on the domain E = {A(n,p) | n,p € Nat}, where Nat = {0,s(0),...}. Verifying if a
division by 0 can occur is equivalent to check whether the pattern div(x,0) is R-reachable
from E, i.e. whether 3C[], 3o, s.t. Cldiv(z,0)0] € R*(E).

2.3 Termination under Sequential Reduction Strategy

Many works are devoted to automatising termination proofs of TRSs [AG97a, GG97]. On the
other hand, it is interesting to study weaker forms of termination, since for many purposes
weak normalisation is enough. In theorem provers and programming languages, rules are
always applied under a specific strategy, and it is enough to ensure termination under this
strategy. In addition, proving termination or WN on 7 (F,X) or on T (F) is not always
needed. In practice, a TRS is often designed to rewrite terms from a subset E C T(F),
for example logical formulas in disjunctive normal form, flattened lists, or well-typed terms.
Moreover, some TRSs are WN on E C T (F), but not on 7(F) [Gen97].

The strategy studied here is called the Sequential Reduction Strategy (SRS for short) and
consists in separating a TRS R into several TRSs Rq,... ,Rp s.t. R=R1 U...UR, and
in normalising terms successively w.r.t. Rq,...,R,. This rewriting relation under SRS is
denoted by —z,.....r., and is based on modular reduction relation [KK90].

Definition 5 Let R = Ry U...UR, be TRSs. For s,t € T(F,X), s 9Ry,...;r. t if s is
reducible by R and 3s1,... ,8-1 € T(F,X) s.t. s —>!R1 s1 and $q —>!R2 sy and ... and
Sn—1 _)}Rn t.

This kind of strategy is of great interest when normalising terms w.r.t. a TRS splitted
into several hierarchical TRSs (or modules) Rq,... ,R,. In this situation, interleaving of
rewriting steps w.r.t. to Ri,...,R, is often not needed, and sometimes it is even not
possible: for example when using rewriting with some built-in terms normalised at once
by a built-in module. If modules R;,...,R, are WN and share only constructors, then
—R,:...;R, 1S terminating [Gen97], as a corollary of results of [KO91, Ohl94]. Now let us
give an intuition on how to prove termination of —+x,; ..z, for WN TRSs R4, ... , R, sharing
function symbols. Let R = R1 U Rg, for example. For proving termination of —¢,.z, on a

set of initial terms E C T (F), we need to prove that for any term s € E, there is no possible

INRIA



Decidable Approzimations of Sets of Descendants and Sets of Normal Forms 9

infinite derivation s _’!Rl 81 —>!R2 81 —>!721 5 _’!712 82 —)5,11 ... In that case, a criterion for
proving termination of —%, ...z, on E is the following: construct the sets G1 = R, (R} (E)),
Gy = R'Z(R'I(Gl)) ... until we get a fixpoint Gm st. G = ’R'Z(R'I(Gm))

Gm
Q _>R1 O _>R2 O _>R1 O _>R2 O _)Rl O
RY(E) RL(GY) RY(G1) RL(GY) RL(G")

If Ry and Ry are WN on E; C T(F) and on Es C T(F), respectively, and E C E,
Gi CE,G,CEyforalli=1...m—1, then R; is WN on E, G; and R, is WN on G},
foralli=1...m — 1. Furthermore, if G,,, C IRR(R1 U R3), then R is WN on E and R is
terminating on E under SRS.

Proposition 3 If R1,... ,R, are WN resp. on subsets E1, ..., E, of T(F), the rewriting
relation under SRS —r,;....r, s terminating on E if the iterated sequence of sets Gpy1 =
RL(..-RY(Gy)...), starting from Go = E, has a fizpoint which is a subset of IRR(Ry U

..URy), and for all k>0, G, C E;, R} (Gk) C Ea,y..., and R, _1 (... Ri(G)-..) C E,.

3 Approximating R*(E) and R'(E)

First, recall that R'(E) = R*(E)NIRR(R). IRR(R) is a regular tree language if R is left-
linear [GB85], and a procedure for building a regular tree grammar (resp. a tree automaton)
producing (resp. recognising) IRR(R) can be found in [CR87]. However, R*(E) is not
necessarily a regular tree language, even if E is. The language R*(E) is regular if E is regular
and if R is either a ground TRS [DT90], a right-linear and monadic TRS [Sal88], a linear
and semi-monadic TRS [CDGV91] or an “inversely-growing” TRS [Jac96], where “inversely-
growing” means that every right-hand side is either a variable, or a term f(¢1,... ,t,) where
feF, ar(f) =n,and Vi = 1,... ,n, t; is a variable, a ground term, or a term whose
variables do not occur in the left-hand side. However, for a given regular language E, R*(E)
is not necessarily regular, even if R is a confluent and terminating linear TRS [GT95]. If R
is not “inversely-growing”, then R*(E) is not necessarily regular [Jac96].

Since our purpose is to deal with TRSs representing programs, we cannot stick to the
decidable class of “inversely-growing” TRSs which is not expressive enough. Our goal here
is to define, an approzimation of R*(E) i.e. a regular superset of R*(E) for left-linear TRSs
and regular sets £. Then, since regular langages are closed by intersection, the intersection
between the regular superset of R*(E) and TRR(R) gives a regular superset of R'(E).
Before going into details of the construction of the approximation itself, let us first show
why an approximation is sufficient for proving properties addressed in Section 2. Let R be
a TRS, and E C T(F). For any set G, let super(G) be a regular superset of G.

— For sufficient completeness: if super(R'(E)) C T(C) then R'(E) C T(C),

— For reachability testing: if C[to] & super(R*(E)) then C[to] € R*(E),
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10 Thomas Genet

— For termination under SRS: if super(R},(...super(Ry(Gk))...... )) is a subset of
IRR(R1U...UR,) then so is R} (... R (Gk) ...).

Now, starting from a tree automaton A s.t. £L(A) = E and a left-linear TRS R, we show
how to build a tree automaton Tzt (A) s.t. L(Txrt (A)) D R*(L(A)). The next proposition
gives a sufficient condition for an automaton B to have such a property.

Proposition 4 Let R be a left-linear TRS, A = (F,Q,Qy,A), and B = (F,Q',Q¢,A')
two tree automata. R*(L(A)) C L(B) if

1. ACA/, and
2.Vl >reR,Vqge Q, Vo€ X(Q',X), lo =%, q implies ro =%, q.

Proof (sketch) By definition, any term ¢ of R*(£(A)) is such that Is € L(A) s.t. s =% t.
By induction on the size of the derivation s =% ¢, we prove that if s =3 ¢ and s =%, ¢
with ¢ € Qy then ¢t =%, ¢, which implies that ¢t € £(B). See Appendix A, for a detailed
proof. O

For building Txt (A), the algorithm we propose starts from the tree automaton A and
incrementally adds to A the transitions necessary to ensure Condition 2, by computing
critical peaks between rules of R and rules of A:

lo *—>q
A
R ]
*//
. A
ro - -~

If ro /A g, then it is necessary to add the transition ro — ¢ to A. If the transition ro — ¢
is not normalised, then it has to be normalised according to Definition 2. The choice of new
states used to normalise ro — ¢ is guided by the approximation function v defined below:

Definition 6 Let Q be a set of states, Qnew be a set of new states s.t. QN Qpnew = 0,
and Q.. the set of sequences q1 - - qr of states in Qnew. An approzimation function is a
mappmg i R x (QU Qn@w) X E(QU Qne’w;X) = Q:Leuﬂ such that ’7(l - T7Q50-) =4q1° gk,
where k = Card(Posx(r)).

In the following, for any sequence S = ¢q1---qx € QF,,,, and for all i s.t. 1 <14 <k, m;(S)
denotes the i-th element of the sequence S, i.e. ¢;.

Definition 7 (Approzimation Automaton) Let A = (F,Q, Qf,A) be a tree automaton, R
a left-linear TRS, Qnew a set of new states s.t. QN Quew = 0, and v an approzimation
function. An approzimation automaton Trt(A) is a tree automaton (F,Q', Q¢, A') s.t.

e O =0UQuew, and
e ACA/, and
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e Vi>reR,Vge Q,VoeX(Q,X), lo =) q implies
Normgy(ro — q) C A’

where « 1is the abstraction of ro defined by: a(roly,) = mi(y(l — r,q,0)), for all
p; € Posg(r) = {p1,--. D}, 8t Di < pir1 for i = 1...k — 1 (where < is the
lezicographic ordering).

By choosing specific approximation functions «y, we obtain specific approximations.

Theorem 1 Given a tree automaton A and a left-linear TRS R, every approximation au-
tomaton satisfies: for any approximation function -y,

L(Trt (4)) 2 R*(£(A))

Proof (sketch) For proving L(Tx1(A4)) 2 R*L(A), it is enough to prove that the approxima-
tion automata verifies Conditions 1 and 2 of Proposition 4, for all approximation functions ~.
By Definition 7, Tzt (A) trivially verifies Condition 1. Then, to prove that Tzt (A) also ve-
rifies Condition 2 of Proposition 4, it is enough to prove that Normg(ro — q) C A’ implies
ro =5, ¢. See Appendix C for a detailed proof. O

For any rule! — r € R, in order to find a O-substitution o and a state g € Q s.t. lo =} g, it
is possible to enumerate every possible combination of ¢ and ¢ and check whether lo = q.
However, this solution is not usable in practice, especially when Q is a large set, due to
the huge number of possible ¢ and ¢ to consider. In Appendix B, we detail a matching
algorithm which starts from a matching problem [ < q and a set of transitions A, and gives
every solution o : X — Q s.t. lo =4 g. This algorithm is used in our implementation.

However, adding transitions to A may not terminate, depending on the approximation
function v used, as in the following example.

Example 4 Let A be a tree automaton where A = {app(qo,q0) — q1,cons(q2,q1) —
go,nil = qo,nil = q1,a = @2}, vl = app(cons(z,y),z) — cons(z,app(y,z)), R = {rl},
and let v be the approzimation function mapping every tuple (rl,q,o) to one new state
(since Card(Posr(cons(z,app(y, 2)))) =1).

Step 1 If we apply the matching algorithm on app(cons(z,y),z) < q1, we obtain a solution
oc={z @,y— q,2 = qo}, corresponding to the following critical peak:

*
app(cons(gz,q1), 9o0) — QR
N
|
R I
* /

N

cons(gz,app(q1,90)) ~ _ _ -~

Let g3 be the new state s.t. y(rl,q1,0) = q3. Then, since Posx(cons(qz,app(qi, ¢o)) =
{p1} = {2}, we have a(app(q1,qo)) = m1(y(rl,q1,0)) = g3, and the set of normalised
transitions to be added to A is Normq(cons(qa,app(q1,90)) = ¢1) = {cons(ga,q3) —
q1,app(q1, o) — q3}-
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Step 2 Applying the matching algorithm on app(cons(z,y),z) < qs gives a solution o' =
{z — @2,y = g3,z — qo}, corresponding to the following critical peak:

*
app(cons(gz,4s3), 9o0) T q3

R /
cons(q2,app(q3,q0)) — _ _ -~

Let q4 be the new state s.t. v(rl,qs,0') = q1. Then, a(app(gs,qo)) = q4, and the set
of normalised transitions to be added to A is Normg(cons(gz,app(qs,qo)) — q3) =

{cons(g2,qs) = q1,app(gs, qo) = qa}-

This process can go on forever and add infinitely many new states. This is due to the fact
that we can apply recursively the rule app(cons(z,y), z) — cons(z,app(y, z)) onto infinitely
growing terms recognised by the automaton A (with transitions A), as shown on the following
figure.

Step 1

" app .

cons 90 :

L2 q

q1

Step 2

In order to have a finite automaton approximating the set R*(L(A)), the intuition is
to fold recursive calls into a unique new state. In the previous example, during Step 1,
by applying the rule of app(cons(z,y),z) — cons(x, app(y,z)) on app(cons(g2,q1),q0), we
have obtained the configuration cons(qs, app(qi,qo)), and we have created a new state g3
recognising the subterm app(q1,qo). During Step 2 we have applied the same rule on the
subterm app(q1, go) recognised by g3. In order to fold this recursive call in Step 2, we sim-
ply re-use the state gs, instead of creating a new state g4 for normalising the transition
cons(qz,app(gs, go)) — g3 obtained in Step 2. Thus we obtain the set of normalised transi-
tions {cons(g2,q3) = ¢3,app(gs, go) — g3} to be added to A. No more state nor transition
needs to be further added and this automaton recognises a superset of R*(£(A)). This is
one of the basic idea of the ancestor approximation, which is formalised below.

Informally, every state ¢ € Q' = Q U Qe has a unique ancestor ¢, € Q. The ancestor
of any state ¢ € Q is q itself, and the ancestor of every new state ¢’ € Q. Occuring in the
sequence (I = r,q,0) (used to normalise a new transition ro — ¢), is the ancestor of ¢. In
the ancestor approximation, (1) the v function does not depend on the o parameter and,
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(2) for any new state ¢' € Qpew, Yl = r,q',0) = v(l — r,q,0), where ¢ € Q is the ancestor
of ¢'.

Definition 8 An approximation function vy is called ancestor approzimation if
1.VI=reR,Vge Q, Vor,05 € £(Q, X),

’Y(l - r:‘]aal) = ’Y(l - n,q, 02); and

2. \V/ll — Tl,lQ — o € R,Vq € Qlyvqu--- » dk € Qnew;UhUQ S E(Q17X)7
Yyl = r,q,01) =qu-..qr > Vi=1...k,y(lz2 = r2,¢,02) = Y(lo = r2,q,02).

Note that in the particular case of Example 4, using the ancestor approximation, we have
v(rl,q1,0) = g3, and by case 2 of Definition 8 we get v(rl,gs3,0') = v(rl,q1,0'), by case 1
we get that v(rl,q1,0") = v(rl,q1,0) = g3, thus ¥(rl,¢3,0') = g3, and the construction of
Tr1 (A) becomes finite.

Theorem 2 Approximation automata built using ancestor approximation are finite auto-
mata.

Proof (sketch) The automaton 7%t (A) is finite if the set of new states Oy, is finite. Since
Q is finite, R is finite, and -y does not depend on the ¢ parameter, there is a finite number of
distinct sequences y(I — r,q,0) for | = r € R, g € Q, and these sequences are finite. On the
other hand, every state ¢’ € Qe has a unique ancestor g € Q, and v(I = r,¢',0) =~v(l —
r,q,0). Thus, there is a finite number of distinct sequences v(I — r,q',0) = ¢} ...q,, with
q,qy, - 4, € Qnew- Hence, there is a finite number of states in Qe , used to normalise
transitions. See Appendix D for a detailed proof. O

4 Experiments

Working on tree automaton by hand is always a heavy task. In order to experiment and
check feasibility of the method, we have implemented in ELAN [KKV95] a library of usual
algorithms on tree automaton: union, intersection, cleaning, inclusion test, as well as algo-
rithms for building the tree automata 7zt (A), and A;ggr(r) (the automaton recognising the
set IRR(R)) for a given automaton A and a given left-linear TRS R. In all the following
examples, we use the same ancestor approximation method. We have experimented with
several other approximations: if the v function does not depend on the rule [ — r, on the
state ¢ or on the position p, then the approximation automaton is smaller, and faster to
compute. However, the recognised language is bigger and sometimes not precise enough for
our purpose. On the other hand, if for every o, the v function have distinct values, then the
construction of the automaton is not necessarily terminating.
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4.1 Reachability Testing
Let Ry be a TRS computing the function A2 = —2 - and Aut(0) a tree automaton

(n—iﬂ’
recognising the set L(Aut(0)) = L(Aut(0),q9) = {A(n,p) | n,p € L(Aut(0),q1)} where
L(Aut(0),¢1) = Nat = {0,s(0),...}. The TRS R: and the automaton Aut(0) are given as

input to our prototype in the following syntax:
specification Anp
Vars Xynp

Ops
A:2 minus:2 div:2 0:0 s:1 fact:1 plus:2 mult:2

R1
A(n, p) -> div(fact(n), fact(minus(n, p)))
fact(s(x)) -> mult(s(x), fact(x))
fact(o) -> s(o)
mult(o, x) => o
mult(s(x), y) -> plus(mult(x, y), y)
div(o, s(y)) -> o
div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
plus(x, o) -> x
plus(x, s(y)) -> s(plus(x, y))
minus(x, o) -> x
minus(o, X) => o
minus(s(x), s(y)) -> minus(x, y)
nil
Automata

Description of Aut(0)
states q|0.q|1.nil
final states ql0.nil
transitions A(qll, ql1) -> ql0
o-> ql1
s(ql1) -> qlt
nil
End of Description
nil

Computing the automaton Tr,T (Aut(0)) s.t. L(Tr,T (Aut(0))) D R} (L(Aut(0))), can be
achieved by evaluating the following query:

[1 start with term :
T_up(R1) on (Aut(0))

And the result is the automaton Aut(1):
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[1 result term:
Description of Aut(1l) states
ql12.q113.ql11.9/10.q919.918.916.917.912.915.913.q|0.ql1.nil final states ql|0.nil transitions
s(ql11)->ql11.0->ql11.minus(ql10,q110)->ql12.minus(ql8,ql10)->ql12. s(ql10)->ql13.s(ql10)->
ql3.minus(ql10,q!8)->q|12.minus(ql8,ql8)->ql12.5(ql8)->ql13.div(ql12,q113)->ql11.s(ql11)->
ql0.plus(ql9,ql7)->ql3.5(ql8)->ql3.mult(ql6,q917)->ql3.plus(ql9,q110)->ql10.plus(ql9,ql10)
->ql12.s5(ql10)->ql7.s(ql10)->ql10.5(ql10)->ql12.5(ql10)->q|9.plus(ql9,ql8)->ql10.
plus(ql9,q18)->ql12.s5(ql10)->ql2.plus(ql9,ql17)->ql2.plus(ql9,q17)->ql9.plus(ql9,ql7)->ql10.
plus(ql9,ql7)->ql12.0->q|9.0->q|10.0->q|12.mult(q|1,ql7)->q|9.mult(ql1,ql7)->q|10.
mult(qll,ql7)->ql12.plus(ql9,ql7)->ql7.s(ql8)->ql2.0->q|8.5(q|8)->q|7.mult(ql6,q|7)->
ql7.s(ql1)->ql6.fact(ql1)->q|7.mult(ql6,ql7)->ql2.fact(ql1)->q|2.minus(ql1l,ql1)->ql5.
fact(ql5)->ql3.div(ql2,q13)->ql0.A(ql1,ql1)=->ql0.0->ql1l.0=->ql|5.5(ql1)->ql1l.s(ql1)=->q|5.nil
End of Description

The pattern div(z,0) is not R,-reachable from L£{Aut(0)) if for all ground contexts C[] and
all substitutions o, C[diz(z,0)o] & L(Tr,T (Aut(0))). This is checked using the following

query:

[1 start with term :
(div(x, o) 7= states) with (Aut(1))

[1 result term:
nil

The result is nil, meaning that there exists no substitution ¢ and no state ¢ € Q s.t.
div(z,0)0 =% ¢, where Q and A are respectively the set of states and the set of transitions
of Aut(1).

An interesting aspect of this method is that the automaton 7zt (A4) is computed once
for all, and the check itself is a simple and low cost operation. Another advantage is that
for computing Tt (A4), the TRS R is not supposed to be terminating nor even weakly
normalising. This is of great interest when using TRS to encode non-terminating systems,
like systems of communicating processes, for example. Note that such non-terminating TRS
cannot be handled by induction proof techniques that need a well-founded ordering for
proving termination of the TRS.

4.2 Sufficient Completeness

In order to prove sufficient completeness of A(n,p) with n,p € Nat, we first compute the in-
tersection automaton between Aut(1), computed previously, and the automaton recognising
the set IRR(R1), computed by the function build_nf (R1).

[1 start with term :
simplify(Aut(1) inter build_nf(R1))

[1 result term:

Description of Aut(2) states ql0.ql1.nil final states ql1.nil
transitions s(ql0)->ql1.s(ql0)->q|0.0->ql0.nil End of Description
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Thus, the superset of R} (L(Aut(0))) recognised by Aut(2) is L(Aut(2)) = L(Aut(2),q1)
= {s(z) | z € L(Aut(2),q0)}, and L{Aut(2),q0) = {0, 5(0),...}. Thus L(Aut(2),q0) = Nat,
and L£(Aut(2)) = Nat*. Therefore, we trivially have R} (£(Aut(0))) C Nat* C T(C) and
if R; is weakly normalising on terms A(n,p) with n,p € Nat, then R; is also sufficiently
complete on those terms. Note that, if Aut(2) is more complex, inclusion between automaton
Aut(2) and an automaton recognising exactly 7(C) can also be verified automatically by
our prototype.

4.3 Sequential Reduction Strategy

In this third example, we show that sequential reduction strategy is interesting for proving
termination of programs combining different methods of termination proof. The following
specification defines a function make_list(i, j), that constructs a list of naturals (¢!, (i +
DL ..., =1L 4. The module Ry constructs the list and the module R, achieves the
computation of the factorial function.

specification make_list2
Vars Xy z

Ops
0:0 p:1 s:1 fact:1 plus:2 mult:2 cons:2 int:2 intlist:1 null:0
fact_list:2 apply_fact:1

R1
fact_list(x, y) -> apply_fact(int(x, y))
apply_fact(null) -> null
apply_fact(cons(x,y)) -> cons(fact(x),apply_fact(y))
intlist(null) -> null
intlist(cons(x, y)) -> cons(s(x), intlist(y))
int(o0,0) -> cons(o,null)
int(o,s(y)) -> cons(o, int(s(o), s(y)))
int(s(x),0) -> null
int(s(x), s(y)) -> intlist(int(x, y))
nil

R2
p(s(x)) -> x
mult(o, x) -> x
mult(s(x), y) -> plus(mult(x, y), y)
plus(x, o) -> x
plus(x, s(y)) -> s(plus(x, y))
fact(s(x)) -> mult(s(x), fact(p(s(x))))
fact(o) -> s(o)
nil

Automata
Description of Aut(0)
states ql0.ql1.nil
final states ql0.nil
transitions fact_list(qll,ql1l) -> ql0
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o ->qll
s(ql1) -> qlt
nil
End of Description
nil

Note that neither termination of R nor termination R4 can be proven by a simplification or-
dering. However, termination of R, can be proved by the dependency pair method [AG97b],
and on the other hand, termination of Ry can be proved by GPO [DH95]. Instead of re-
considering the termination of the whole TRS R1 U R2, we can automatically verify that
the (hierarchical) combination of those two systems is terminating under the sequential re-
duction strategy, for every initial term from the regular set £(Aut(0)) = L(Aut(0),q0) =
{fact list(n,p) | n,p € Lang(Aut(0),q1)} where L(Aut(0),q1) = {0,5(0),...} = Nat. The
query start(Aut(0)) iterates the process described in Section 2.3, implemented with the
T_up and build_nf operations, until we get a fixpoint. The result of this proof is the
following;:

[1 result term:
[true,Description of nil states ql0.ql1.ql2.ql3.ql4.nil final
states ql4.nil transitions cons(ql2,ql3)->ql3.null->ql4.null->q|3.cons(ql2,ql3)->ql4.
s(ql0)=->ql1.0->ql0.s(ql1)->ql1.s(ql1)->ql2.5(q|0)->ql|2.nil End of Description]

where the first field is true — the combination is terminating under the sequential reduction
strategy — and the second field contains the automaton recognising the superset of the
normal forms: lists (possibly empty) of strictly positive natural numbers, which is what was
expected by definition of function make_list, and which also proves sufficient completeness
of Ry U R2 under sequential reduction strategy on L£(Aut(0)).

4.4 Testing co-domains of functions

This is a last example showing that computing a superset of the set of normal forms may be
of great help also in debugging a functional program. Assume that you have the following
program defining a function which reverses a list of elements.

specification reverse

Vars Xy z

Ops
a:0 b:0 rev:1 cons:2 append:2 null:0

R1
rev(null) -> null
rev(cons(x, y)) -> append(rev(y), cons(x, null))
append(null, x) -> null
append(cons(x, y), z) -> cons(x, append(y, z))
nil

Automata

Description of Aut(0)
states ql0.qll.ql2.nil
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final states ql0.nil
transitions rev(ql1l) -> ql0.
cons(ql2, ql1) -> ql1.
null -> gl1.
a -> ql2.
b -> ql2.
nil
End of Description

where L(Aut(0)) = L(Aut(0),q90) = {rev(l) | I € L(Aut(0),q1)}, L(Aut(0),q1) = {null,
cons(z,y) | x € L(Aut(0),q2),y € L(Aut(0),q1)}, and L(Aut(0),q2) = {a,b}. In other
words, L(Aut(0)) is of the form rev(l) where [ is any flat list of @ and b, possibly empty. If
we compute the automaton recognising the superset of R} (£(Aut(0))), the superset of co-
domain, by evaluating the query simplify(T_up(R1) on(Aut(0)) inter build_nf(R1)),
we obtain:

[1 result term:
Description of Aut(1) states q|0.nil final
states q|0.nil transitions null->q|0.nil End
of Description

Thus £(Aut(1)), the superset of R} (L(Aut(0))), is the singleton {null}, the empty list.
That is clearly not what is expected from the reverse function. If you check TRS R; in
detail, you will notice that it is wrong: in the third rule of R;, the right-hand side should
be z rather than null. The interesting remark here is that R; has all usual good properties:
it is terminating, confluent, and sufficiently complete on L£(Aut(0)). Note also that typing
‘R would not detect any error. The main interest of the co-domain estimation is to be
complementary to usual verification techniques used on TRSs: confluence, termination,
sufficient completeness, and typing. After fixing the bug in R;, we obtain:

[1 result term:
Description of Aut(1l) states ql0.ql1.q9l2.q|3.nil final states q|3.nil
transitions b->qll.a->ql1.null->ql3.cons(qll,ql0)->ql3.cons(qll,ql0)
->q|2.null->q|0.cons(ql1,ql2)->ql2.cons(ql1,ql2)->ql|3.nil
End of Description

where Aut(1) recognise any flat list of a and b, possibly empty.

5 Conclusion

We have shown in this work that the computation of regular supersets of R-descendants
and R-normal forms using tree automata techniques can provide assistance for checking a
few properties of TRSs seen as functional programs.

An important part of this work is devoted to the computation of a regular superset of
the set of descendants R*(E) for any left-linear TRS R and any regular set of terms E.
The approach proposed here is based on the computation of an approximation automaton
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recognising a superset of R*(E). This approximation seems to be sufficient for our purposes
in many practical cases. Approximation of regular language is a notion that was already
used in in [Jac96], but in a different way and for a different purpose. In [Jac96], Jacquemard
approximates a TRS by another one for which the set of descendants is regular, whereas in
our approach, we approximate the set of new states used for normalising transitions, in order
to fold recursion when necessary. The set of descendants can be computed exactly thanks to
the Tree Tuple Synchronised Grammars (TTSG) approach of non-regular langages proposed
in [LR97]. However, this approach deals with more restricted classes of TRSs; namely linear
confluent constructor systems. Moreover, in practice, efficiency of TTSGs for our purposes
is not obvious.

A promising application area is the study of non-terminating TRSs encoding the beha-
viour of systems of communicating processes or systems of parallel processes sharing memory.
In this framework, we can prove that there is no deadlock and also some general “reachabi-
lity” properties: ensure mutual exclusion, ensure that a process never stops, etc. In further
research, we intend to compute another regular approximation: a subset of R*(E) in order
to achieve some reachability testing in the other way: for instance to prove that a specific
behaviour must occur, we may have to check that a specific pattern does occur in the set of
‘R-descendants. We also would like to get rid of the left-linear limitation in order to enlarge
the class of programs to be checked, and to compute more precise approximations.
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A Proof of Proposition 4

Let us first recall the proposition:

Let R be a left-linear TRS, A = (F,Q,Qy,A) and B = (F,Q',Qs, A’) tree automata.
R*(L(A)) C L(B) if

1. ACA/, and

2.Vl reR,Vge Q, Vo€ E5(Q,X), lo =, q implies ro =4, q.

Proof By definition, any term ¢ of R*(L£(A)) is such that 3s € £L(A) st. s =% t. By
induction on the size of the derivation s =% t, we prove that if s =% ¢t and s =}, ¢ with
g € Qy then t =4, ¢, which implies that t € L(B).

1. if ¢ = s then, since s € £(A), we have that 3¢ € Qf s.t. t = s =% ¢. Moreover,
A C A, hence 3g € Qy s.t. t =4, q,

2. if s =% t, then 3s' € T(F) s.t. s =% s’ —x t. By induction hypothesis applied to
s —% §', we obtain that 3¢ € Qy s.t. s’ =%, ¢. Moreover, since s’ =% t, there exists
arulel - r € R, a substitution 7, and a position p in s’ such that Ir = §'|, and
t = §'[r7]p. By construction of bottom-up tree automata with normalised transitions,
if s =%, g, then any subterm of s’ is reducible by A’ into a state of Q'. Hence, since
It = ¢'|p, we get that 3¢’ € Q' s.t. I =4, ¢ and §'[¢'], =%, ¢- Now, let us show that
r7 =% ¢'. Let Var(l) = {z1,... ,zx}. Sincelislinear and IT =}, ¢’, we get as before
(still by construction of bottom-up tree automata) 3¢i,...,qx € Q' s.t. ;7 =4, ¢;
and lo —%, ¢/, where o is the Q-substitution {z; — ¢; | ¢ = 1...%k}. Then, since
;T =5 gifori=1...k and 0 = {z; = ¢; | i = 1...k}, we have r7 =%, ro. And
since ro —%, ¢, we finally get r7 =%, ¢'.

B Matching in tree automata

In the following, a matching problem is a quantifier-free first order formula build on literals
1, s<dc¢ where s € T(F,X), ¢c € T(FUQ), and closed by the connectives V and A. An
empty conjunction A\, is a trivially true matching problem.

Definition 9 Let ¢, ¢1,p2 be matching problems, s € T(F,X) be a linear term, ¢ €
T(FUQ), and A= (F,Q,Qy,A) a tree automaton. A solution to the matching problem ¢
is a Q-substitution o € £(Q,X) such that

o if p =s<c, then soc =) ¢, or
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o if = @1 A @2, then o is a solution of ¢1 and a solution of ¢o, or
o if = ¢1V ¢, then o is a solution of ¢1 or a solution of ¢s.

We assume that matching is applied on automata without epsilon-transitions. An epsilon
transition is a transition of the form ¢ — ¢' where q and ¢’ are states. Any set of transition
A U{q — ¢'} can be equivalently replaced by AU{c — ¢’ | ¢ = ¢ € A}. Now let us give
the matching algorithm.

Definition 10 Let A = (F,Q,Qys,A) be a tree automaton, f € F, ar(f) =n, g € F,
ar(9) = m, ¢,q1,---,qn € Q, q},---,4, € Q, c1,...,¢cq4 € T(FUQ), 5,51,...,8, €
T(F,X) and ¢1, d2, 3 be non-empty matching problems. The matching algorithm consists
in normalising any matching problem of the form s < q by the following set of rules.

f(s1y-oey80) < f(q1,--- ,qn)

Decompose
s1dq@ AN Aspdgn
S1,...,80)g(d},...,q
. Florseee5n) Dol - 1)
. sdq
Configuration

s<cpV...VsdcgV L
ifs@X, forallc; e T(FUQ)i=1...d such that c; — q € A.

Moreover, after each application of any of these rules, matching problems are normalised by
the following set of rules &:

é1 A (P2 V ¢3) $1Vv L AL
(1 A 2) V (1 A ¢3) o3} 1

Correction, completeness and termination of the algorithm comes from the following theo-
rem.

Theorem 3 Given s € T(F,X), and q € Q, every matching problem s < q has a normal
form such that

o if it is L then there is no Q-substitution o s.t. s0 =h, q,
o if it is empty, then for all Q-substitution o, soc =4, q,

e otherwise, the normal form is a disjunction Vf:1 i s.t. ¢; = /\;“:1 a:; Slq;, where .’C; €
X andq; € Q, and o1 = {zjl — q; |j=1...n},...,00 = {:c;6 — q;‘ |j=1...n4}

are the only Q-substitutions s.t. so; =A, q.
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Proof We first prove that any matching problem s < ¢ has a normal form by the matching
algorithm, i.e. matching algorithm is terminating on any initial problem s < ¢. Rules of ¢
are simply terminating. Assume that the matching algorithm is not terminating, then there
exists an infinite chain of matching problems ¢1, ¢2, ¢3, ... s.t. every one is in £-normal
form and ¢;41 is obtained by applying rule Decompose, Clash, or Configuration to ¢;
and normalising by £. If we consider the size of terms in the left-hand side of matching
problems, Decompose and Clash rules strictly decrease it, whereas Configuration rule
preserves it. However, if we apply Configuration on a given matching problem s < ¢,
we obtain a finite disjunction of literals s <¢; V...V s <d¢gV L. On every literal s < ¢;,
the only rule that can be applied is Decompose or Clash. In other words, each step of
Configuration rule, is necessarily followed by at least one step of the rule Decompose
or Clash, and thus decreases the size of the left-hand side of literals. Hence the matching
algorithm is terminating.

Secondly, we prove that the normal form is either 1, an empty formula or of the form
Vi ¢ sit. ¢ = A=y % < gf, where 2 € X and ¢} € Q. Let ® be a normal form s.t. @ is
not empty and ® #1. If & is not in disjunctive normal form or if there are some symbols L
in @ then rules of £ may apply contradicting the fact that ® is in normal form. Thus, every
matching problem @ in {-normal form is of the form & = \/f:1 @i s.t. ¢ = /\;“:1 s; < cj-
where st € T(F,X) and ¢; € T(FU Q). Moreover, right-hand sides of literals cannot be
anything else than a state or a term of 7 (F U Q) of depth 1. This comes from the fact that
the matching process starts from a problem s < ¢, and every right-hand side of every new
literal is either a state, obtained by rule Decompose, or a left-hand side of a normalised
transition, obtained by rule Configuration. On the other hand, left-hand side of literals
are necessarily variables. Otherwise, rule Decompose or rule Clash may be applied which
contradicts the fact that @ is in normal form. Hence, we get that ¢; = A}, z% < ¢} where
z% € X and ¢ € T(F U Q) and of depth at most 1. Now, note that there is no way to obtain
a matching problem of the form 2z < s where s € T(FU Q) \ Q, since the initial matching
problem is of the form s < ¢, rule Decompose build literals of the form s < ¢, and rule
Configuration cannot be applied if the left-hand side is a variable. Finally, & = szl i
st i = AJLy % A ¢} where 7§ € X and ¢} € Q.

Correctness and completeness result from the proof that, for each rule %, for all O-
substitution ¢, ¢ is solution of N if and only if ¢ is solution of D.

Decompose : assume that ¢ is a solution of the matching problem s; < g1 A ... A sy, < gp.
By Definition 9, we get that s;0 =4 ¢1, and ..., and s, =X @n. Then, we have

f(s1,...,8n)0 = f(s10,... ,8,0) =X flq1,..- ,qn)-
Conversely, if o is a solution of f(s1,... ,8,)<f(q1,-.. ,qn), then we have f(s1,...,s,)0 =
f(s10,...,800) =% f(a1,...,qn). By construction of the bottom-up tree automata,

we get that for ¢ = 1...n, we necessarily have s;0 = ¢;. Hence, o is a solution of
the matching problem s1 < g1 A ... A sy, ] gn.-
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Clash : for any Q-substitution o, by construction of bottom-up tree automata, we know
that f(s1,...,8n)0 A% 9041, --- ,d0)-

Configuration : assume that o is a solution of s<l¢; V... Vs<cgV L. Still by Definition 9,
we get that so =4 ¢1, or ..., or sod = cq4- Let | be the index s.t. so =4 ¢;. Since
Vi=1...d,¢; =+ q€A, wehave ¢, & ¢ € A, and we finally have so =} ¢ =} ¢.

Conversely, if the only transitions of A leading to q are ¢; — ¢q,... ,cq4 — g, then
so —A ¢ implies that there exists an index ! € {1...d} s.t. soc =% ¢ =} ¢. Finally,
s —’A ¢; implies that o is solution of the matching problem s d¢; V...V s<dcq.

O

Thanks to this algorithm, for a given rule I — r and a given state ¢, it is possible to find
every Q-substitution ¢ s.t. lo = ¢. During the construction of 7zt (4), if lo =} ¢ and
ro /A ¢, then it is necessary to add the transition r¢ — ¢ to A. If transition ro — ¢ is not
normalised, then it has to be normalised (see Definition 2).

Example 5 Let A = (F,Q,Qy,A), where F = {f,9,a}, Q= {qo,q1}, Qf = {qo} and A =
{f(@1) = 90,9(q1) = q1,a = q1}. The language L(A) = {f(g9%(a))}. Let R = {f(g(z)) —
9(f(x))}. If we apply matching on f(g(x)) < qo, we obtain the following deductions, where
the name of the applied rule is given on the right, and normalisation with simplification rules
are omitted:

f(g9(z)) Qo rule Configuration
fg(z)) < flaq1) rule Decompose
g(z) <qq rule Configuration
9(z) Qg(q) vV g(z)da rule Clash
g9(z) < g(q) rule Decompose
zdq

Let o be the Q-substitution o = {x — q1}. Thus, we deduced that lo = f(g(q1)) =K .

C Proof of Theorem 1

Let us recall the theorem to prove:

Every approximation automaton is complete, i.e. for all tree automata A, for all left-linear
TRSs R, and for all functions 7,

L(Tr1(A)) 2 R*(£(4))
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Proof For proving L(Trt (A)) D R*L(A), it is enough to prove that the approximation
automata verifies Conditions 1 and 2 of Proposition 4, for all approximation functions .
By Definition 7, Tzt (A) trivially verifies Condition 1. Now, to prove that Tzt (A) also
verifies Condition 2 of Proposition 4, it is enough to prove that Norm,(roc — ¢) C A’
implies 7o =%, q.

Let s’ be any subterm of ro (possibly non-strict) and ¢’ € Q'. By induction on the size
of s’', we show that Norm,(s' = ¢') C A’ implies that s' =}, ¢':

o if s’ = ¢, then we trivially have s’ =}, ¢'.

o if & = ¢" € Q s.t. ¢" # ¢ then, by case 2 of definition of Norm, we get that
Normo(s' = ¢') = {s' — ¢'}. Since Normq(s' — ¢') C A’, we have s’ =4, ¢'.

o if ' = g(t1,...,tm) € T(FUQ'), by applying case 3 of definition of Norm, we get

that
(a) {9(a(tr),--. ,a(tm)) = ¢'} CA', and
(b) Ui, Normq(t; = a(t;)) C A',
where Vi =1...n, a(t;) € Qnew C Q'. By applying induction hypothesis to (b), we get
that Vi =1...n,t; =%, a(t;). On the other hand, (a) implies that g(a(t1),... ,a(tn)) —ar
¢ As aresult, g(t1,... ,tm) =h g(a(t),...,a(tn)) =ar ¢

Hence Normy(ro — ¢q) C A’ implies ro =}, ¢, and Condition 2 of Proposition 4 is satisfied

by Trt(4). O

D Proof of Theorem 2

Let us first recall the theorem:

Approximation automata built with ancestor approximation are finite automata.

Proof Since the approximation function - used in the approximation does not depend on
the o parameter, in the following, we write v(I — r,q) for v(I — r,q,0). First, note that if
the arity of every symbol of F is finite, if Q is finite, and if the set of new states Qe is
finite, then Q' = Q U Q,,.,, is finite, the number of transitions that can be added to A’ is
also finite, and thus automaton Tzt (A) is finite. Since we only consider the case where F
and Q are finite, to prove that Tzt (A) is finite, it is enough to prove that Qe is. In the
particular case of the ancestor approximation, we have

(1) Qnew ={mi(y(I = r,q)) |l =>reR,qe Q,1<i<Card(Posx(r))}.
If we apply the fact that Q' = QU Qpew to (1), we get that Qpnew = Q1 U Q2 where:

Q1 ={mi(v(l—=r,q) |l >reR,qe Q,1<i<Card(Posg(r))}
Q ={mi(y(I = 7,9)) |l = r € R,q € Qnew, 1 < i < Card(Posx(r))}
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Every state of Qs is of the form

iy, (Yl = i, (Ve = rey oy, (Y = Try @) -10))))

where g € Q, l; - r; € R, and 1 < i; < Card(Posg(r;)), for j = 1...n. On the other
hand, Case 2 of Definition 8 is equivalent to:

Vi, = r,ls > 1m0 € R,Vg € Q)1 <i<Card(Posx(r1)):
V(2 = ro,mi(v(lh = 711,9))) =7(l2 = 72,9).
Hence,
vy = ri,mi, (Yo = rey .y, (Yl = Thyq)) - 2))) = = r1,q)
and then,
T, (Yl = r,mi (Y2 = 125 i, (VI = 70 q) -2 0))) = T (Yl = 11, q))

Thus, Q2 C Q1 and Qe = Q1. Since Q, R, and Posx(r) are finite sets, Q1 is a finite set,
and so is Qpew. O
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