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Abstract: We describe two problem-specific approaches to remove geometric degeneracies
that we call perturbing the problem and perturbing the world. Using as our primary examples
2-d and 3-d Delaunay triangulation with Euclidean and polygonal metrics, we show that
these approaches lead to relatively simple and efficient perturbations of the points that
do not depend on a fixed ordering or index. Thus, they produce canonical output, which
is important for producing test suites and verifiers for randomized or dynamic geometric
algorithms.
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Résolution de dégénérescences par perturbation du
probléme ou de I’univers

Résumé : Nous décrivons deux approches permettant de supprimer les cas dégénérés
dans certains problémes géométriques. Nous appelons ces méthodes perturber le probleme
et perturber l’univers. Avec comme exemples privilégiés la triangulation de Delaunay en
dimension 2 et 3 pour des métriques euclidiennes ou polygonales, nous montrons que ces
approches permettent de concevoir simplement et efficacement une perturbation des points
qui ne dépends pas d’une numérotation de ces points. Nous produisons de cette maniére un
résultat canonique ce qui est important pour concevoir des jeux de tests ou des vérificateurs
pour des algorithmes randomisés ou dynamiques.

Mots-clés :  géométrie algorithmique, calcul géométrique, triangulation de Delaunay.



Perturbing the problem or the world 3

1 Introduction

Algorithms in computational geometry typically infer topological structures from geometric
tests that are performed on numerical coordinates. When designing algorithms it is common
to assume that the geometric entities are in general position—that small subsets do not
satisfy any of a chosen finite set of algebraic conditions that would, with probability one,
no longer be satisfied if the entities were randomly perturbed. Example assumptions in
the plane include that no two points lie on the same vertical line, that no three points are
collinear, or that no four points are co-circular.

It is dangerous to make arbitrary decisions in degenerate cases. Consider the problem of
sorting with equal keys. If one decides that equal keys compare as “less than” then standard
implementations of Quicksort, such as the Unix gsort(), will go into an infinite loop. Simple
exchange or insertion sort algorithms will not exhibit this problem, but Quicksort depends
on a comparison that is consistent with an order on the elements: it assumes that if a < b,
then b £ a.

Bugs that occur due to improper detection or handling of degenerate cases can be difficult
to reproduce and, therefore, track down and fix. Furthermore, it is tedious and time-
consuming to design test suites to cover all the degenerate cases. Thus, as computational
geometry turns more to implementation of its algorithms, it is not surprising that there is
much interest in methods to automatically handle degeneracies.

In this paper, we describe an approach to generate problem-specific perturbation schemes
that has three steps: First, perturb the problem—rather than solving the original problem in
a degenerate case, consider a closely-related problem. Second, perturb the world—extract
from the perturbed problem a perturbation of the input, and prove that it resolves all
degenerate cases. Third, perturb the code—implement tests that handle degenerate cases
consistent with the perturbation. None of these steps are particularly surprising; the same
ideas can be found in both ad-hoc approaches used while coding and in general perturbation
schemes. What we did find surprising was how many other goals could be achieved at the
same time by a problem-specific approach.

In addition to removing degenerate cases, the ideal perturbation scheme might have the
following properties

1. Tt perturbs the input geometrically so that the computed result is a valid output for
an infinitesimally-perturbed problem.

2. It produces a canonical result, irrespective of the order of input data, or when other
information is to be encoded in the order of the data. This is helpful for testing or
verifying randomized or dynamic algorithms.

3. It can be implemented with little computational overhead. In particular, it should not
add any computation to non-degenerate cases beyond verifying their non-degeneracy,
and if it can reuse some of that computation for resolving the degeneracies, so much
the better.

4. Tt should not require more precision than the test for the existence of a degeneracy.

RR n° 3316



4 P. Alliez, O. Deuvillers & J. Snoeyink

5. It should be able to resolve degeneracies for more than one test. Even better if it can
be extended to further tests without requiring recomputation of previous results.

After reviewing perturbation schemes in the literature, we use Delaunay triangulations under
polygonal and Euclidean metrics in 2-d and 3-d as our primary examples and observe that
most of these goals can be achieved simultaneously.

It should be stated that there is one non-degeneracy assumption that we do make: we
always assume that correct input contains no duplicated data. Duplicate geometric data
is detected as a degeneracy by our schemes; if it is necessary to resolve these degeneracies,
then the perturbation function should incorporate differences that exist in non-geometric
attributes.

2 A Review of Perturbation Schemes

The ultimate goal of a scheme that eliminates degeneracies is an implementable policy that
handles all cases in a consistent manner. Because consistency depends on the algorithm,
the easiest way to guarantee it is to prove that the algorithm works correctly on all non-
degenerate inputs and to choose a policy that is consistent with a perturbation of the input
that removes all degenerate cases.

Since a random perturbation restores general position, some practical codes will abort
a computation when they detect a degeneracy, apply a small random perturbation to all
points, and solve the new problem. The perturbation’s magnitude depends very much
upon the problem to be solved—it must be large enough not to be lost in the numerical
imprecision, but small enough that the solution on the perturbed data is somewhat related
to the original. If the input data has interesting geometric structure (e.g., a triangulation),
then the perturbation must not render it invalid (e.g., by reversing the orientation of a
triangle).

Theoretical work usually seeks a canonical, infinitesimally-small perturbation. We can
classify the methods in the literature based on whether they perturb the underlying nu-
merical computations or the geometry, and whether they use additional information, or the
points alone.

2.1 General perturbation schemes

Yap [Yap90] suggested that evaluations of the signs of test polynomials, which are considered
to involve all inputs to an algorithm, can be replaced by a black-box tests that never return
zero. He used an admissible ordering of the terms of the polynomials to determine a sign,
and, for computations on points, he gave conditions under which the resulting signs are
consistent with a perturbation of the points.

Edelsbrunner and Miicke [EM90] detailed their method of “Simulation of Simplicity”
(SoS) for determinant computations, which involved using both point and coordinate in-
dices (or location in memory) to construct a perturbation by powers of an infinitesimal e.
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Perturbing the problem or the world 5

Specifically, point p; € E? is replaced by

id id41 id+d—1
p;zpi-i-(ez ,62 ,...,62 )

For computing the sign of a determinant, Canny and Emiris [EC95, ECS97| proposed
schemes that also use a unique integer for each point, but simplify the computation by
reducing the powers of € and allowing the use of arithmetic modulo a prime ¢ larger than
the largest index. Point p; € E? is replaced by

p; = p; + € (i mod ¢,i* mod g,...,i% mod q) .

This approach is less general than Edelsbrunner and Miicke method. It can be generalized
to problems other than computing the sign of a determinant, but applicability has to be
checked for each particular problem.

Seidel [Sei94] showed that it is sufficient to find, for each n, an n point set @, for which
the algorithm detects no degeneracies. The degeneracies from any other sequence of n points,
P1, P2, -- -, Pn will be removed by the infinitesimal perturbation p} = p; + €g;. From this
perspective, Canny and Emiris’ schemes construct point sets @, that have no degeneracies
for the determinant sign, and Edelsbrunner and Miicke’s scheme constructs points without
degeneracies with respect to any polynomial evaluation.

Assigning a unique integer to each point (for example, a memory address) is relatively
easy in batch-processing algorithms, but can be more problematic in on-line or dynamic
algorithms. Moreover, testing or verifying that an algorithm has produced a correct output
can be complicated by the fact that the output depends on an unknown assignment of
integers to points. Finally, it has recently been shown that the ordering of data can be used
to encode other information, such as a triangulation [SvK97, DS97], for compact transmission
over a network. Such schemes require a canonical way to handle degeneracies that does not
depend on ordering.

Of the schemes above, only SoS can be implemented without a unique index for each point
(Edelsbrunner, private communication, 1996). SoS can use a relative index to the points
considered in a single test—for example, by sorting the points under test lexicographically
and using their relative ranks. The order of relative indices must, of course, be consistent
with some total ordering of all the points.

2.2 Delaunay triangulations, problem-specific perturbation schemes

Several problem-specific schemes have been applied to Delaunay triangulations because of
their importance and because they require some perturbation for their definition.

Each distance measure defines a unit circle of all points at distance 1 from the origin: for
the Euclidean metric the unit circle actually is the circle of radius 1, for the L., metric it is
the square with side length 2, and for a general polygonal distance function it is a convex
polygon with the origin in the interior. The Delaunay triangulation of a set of point sites
is defined in terms of an empty circle property: An edge pq is included in the Delaunay

RR n° 3316



6 P. Alliez, O. Deuvillers & J. Snoeyink

Figure 1: A triangulation that is not Delaunay, but can result from perturbing lifted points

triangulation if some homothet of the unit circle (a scaled and translated copy) with p and
g on the boundary encloses no other points.

In general, three points determine a homothet, since a homothet is determined by three
parameters—each point contributes one constraint, and retains one degree of freedom for
its position on the boundary of the homothet. Thus, a degenerate case occurs whenever
a homothet of the unit circle has empty interior but k¥ > 3 points on the boundary. The
definition of the Delaunay “triangulation” gives either an empty k-sided face, or a k-clique
with all (g) edges, depending on whether points on the boundary of a homothet are taken
to be enclosed or not.

Delaunay triangulation algorithms for non-degenerate point sets in the plane can be
implemented using two tests:

CCW(p, g, r) tests whether the triangle Apgr is oriented counter-clockwise—that is, whether
r is to the left of the oriented line from p to gq.

InCircle(p, q,r,s) tests whether s lies on the circle through the three points p, g, r.

For most algorithms, InCircle(p, g, r,s) is called only when CCW(p, ¢, ) is true.

Drysdale [Dry90] worked out the degenerate cases for the divide and conquer computation
of the Delaunay triangulation for polygonal metrics, and found it necessary to use a clever
bundling technique to ensure that the merge step took sub-quadratic time. Bundling is not
necessary if the point set is perturbed.

It is well-known that the Delaunay triangulations are dual to Voronoi diagrams; the
study of abstract Voronoi diagrams has identified primitives in addition to InCircle() and
CCW(), most of which handle bisectors for the Voronoi [K1e89]. A relevant development is
the fact that degenerate cases can be handled with a primitive that computes the Voronoi
or Delaunay of any given set of five points [KMM93].

Mount and Saalfeld [MS88] gave a nearly-canonical way to complete the Delaunay dia-
gram of co-circular points using a triangulation that lexicographically maximizes the vector
that lists the angles of all triangles in non-decreasing order. This triangulation is not nec-
essarily the perturbation of a Delaunay triangulation [DS93], and is still non-canonical for
point sets with symmetries, such as the vertices of a regular n-gon.

Edelsbrunner and Miicke report that implementing InCircle() directly under SoS [EM90]
“turns out to be a real pain” because of mixed products that appear. We will see these mixed
products in our perturbation, where they will, in fact, help keep the algebraic degree of the
test low. Edelsbrunner and Miicke recommend that the InCircle() test first be transformed
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Perturbing the problem or the world 7

to an orientation test in one higher dimension by the standard lifting map, which lifts each
point to a paraboloid of revolution. Then they suggest perturbing the lifted points to re-
moved degeneracies. Using this perturbation, however, one can compute a triangulation,
such as the one in Figure 1, that is not the Delaunay triangulation of any perturbed set of
points in the plane. Thus, properties of the Delaunay, such as acyclicity [DFNP91], cannot
be assumed for the triangulations of perturbed points.

In a completely different approach, Dillencourt and Smith [DS93] have given a simple and
complete graph-theoretic characterization of the triangulations that are valid completions of
a Delaunay triangulation. Using their result, the Delaunay diagram of a set of sites—which
consists of the edges with the empty closed circle property—can be triangulated in a manner
consistent with some perturbation in linear time: color the diagram with two colors if it is
bipartite, and make sure that some added edge joins nodes of different colors. This is a
beautiful result, but it does require computing the Delaunay diagram first; it is not suitable
for canonical triangulation of dynamic or random point sets.

3 Examples of perturbing the problem and the world

We describe the technique of generating perturbations of the problem and perturbations of
the world by a series of examples that progress from sorting to Delaunay triangulations with
L, polygonal, and Euclidean metrics, in dimensions 2 and 3. We also mention d-dimensions
and arrangements of line segments.

3.1 Sorting points by x coordinate

As many computational geometers know, to sort a set of distinct points by = coordinates,
one should break ties by comparing y coordinates. This policy for comparing points can be
interpreted in two different, but consistent ways.

The first is as a global perturbation of the world that replaces p = (pz,py) by p' =
(pe + €py, py). Comparing the z-coordinates of perturbed points p’ and ¢’ never produces
the degenerate case: (p, — ¢z) + €(py — ¢y) = 0 only if points p and ¢ are identical.

A second interpretation is as a perturbation of the problem that sorts the points by their
projections onto the line y = ex rather than onto the z axis.

This order of presentation is exactly backwards from what we will use with more complex
problems. Usually, we find it easiest to conceive of a perturbation as perturbing the problem
This suggests a perturbation to apply to the world—in the case of sorting, a new axis is cho-
sen by an infinitesimal affine transformation of the problem, and the inverse transformation
is applied to all points to perturb the world. Writing the expression for the test as a polyno-
mial in € and interpreting the coefficients geometrically gives us our implementation policy:
if the difference in x coordinates is zero, then compute the difference in y coordinates.
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8 P. Alliez, O. Deuvillers & J. Snoeyink

two opposite
corners: de-
generate bis-
sector

non unique cir-
cle through three
points

four cocircular
points

Figure 2: Degenerate cases for the Lo, metric

3.2 Delaunay triangulation under the L, metric

Consider the Lo, metric, in which the “unit circle” is an axis-aligned square. Degenerate
cases, illustrated in Figure 2, occur whenever more than three points lie on the same square
or whenever two points lie on the same side. It is sufficient to be able to test if two points have
the same x coordinates or y coordinates, or if, for four points, the difference in x coordinates
of the first pair equals the difference in y coordinates of the second pair. A special case of
this last degeneracy occurs when two points are the vertices of an axis parallel square, and
their bisector becomes a region rather than a curve.

A simple way to perturb any Delaunay problem is to change the unit circle defining
the metric. Because simple perturbations lead to simple implementations, we prefer non-
uniform scaling and skew transformations. Thus, we shrink the square infinitesimally in x to
make sure that differences in « and y coordinates are not equal, which removes degeneracies
caused by four points lying on different sides of a square. Scaling preserves horizontal and
vertical lines, so we skew the x coordinates by a smaller amount to remove degeneracies
caused by points with the same x coordinate, then skew the y coordinates by a still smaller
amount to remove degeneracies caused by points with the same y coordinate.

Translating these changes to the metric into changes in point coordinates, we replace a
point p = (ps, py) with

P = ((1 +€)ps + €2py7 Dy + 63PZ)~

INRIA



Perturbing the problem or the world 9

—1—-€e,14+e+¢é
( (1—)62,1—1—6—63)

(1,1)
perturbed .
unit circle E W"
(~Lg1) 2N B
(14}3-62,—1—6—63) ) -
(=14 €%, -1 —e+¢?) solved degeneracies

Figure 3: Perturbed L., metric

For the curious, this corresponds to perturbing the unit square by the inverse transfor-
mation into a quadrilateral with vertices, after scaling by 1+ ¢ —€° are (1 — €2, (1 +€) — €3),
(m1—€,(1+e)+e), (-1+e%,—(1+e)+€),and (1+€, —(1+¢€) —€)

Theorem 1 proves that the perturbation of the world effectively removes all degeneracies.

Theorem 1 Let P be a set of distinct points in the plane. Replacing each p € P with p’, as

defined above, remowves all degeneracies with respect to computing the Delaunay triangulation
under the Lo, metric.

Proof We consider the three operations comparing x coordinates, y coordinates, and
differences in z and y:

compareY(p, q) The difference in y coordinates between points p and g,
Py, =y =Dy — ay + € (P2 — Ga),

is zero only if both y and x coordinates of p and ¢ are identical.
compareX(p, q¢) The difference in z coordinates between points p and g,

P —dh =140 — ¢) + 0y — q)),

is again zero only if p and ¢ are identical.

compareXY(p, ¢,r, s) The difference in = coordinates of p and ¢ and y coordinates of r
and s,

(plz _q;) - (T; _5;) = (pa: _qI) - (Ty _Sy) +€(pz _Qw)+€2(py _qy) +63(Tz _52)7

is zero only if p and ¢ are identical.
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turn ccw
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Figure 4: Perturbing convex metric C

3.3 Delaunay triangulation under polygonal distance functions

As in the preceding section, evaluating InCircle(p,q,r,s) is subject to two kinds of de-
generacy. The first occurs when pgr do not define an unique homothet; the second occurs if
s is on the boundary of the homothet through pgr.

We illustrate by describing a sub-optimal algorithm (efficient when the distance function
is defined by a constant-size convex polygon C) to implement the InCircle(p,q,r,s).
constructing the circle circumscribing p, ¢, by growing a triangle homothetic to pgr inside
C, keeping contact with p and ¢. When point r crosses the boundary of C we have found the
homothet of pgr inscribed in C or equivalently, the homothet of C circumscribing pgr. (The
same perturbations can be applied to the search algorithm for larger C [KS95].)

The first degeneracy occurs if r does not cross the boundary of C but follows it for a
while. In that case there is not a unique homothet trough pgr. The degeneracy is resolved
by a small rotation of angle arcsin(e) of C. In implementation policy, just look at the
orientation used by r to follow the boundary of C; this degeneracy is easiest to treat in the
“perturbing the problem” scheme, and does not need additional computation (see Figure
4). Nevertheless, we can use the inverse rotation to perturb the world, replacing p with
P'=((1-€)ps — epy,epz + (1 — €*)py).

The second degeneracy is resolved in the “perturbing the world” scheme by combining a
scaling of the x coordinate with the previous perturbation. The point

P = ((1+6)[(1—€)p: —epy) epz + (1 —€)py) .

INRIA



Perturbing the problem or the world 11

3.4 2D Delaunay triangulation under the Euclidean metric

For the Euclidean metric, we again perturb the problem by perturbing the unit circle. We
scale the y coordinates to form a first ellipse; then we shear the x coordinate to create a new
ellipse that cannot share more than three points with the original circle and the first ellipse.
This removes degeneracies for points that are not collinear, which are the most important
cases in implementing a Delaunay triangulation algorithm.

Three or more collinear points are a degenerate case for the Delaunay triangulation under
any smooth metric—which includes our perturbed metric. Since affine transformations
preserve collinearity, we also modify the circle in a nonlinear fashion by a perturbation that
depends on the distance from the origin. The resulting perturbation of the world sends the
point (pa, p,) o

P = (o + €py, Dy + €0 + (0% +12)).

Theorem 2 proves that this perturbation effectively removes all degeneracies.

Theorem 2 Let P be a set of distinct points in the plane. Replacing each p € P with p/,
as defined above, removes all degeneracies for computing the Delaunay triangulation under
the Fuclidean metric.

Proof Consider first the determinant test for collinearity, CCW(p, ¢, 7):

1 ps py 1 p. pP2+Dp 1 py pi+01]
D=(1-€)|1 ¢ g, |+|1 ¢ ¢+ qg +etl 1 ¢ ¢+ qé
1 ry 7y R 1 ory 1247,

If p, ¢, and r are not collinear, then the sign of D is given by the sign of the first
determinant as € — 0.

When p, ¢, and r are collinear, the first determinant is zero; we can show that the
second and third cannot also be zero. Consider lifting the three points to the paraboloid:
P* = (D2, 0y, D2+ 12), @ = (G2 Q> @& + ¢2), and r* = (rg, 7y, 72 +72). If p, ¢, and r are
distinct, then p*¢*r* must define a plane in 3D, since three points on the paraboloid
cannot be collinear. If the first determinant is zero, then the plane p*q¢*r* is vertical; if
the second is zero, the plane p*¢*r* is parallel to the y-axis; and if the third is zero, the
plane p*q¢*r* is parallel to the z-axis. It is clearly impossible for a plane to be parallel

to all three axes, thus D cannot be zero unless two points are identical.

An algebraic explanation of the collinear case can also be given. If the line is not vertical,
then it has an equation y = mx + b, so that we could write the second determinant as
the determinant of a Vandermonde matrix:

1 p. p2+p? 1 p. p? ,
1 ¢ ¢+ qg =m*+1)| 1 ¢ @ |=m+1)(pe — €)@ — 1)z — Pa)-
1 re r2+7 1 r, 72

This determinant is zero only if two points have the same x coordinate, which, since
they lie on a line that is not parallel to the y-axis, implies that they are identical. When

RR n° 3316



12 P. Alliez, O. Deuvillers & J. Snoeyink

the line is parallel to the y-axis, all x coordinates are equal and the second determinant
is zero. The third can then be written as a Vandermonde matrix:

1 py pi+pz, 1 py pg
1 gy qi+qg =1 g 0 = (Py — qy)(qy — 1y)(Ty — Py)-
1 7y 1"3—|—1“y 1 ry 7y

Again, the determinant is zero only if two points are identical.

Notice that the sign of a Vandermonde matrix can be calculated by multiplying the signs
of the terms, so adding the non-linear terms to the determinant does not necessarily
raise the algebraic degree of the test.

Next, consider InCircle(p,q,r, s), which tests the sign of determinant

~

/

Lp, py, 0 p

1d o d- o

SREEE
z 'y

1s, s, 88

The sign of D locates s with respect to the circle passing through p, ¢ and r. Again, we
expand D as a polynomial in € and look at the coefficients of the lowest powers, which
determine the sign as € — 0.

1 pe py p“Z” +p§ 1 pe py papy 1 ps py p§ 1 pe py papy
1 qs 1 go z 1 ¢s 1 qs P
D= 9z Qy q§+q§ + 2 9z qy 4=y + e dz qy qg + 262 9z qy 9=y +63D',
17y ry rp + 1y 1 7ry vy Tory 17y ry 7y 1 rgy vy ramy
1 sz sy sz—ksg 1 sz sy SzSy 1 sz sy 33 1 sz sy SzSy

where D’ is a polynomial in € that we expand later if the determinants that are the
coefficients of the €°, €', and €2 terms are zero.

Notice that the second and fourth determinant are equal, and that the three first deter-
minants can be evaluated quickly if we expand by minors in the fourth column. Using
a generic fourth column (PQRS), we want to know when

1 ¢ g 1 pz by 1 pz by 1 pz py
1 7o ry |P=|1 1 1y |Q+|1 gz gy |[R—|1 gz gy |S=0 (1)
1 s; sy 1 s; sy 1 sz sy 1 7m0 7y

Let us take a brief digression to study equation 1. Note that the 3 x 3 determinants are
standard CCW() tests, all of which are zero only if p, ¢, r, and s are collinear. Assume,
therefore, that not all four points lie on the same line.

If equation 1 is satisfied when (P,Q,R,S) is (p-p,q - q,r - 7,5 - s), then there are
scalars o, 3, v such that o + Bz + vy = 22 + y? for the coordinates of each of the
four points p, ¢, r, and s—that is, the four points are co-circular. If equation 1 is also
satisfied for (pzpy, ¢zqy, =7y, $25y) and (p2,q2, 13, s3), then there are scalars such that
al+ﬂl$+’)’1y :xy and O{II_*_ﬁII‘%,_’_,)/IIy :y X

INRIA



Perturbing the problem or the world

If we now consider any conic passing through p, ¢ and r. Combining all the preceding
equations and the equation of the conic, we get that s should also belong to the conic.
We have assumed that not all four points are collinear. If, without loss of generality, s
does not on the line through p and ¢, then there is a degenerate conic consisting of the
line pg and any line through r that does not include s. This contradiction shows that
either the above determinants are not all equal to zero, or the four points are collinear.

We want to point out that from an algorithmic point of view, we are done. The main use
of the InCircle test is to locate a query point with respect to the circle circumscribing
a triangle of the Delaunay triangulation of a set of points S. The only triangles with
collinear points, therefore, are those on the convex hull of the point set, and if a bounding
triangle or box (or point at infinity) is used to begin the triangulation, then the InCircle
test cannot be called with four collinear points.

However, the degeneracy is resolved even in the collinear case. The polynomial expres-
sion for D must be expanded further, but many of the coefficients will be zero. As
before, we distinguish two cases, depending on whether the line is parallel to the y-axis.

o If the line is parallel to the y-axis, then p, = ¢, = r» = s, and all terms z or z2
disappear from the expansion of D by collinearity with the first column.

1 epy py +€py p' - pf 1 py pz, vy
pDo|létw &w+eq d ¢ |_ 4layqd-d
1 er, ’f'y+€3’f'§ v 11y r§ !
1 esy sy+e€s, s s 1 sy sy 85

Now, when expanding the last column, all terms with a degree in y at most two
can be removed as proportional to one of the three first columns.

L py py 26°py +cpy L py Py Py
_ 4|l gy gy 2e%q) + €%, 1 lay gy @ 10 1y
D=e 1ryr 5261" +56r4 = de 1ry rz rg +e Dy
1sy§ s—l—es 1sys§s§’,

This determinant is of a Vandermonde matrix, and is zero only if two points share
the same y coordinates. Since all the points are on a vertical line, we can conclude
that two points are identical.

o Otherwise the line has equation y = mz + b, Using this expression for y, and
removing all constant terms (proportional to the first column), we have:

2

/8N
w_ 3 T

L (1+em)ps (m+e)ps +€(1+m?)p
L (L+em)ge (m+e)ge +€*(1+m?)q
1 ( ) )
1 ( )

S

14+ em)ry (m4+e2)ry + (1 4+ m?)r
14 em)s, (m—l—ez)sz +63(1—|—m2

1ppsp-p
1g¢. q;q
1rmr3r-
1 s, sz s

%)
B8 NE N
m\ﬁ»ﬁ

(1 + em)e(1 4+ m?)
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14 P. Alliez, O. Deuvillers & J. Snoeyink

Now, when expanding the last column, all terms with a degree at most two can
be removed as proportional to one of the three first columns.

1 po pg 2(m + €2)e3(1 +m?)pg +¢%(1 + m?)?p;
ay| 1 2 2(m 4+ €2)e3(1 + m2)gS + (1 + m?)2¢2
_ 3 2 9z 9y qz dz
b= Q+em)eL+mDly 1705 aim + 2)e3(1 +m2)rd + O(1 + m2)2ri
1 se sy 2(m+ €)e3(1+m?)s] +5(1+m?)%sy
L pe % Py
. 1
I 2 2y2| 4 9z 9z 9z 9 p!
= € (1+em)(m+e)(1+m*) 11y 72 7 +€ Dy,
1 sg 52 52

This determinant is of a Vandermonde matrix, so

Sign(D) = sign(m)sign ((pz - QZ)(pz - Tz)(pz - SZ)(qz - TZ)(qz - SZ)(TZ - SZ)) -

The sign of the slope sign(m) = sign ((pz — 5z)(py — 8y)); if we also assume the p,
g, r form a ccw oriented (degenerate) triangle, which is the only kind constructed
by a triangulation algorithm, then the sign test reduces to

sign(D) = sign ((py — ¢y)(¢x — 52)(rz — 52)) -

Notice that the test on perturbed points has the same degree as the original. In fact,
the usual co-circular test is evaluated by minors of the last column. In the case of co-
circular but not collinear points, this expansion is reused, changing the last column to
the square of ordinates and, if necessary, to the product of abscissae and ordinates. The
collinear case is detected when the minors are all zero, and the degeneracy is resolved
by three comparisons of point coordinates. [

3.5 Three dimensional Euclidean Delaunay

Visualizing a valid perturbation of the problem in higher dimensions is, of course, more
difficult. It can help to construct a perturbation in stages, as we will illustrate for the three-
dimensional Euclidean Delaunay; using low-order perturbation terms to resolve low order
degeneracies, and then adding on higher order terms as necessary. This can also be a useful
technique if there are only certain degeneracies that need to be handled by an algorithm.

We will begin by constructing a perturbation for the InSphere(p, q,r, s,t) test that han-
dles the case of 5 points on a finite-radius sphere, which is the most important degenerate
case in Delaunay triangulation. Then we will add terms to handle coplanar, but not collinear,
points in both the Orient(p, ¢,r, s) and InSphere() tests. Finally, we handle collinear points
in both tests. We point out that the implementation policy once again will detect which type
of degeneracy occurs as it evaluates the first determinant, and then handle the appropriate
case. It does not need to test each case in turn.

We start by skewing along each of the coordinate axes, as in the plane. We use a
perturbation that sends the point (ps, py,p.) to

P = (pu + ey, Py + €6p.,p. + €'p2),

INRIA



Perturbing the problem or the world 15

The powers on the es are chosen by first using a different € for each skew, then choosing
exponents that make the proof easiest.

Theorem 3 Let P be a set of points in 3-D, no four of which are co-planar. Replacing each
p € P with p', as defined above, removes all co-spherical 5-tuples.

Proof The test InSphere(p,q,r,s,t) evaluates the sign of determinant

~

/

Lp, pyp. p-p
lag, ¢ ¢. 9 ¢
D= |1ry,ry o, oo
1 s, s, s, 84
Lttt

The sign of D locates ¢t with respect to the sphere passing through p, ¢, r and s. Again,
we expand D as a polynomial in € and look at the coefficients of the lowest powers,
which determine the sign as € — 0.

2

Lpzpyp=p-p L pz py Pz Papy L Pe Py P2 Py 1 pz py Pz Pyp=
1geo qy 92 9- ¢ 1gs qy 9= 9oy NERCR R S| 1 9= av - ayas
D = Lry vy 7o rer | 42|17y 7y 72 Tury |+ € 1T$TyTzT§ + 2|1 ry 1y T2 TYT,
1 sz Sy s, s+8 1 sz Sy Sz SgSy 1 sz Sy S 8, 1 s Sy Sz SysSz
1ty ty ¢, t-t 1ty ty ts toty 1ty t, t. tg 1ty ty b, tyts

2 2

1 pz Py Pz PzpP= 1 pz py P= p§ 1 pz py P2 PJZE

W1 W 2z 124 oL 9= v 9= a; oL 9= Qv 9= Oy o
+2¢ |1 rp Ty T, TaTs | € 1Twryrz7'z + € lrmryTz'ri -I—eD’
1 s, Sy Sz SzSz 1 sz sy 2 sz 1 sz sy s» si
1ty ty ty taty 1t, t, t, t2 1t, t, t, t2

Where D' is a polynomial in € that we expand later if the determinants that are the
coeflicients of the degree in € smaller than 8 are zero.

Similarly to the 2D case, if all these determinants are zero, then we conclude that any
quadric passing through four of the points has to include the fifth. If, without loss of
generality, ¢ is not in the plane passing through p, ¢ and r, then it is possible to find a
degenerate quadric consisting of this plane and another plane that contains s and not ¢,
which yields a contradiction. Thus the determinants are all zero only if the five points
are coplanar.

As in the plane, if the InSphere test is used to locate t with respect to a non-degenerate
tetrahedron, we can guarantee that the test will always conclude at that point. Notice
that the sum of the third, sixth, and last determinants is equal to the determinant
corresponding to the non-perturbed InSphere test, so the last determinant never needs
to be evaluated. Thus in the non-coplanar case, the InSphere test needs at most 6
determinant evaluations, all having dimension and degree 5, and sharing 4 columns in
common. u
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16 P. Alliez, O. Deuvillers & J. Snoeyink

Since affine transformations preserve co-planarity, our perturbation has not removed
degeneracies for the Orient(p,q,r,s) test. We add non-linear terms to our perturbation,
and send the point (pz,py,p.) to

P'= (D +epy + € (02 + 0, +02), 0y + €po + €005 + 1 +02), 0o + €' 0o + € (02 + 0] +92))

Theorem 4 Let P be a set of points in 8-D, no three of which are collinear. Replacing each
p € P with p', as defined above, removes all co-spherical 5-tuples and co-planar J-tuples.

Proof The orientation test Orient(p,q,r,s) evaluates the sign of determinant

Il
e
=S
S8~y
TARS
»w IR
N BN

If the four original points are not coplanar, the sign of D is the sign of

1 pz py P:
1q: ¢y ¢
1ry vy vy |
1 s, sy 8

Otherwise, this determinant is 0 and we can rewrite D as a polynomial in € by expanding
columns and eliminating all linear perturbations, keeping only quadratic ones:

1p-ppyp: 1 pzp-pp: 1pzpyp-p
D=1 10| a0l @9, uldaqq
lrrryr, lryr-rr, 1ry ryrer
1s-5 58y s, 1 s, s-s s, 1s; 8y 55

Considering usual lifting on the 4D paraboloid, we get four points p*, ¢* r* and s*.
Assume that p, ¢, r and s are not collinear, then p*¢*r*s* must define an hyper-plane
in 4D. If all the determinants are zero, we get that this hyper-plane must be parallel
to all the four axis of coordinates in 4D, which is clearly impossible, thus D cannot
be 0 unless than the four points p, ¢, 7 and s are collinear. Unlike the 2D case, these
matrices are not Vandermonde and thus the algebraic degree of the tests is raised by
the perturbation to the degree of the InSphere() test.

By the way, this perturbation also handles the degenerate cases of InSphere(p,q,r,s,t) in
which not all points are collinear. Since the powers of ¢ are chosen large enough on the new
perturbation terms, the proof of Theorem 3 handles all but the co-planar cases.

We introduce several vectors in five dimensions corresponding to the columns of some deter-
minants. We denote the vectors (1,1,1,1,1), (pz,qz, Tz, Sz, tz) OF (p2,q2,r2, s2,t2) by Vi, Ve
or V2, respectively. We also denote V,2 + V2 + V,2 by Vpge.

INRIA



Perturbing the problem or the world 17

The co-planarity of the five points can be interpreted as the fact that the dimension of
the vector space Fi = Vect(Vi, Vs, Vy,V,) is three. Assume that the dimension of F» =
Vect(Vi, Vo, Vy, V2, V2) is four.

Then the next terms in the development of D as a polynomial in € give other vectors in five
dimension. The coefficient of €' is

1 py p- P2 +pp + P> paby

1gy g a2+, +9> q=0y
201 1y 7o TEATLATE TaTy
1 sy s si+s§+s§ Sz Sy
Lty to 241, +12 taty

If this term is equal to zero, then we deduce than V,, € Fs. Similarly, coefficient of ¢'! yields
than V,2 € F» Continuing the development, either we find a non-zero determinant, or we
conclude than V,2,V,2,V,2,Vay, Vy:, Ve € Fo. We assume, without loss of generality, that
Fy = Vect(Va, Vo, Vy, Vy2).

Now the next term in the development of D is the coefficient of ¢'® is

1 py p= P2+ P2 + 92 pa(p2 +p: +p?)
1gy ¢: 2 +q,+4 ¢(az+q,+4
211 ry 7, ri—l—rz—i—rz rz(rz—i—rg—}—rf) .
1 sy s. s§+s§+s§ sz(s§+s§+sg)
Lty to o+t +t2 to(th +1t, +12)

This determinant is zero, if and only if V, g2 € Fb. But, Vyge = Vo3 + V2 + V.2 and
since V2, V,2 € F» = Vect(V1, Vs, V,,V,2) we can rewrite V,2 and V2 as a linear combination
of V1,Vs,Vy, V.2 and thus rewrite V,,2 and V,,2 as a linear combination of Vi, V2, Viy, V2.
If we continue this rewriting scheme, we find that V,z2 € Vect(Vi, Va, Vy, V,2, V). If the
determinant is zero, then we have Iy = Vect(Vh, Vg, V2,V 3), and the next coefficient in D
can be rewritten as a Vandermonde determinant

1 pa pg pz p%
19 9z @& 4@

2 .3 .4
1 ry ry

2 4
1 sz s, sg s

1te t2 t3 ¢4

which is zero if two points have the same z coordinate. Continuing the process, we get Vander-
monde determinants with respect to other coordinates, and conclude that the plane containing
the points should include lines parallel to the three axes which is impossible.

Solving degeneracies in that manner needs the use of predicates of degree up to 7 although the
original predicate is of degree 5. u

This process can be continued to the collinear cases if we consider the perturbation

== +epy+€E®-p), py+p. +€°(p-p), po + 'po + (0 p) + (03 + 15+ p2)).
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18 P. Alliez, O. Deuvillers & J. Snoeyink

Theorem 5 Let P be a set of points in 3-D. Replacing each p € P with p', as defined above,
removes all co-spherical 5-tuples, co-planar 4-tuples, and collinear triples.

Proof The power of € on the new perturbation term was chosen so as not to affect the results of
Theorem 4. Thus, we need consider only the collinear case. We indicate the direction for the proof of
the orientation test, Orient(p,q,r,s).

1
(m +em + 269(mb + m/'d'))z + eg(m2 +m'2 + l)z2
det (m' + €3+ 2610(mb +m'b))z + vslo(m2 +m/? + l)z2
2 €{P2,q2,72,8:} (14 €e*m + 2e 1 (mb + m'b') + 3¢30(mb? + m'b'2))z
(M (m? + m' + 1) + 3630 (m2b + m/2')) 22
+€30(m3 +m’3 + 1)z3

m+em’+2€9 mb+m’b’ e10 m2+m’2+1 — ml+63+2€10 mb+m'b’ &9 m2+m’2+1
[ ( e ( )= ( ( Ne( )]

1pngp§
1
23003 13 9z 493 93
€ (m +m +1) 1r, r'zzrf
1 s, s% sg’
1 p. p2 pd
39, 1/ 2 2 3 13 1g. ¢ ¢ 40
= —e"m'(m +m*+1)(m°+m>+1) 1 3 214+¢D
T 'l"z 'l"z
1 s, sz s?

which is a Vandermonde determinant. Remaining cases (e.g., m' = 0, m3 + m'3 +1 = 0) are resolved
by looking at the following terms. [ ]

3.6 Arrangements of Segments

We may illustrate the possibility of selecting which degeneracies to resolve on the problem
of the arrangement of line segments. An arrangement of line segments can present several
kinds of degeneracies:

1. end points or intersection points with same x,

2. more than two segments crossing at the same intersection point,

3. overlapping segments on the same line,

4. more than one segment ending at the same end point,
We may be interested in removing some kinds of degeneracies and not the others.

A small rotation or skew will resolve only the first kind of degeneracies. Perturbation
with a quadratic term (similar to one used for Euclidean Delaunay) will resolve the first

three kinds of degeneracies, while a perturbation that uses one end-point of the segment to
perturb the other will resolve all degeneracies.

4 Conclusion

We have shown that problem-specific schemes for resolving degeneracies can be developed
by a combination of perturbing the problem and perturbing the world. In both techniques, a
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Perturbing the problem or the world 19

parameter € is introduced and when € goes to zero, the limit case is our original problem.
The perturbing the problem approach transforms the definition of the problem while the
perturbing the world approach introduces a global transformation of the world of data.

In low dimensional computational geometry, these techniques are simple to conceive and
to implement. They also provide a way to resolve degeneracies without a numbering of a
data.

The main advantages of these techniques are

e to help to conceive a perturbation for a particular purposes
e to yield an efficient implementation
e to give canonical output (independent from a numbering of the points)

e to allow geometric control of that output (for example, replacing convex hull by an
a-shape a — 0 will gives all the points on the boundary of the convex hull or only the
vertices depending of the sign of a).

For the Delaunay triangulation, we show that our techniques provides efficient InCircle
and InSphere tests for polygonal metrics and, in the Euclidean case, for a circle or sphere
with finite radius. By efficient, we mean that in case of degeneracy the additional com-
putations is small and does not increase the precision required to make the computation.
The degeneracies for orienting a triangle, or the InCircle test on four collinear points are
also resolved efficiently. The perturbation scheme allows the resolution of all degeneracies,
including those not used by most algorithms that construct Delaunay triangulation. For
resolving second order degeneracies in 3D, the arithmetic degree of additional tests does
increase.
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