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Abstract: With the rapid development in remote sensing, digital image processing becomes
an important tool for quantitative and statistical analysis of remotely sensed images. These
images contain most often complex natural scenes. Robust interpretation of such images
requires the use of different sources of information about the scenes under consideration.
This paper presents an integrated approach to the robust analysis of remotely sensed im-
ages by using multi-spectral SPOT image data, as well as map knowledge and contextual
information. Several techniques are proposed for the effective use of map information for ur-
ban area detection in SPOT images. The first one is concerned with the modeling of SPOT
images and map information using Markov random fields, which in turn permits application
of various existing energy minimization algorithms for solving image analysis problems. The
second one is on a new iterative optimization algorithm which automatically adjusts the
optimal valures of the parametres of our image model using a feedback control. The third
one is about parameter estimation in the Markov random fields which takes into account
both the map knowledge and the contextual information. The last one is concerned with the
fusion of (intermediate) analysis results by using again the map knowledge in the estimation
of the reliability of these results.
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Vers une analyse robuste d’images satellitaires en
utilisant des connaissances cartographiques —
Application a la détection de zones urbaines

Résumé :

Avec le development rapide dans le domaine de la télédétection, les techniques de traite-
ment d’images deviennent les outils importants pour ’analyse quantitative et statistique des
images de télédétection. Ces images contiennent trés souvent des scénes natuerelles com-
plexes ; leur interpétation robuste nécessite I'utilisation de différentes sources d’information
de la scéne. Cet article présente une méthode intégrée destinée 3 ’analyse robuste des images
de télédétection en utilisant des données multi-spectrales du SPOT, des connaissances car-
tographiques, et des informations contextuelles. Plusieurs techniques sont proposées en
vue de 'utilisation effective des informations cartographiques pour la détection des zones
urbaines dans des images SPOT. La premiére est sur la modélisation des images SPOT
et des informations cartographiques par le formalisme de champs de Markov, qui permet
I’application de divers algorithmes de minimization d’energie pour résoudre les probléme
d’analyse d’images. La deuxiéme s’agit d’un nouvel algorithme d’optimisation itératif avec
I’adaptation automatique des valeurs optimales des paramétres du modéle de champs de
Markov par un controle rétro-actif. La troisiéme concerne I’estimation des paramétres dans
le modéle de champs de Markov en tenant compte 4 la fois les connaissances cartographiques
et les informations contextuelles. La derniére est la fusion des résultats d’analyse intermé-
diaires oil les connaissance cartographiques sont de nouveau utilisées pour estimer la fiabilité
de chacun des résultats intermédiaires.

Mots-clés : analyse d’images de télédétection, connaissances cartographiques, détection
de zones urbaines, modélisation d’images par champs de Markov, informations contextuelles,
fusion de données, méthodes d’optimisation
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1 Introduction

Remotely sensed images have proved to be of great interest for earth resource assessment and
environment monitoring. Automatic or semi-automatic analysis of these images becomes
an important task in computer vision. However, facing the complexity of such images,
many classical image analysis techniques become inefficient. Relatively high rates of miss-
interpretation of these images have been reported in various work.

Important efforts have been made to increase the reliability of analysis results of remotely
sensed images. One of the most promising approaches is to exploit available information on
the scene under consideration. A direct way to do so is to make efficient use of data obtained
through different sensors or in different time periods, see [6, 11, 24] and references therein.

In addition to remotely sensed image data, other sources of information, in particular,
cartographic information, turn out to be very useful as well. These include different kinds of
maps (geographic maps, topographic maps, hydrographic maps, etc.), and some computer
data bases like the Geographic Information System (GIS). Such data often contain informa-
tion not available in multi-spectral images. Combination of multi-spectral image data and
cartographic data may certainly improve the reliability in interpretating the scene. Some
early work in this direction can be found in [13, 16, 17, 25].

In this paper, we present an integrated approach for the robust analysis of urban areas in
remotely sensed images by using map knowledge as well as multi-spectral data and contextual
information. The principal technical contribution of the work consists of two aspects. On
one hand, we design robust image analysis algorithms by using these available sources of
information. On the other hand, we enlarge the set of image analysis algorithms applied to
the same image analysis task and we then merge the intermediate results in order to obtain
a more reliable final result.

In designing robust image analysis algorithms we propose in particular a new optimiza-
tion technique using a feedback control mechanism. This approach is based on the iterative
update of potentials in the energy function of the Markov random fields (MRFs) in accor-
dance with the map knowledge and the previous analysis result.

Applying different analysis algorithms to the same image analysis task and merging the
results provide an attractive way to increase the reliability in remotely sensed image analysis.
This can be considered as another fusion approach. The basic idea behind this technique
is that different algorithms may yield different results which are possibly redundant and
complementary. A judicious fusion of these results may produce a more reliable one.

In addition to these two main aspects, we also make use of image contextual informa-
tion. Indeed, while information from different sources are helpful in satellite image analysis,
contextual information contained in image itself is also an important source to be exploi-
ted. It can be used at pixel level or at object level. When used at pixel level, contextual
information is usually taken into account by considering neighborhood information. For
example, when classifying a satellite image, the class assigned to a site depends not only on
the spectral feature of the site itself, but also on the spectral feature of its neighbors [12, 31].
When used at object level, contextual information can aid either in detecting less obvious
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4 S. Yu, M. Berthod, G. Giraud

objects, or in obtaining a coherent interpretation of the whole scene. For example, in [11],
the task of detection of bridge is made easier by considering previously detected rivers.

The paper is organized as follows. In the next section, we provide a general presentation
of the work. In Section 3, we describe how to use Markov random fields (MRFs) to model
image data, and to formulate our urban area detection problem as an energy minimization
problem using Bayes formula. We also describe how to estimate the model parameters
by taking into account the heterogeneity of image data. Existing optimization algorithms
can be directly applied to solve this energy minimization problem. Experimental results
of the performances of some recently developed optimization algorithms and comparison
of the effect of model parameters are provided in the Appendix. In Section 4 we propose
to integrate map knowledge in the MRF modeling using adapted Bayes formulation, and
provide a new iterative optimization technique based on a feedback control mechanism. In
Section 5, we present the fusion technique for improving the robustness of image analysis
result using map knowledge. Finally, in Section 6, we conclude our presentation with remarks
on the future work.

2 General Presentation of Our Approach

As we mentioned previously, due to the complexity of satellite images, many classical image
analysis algorithms become inefficient. Two strategies are taken to tackle this problem. On
one hand, we design robust image analysis algorithms by integrating auxiliary information.
On the other hand, we enlarge the set of image analysis algorithms applied to the same task
and then merge the intermediate results in order to obtain a more reliable final result.

The general scheme of our approach is composed of three steps, as illustrated in Figure 1.
The first one is data preprocessing. In the second one, several algorithms are applied in
parallel to the same problem. Last, the results of these algorithms are evaluated and fusioned
to produce the final analysis result.

2.1 Data Preprocessing and Representation of Map Knowledge

Among different kinds of available auxiliary information, we are particularly interested in
using map knowledge. Usually the geographic zone of the scene of a satellite image is
known. Auxiliary information about the scene is therefore available, either from different
kinds of maps or from some digital terrain data bases, like the Geographic Information
System (GIS). For the work presented in this paper, we use information obtained from
corresponding geographic maps.

Note that maps usually provide delayed information only. Ground changes may occur
after the production of the map. Thus, when used for image analysis, map information
should be considered as imprecise, uncertain, and out of date, so that it only provides a
rough model of the scene.

In order to effectively combine satellite image data and the corresponding geographic
map knowledge, some preprocessings are necessary. We consider a digitized map as an

INRIA
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Available information of the scene

Data selection and preprocessing

Step 2 Analyzer 1 Analyzer2 | Analyzer n

error estimation and fusion

interpretation of the scene

Figure 1: Scheme of the scene interpretation system.
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6 S. Yu, M. Berthod, G. Giraud

image resulted from a special sensor, and thus treat it in the same way as other digital
images. The registration of a satellite image and the corresponding digitized map allows us
to have a multi-sensor information at pixel level, and this simplifies the integration of the
two sources of information. We use a set of corresponding control points in both the satellite
image and the map to accomplish the registration task. Techniques for image registration
can be found in, e.g., [4, 19, 22].

Note that, very often only a subset of information contained in the digitized map is
of interest for a specific task of scene analysis. This observation allows us to simplify the
representation of the map knowledge by merely extracting information which is directly
relevant to our analysis purpose. Here since we are interested in detecting urban area, we
can thus consider a scene to be composed of two major classes: urban area and non-urban
area. Information corresponding to this a priori requirement is extracted from the digitized
map and represented in the form of a binary image (one grey level per class), called map
image (see for example Fig. 4-(b)). In the current work, the production of this map image
is accomplished by the operator. Automatic extraction of information from digitized maps
remains a hard task for the time being. Nevertheless, such information can easily be obtained
if a digital terrain data base of the scene is available.

As we shall see later on, this map image will be used in almost all steps of our analysis
task: in automatic computation of the model parameters, in iterative improvement of urban
area detection using a feedback control scheme, and in fusion of the intermediate analysis
results issued from different algorithms.

2.2 Urban Area Detection

The second step of our approach consists in applying several image analysis algorithms to
the same scene. Each algorithm will give a result indicating the urban area and the non-
urban area in the image. Rather than giving a list of all the algorithms implemented, we
shall concentrated on the approach that we proposed recently using Markov random field
(MRF) modeling and Bayes formula.

We consider the problem of urban area detection as a scene labeling problem, where each
pixel in the image is assigned a label indicating which class (urban area or non-urban area)
it belongs to. Note that such a problem is also referred to as a classification problem or a
segmentation problem in the literature. We shall use the MRF theory together with Bayes
formula to formulate our objective function in terms of the maximum a posteriori (MAP)
criterion for optimality (cf. Section 3). The original problem of urban area detection then
becomes a problem of minimizing the objective function. Various optimization algorithms
can thus be used to find the optimal or suboptimal solutions. For self-containedness of the
paper, we provide in the Appendix a brief presentation of some recently proposed algorithms
and their performance comparisons.

In order to make more efficient use of information extracted from geographic maps, the
SPOT image and the map image are further integrated together by means of adapted Bayes
formula in the framework of MRFs (cf. Section 4). Though the derived objective function
still has the same, the labeling process is different here. We then devise a new technique

INRIA
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based on a closed-loop control scheme to adjust the behavior of the labeling process (see
Figure 2). Any optimization algorithm of MRFs (such as those presented in Appendix) can
be used in the algorithm as the kernel to get the intermediately labeling result. After each
iteration, the parameters of the MRF model are modified according to the error rate of the
current labeling result compared to the a priori knowledge about the growth ratio of the
urban area.

2.3 Fusion of Analysis Results

The last step of the approach is the fusion of results issued from different analysis algorithms
applied to the same scene (cf. Section 5). For a specific scene analysis task, several algo-
rithms may be available and may yield different results. It is thus necessary to evaluate and
compare the performance of each algorithm so as to assess the reliability of each result. With
the reliability evaluation at hand, we can either retain the best result, or get an improved
one by fusion of these results, see detailed discussions in Section 5.

3 Markov Random Field Modeling Using Bayes Formula
for Urban Area Detection

In most vision problems, available information stems from two different sources: observations
on image sites for a given occurrence of the problem, and a priori knowledge about the
restrictions imposed on the simultaneous labeling of connected neighboring units. This
second source of information, typically referred to as the “world model”, reflects statistical
dependencies between the labels of neighboring sites. Markov random field (MRF) theory
provides a convenient and consistent way to model such context-dependent information. The
MRFs-Gibbs equivalence, established by Hammersley and Clifford and further developed by
Besag [2], gives an explicit formula for the joint distributions of MRFs. This enables us
to model vision problems by a mathematically tractable means in the Bayesian framework.
According to Bayes theory, when both the a priori distribution and the likelihood function
of a pattern are known, the best that can be estimated from these sources of knowledge is
the Bayes labeling. The maximum a posteriori (MAP) probability, as a statistical criteria
for optimality, has been widely used in MRF modeling of vision problems.

3.1 Image Modeling

In the framework of MRFs, we are given a set of sites S = {s1,52,--+,sn}. The sites in
S are related one to another through a neighborhood system: N = {N;|Vi € S}. Each
site has a set of possible labels A; C A = {A\, A2, -, Apr}, 4 =1,2,---, N. In most image
applications, A; = A, so that each site can take any label from A. An MRF on these sites
is defined by the graph G = (S, N) and the so-called clique potentials. A clique c of G is
a subset of sites in S where all sites are neighbors to each other. Let C be the set of all
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Figure 2: Scheme of urban area detection using map knowledge.
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Satellite Images Analysis Using Map Information 9

cliques of G, and C; = {c|s; € ¢} the set of cliques containing site s;. The number of sites in
a clique c is referred to as its degree: deg(c).

A global discrete labeling L assigns one label L; € A to each site s; in S. The projection
of L to the sites of a given clique ¢ is denoted by L.. The definition of the MRF is completed
by the knowledge of the clique potentials V. for every ¢ in C and every L in £, where L is
the set of all possible M discrete labelings (i.e., the configuration space).

Let Y = (y1...yn)" represent the observed image data, where y; is the grey level or
any other scalar or vector quantities on site s;. Let P(L) be the probability of having label
L, and P(Y') the probability distribution of Y. Bayes formula implies that the conditional
probability of having label L given Y is

P(Y|L)P(L)

P(LIY) = =gy

(1)
where P(Y|L) is the conditional probability distribution of the observations ¥ given the

labeling L. It is usually assumed that this probability at each site is independent of its

neighbors:
N

N
P(Y|L) = HP(ZML) = Hp(yilLi>- (2)
i=1 i=1

The a priori probability of the labeling P(L) defines an MRF. According to Hammersley-
Clifford theory [2], P(L) can be expressed as a Gibbs distribution:

P(L) = %exp (Z(—VCLC)) , (3)

ceC

where Z is the normalizing constant, V., is the potential function whose value depends on
cand L..

Substituting Egs. (2) and (3) into Eq.(1), and dropping off P(Y) and Z which do not
depend on the labeling L (the solution to the optimization problem remains unchanged),
the a posteriori distribution of the labeling P(L|Y") can be rewritten as:

P(LY) o< [T P(yilLs) exp (Z(—Vch)> ; (4)

i=1 ceC

where o stands for “proportional to”.

The first term on the right hand side of Eq. (4) is the label-to-data fitting term. A
commonly used model is that the observed value y; (assumed to be a vector in general
sense) is drawn from a Gaussian distribution, which gives:

P(y|L; = 1;) = i) S (v — ﬁz,-)) , (5)

1 ( 1(
—e===exp | —5 (¥ — [,
N 2

RR n° 3293



10 S. Yu, M. Berthod, G. Giraud

where ji;; and X;; are respectively the mean vector and the covariance matrix of the feature
vector Y for class ;, (y; — fir;)? is the transpose of the vector (y; — iy, )-
Combining Eqgs. (4) and (5), the a posteriori energy to be minimized can be expressed

as:
U(LIY) = U(Y|L)+U(L)
= Y (log|=0,| + (ys = )=, (s — i) + Y Ver.- (6)
sES ceC

where U(Y'|L) is a disparity measure between the labels and the observed data. High dis-
parity values, corresponding to high energy terms, are discouraged. The a priori energy
U(L) = > .ccVer. imposes constraints on the labels of neighboring sites in the MRF.
Constraints on labels of two neighboring sites are the lowest order constraints to convey
contextual information. They are widely used because of their simple form and low compu-
tational cost. In this paper, we shall only consider energies of cliques of orders 1 and 2. The
first term in the right-hand-side of (6) shall be considered as energies of cliques of order 1,
the second term as energies of cliques of order 2.

Concerning energies of cliques of order 2, for sake of mathematical and computational
convenience, most MRF vision models are assumed to be homogeneous and isotropic, so
that V., is independent of the relative position of the clique ¢ in S, and independent of
the orientation of ¢. Under these assumptions, the Ising model, or more generally, the Potts
model are frequently used for image segmentation problems:

Ver. = Bé(Li — Ly), (7)

when ¢ = (4, ), § is a constant coefficient, where 6(z) = 0 if z = 0 and §(x) = 1 otherwise.

In our experimentation, we find that in many cases, the above model does not provide
satisfactory solutions to the problem of satellite image classification. Indeed, satellite images,
especially those containing urban scenes, often exhibit heterogeneous surface coverage. The
MRF defined on them do not usually satisfy the criteria of homogeneity and isotropicity.
Thus, we adopted an inhomogeneous and anisotropic MRF model, and define the second
order clique potentials as the compatibility coefficient

Ver. = B, (Ls, L) (8)

which depends on the clique ¢ = (4, ), both on its position in the image and on its orienta-
tion.

As a result, the original problem of urban area detection now becomes that of the mini-
mization of the following energy function:

U(LY)

U(Y|L)+U(L)

> (g |Se |+ (ys — i) S s — i) + Y By (L Ly)- - (9)
sES (4,5)€C

Il
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3.2 Estimation of Model Parameters

Parameters involved in the above energy function (Eq. (9)) are concerned with the energies of
cliques of orders 1 and 2. Energies of cliques of order 1 are related to individual sites. These
parameters are often obtained by supervised or unsupervised learning techniques. Energies
of cliques of order 2, however, are related to mutual constraints of the sites. When the MRFs
are supposed to be homogeneous and isotropic, the estimation of these parameters is usually
carried out by optimizing a statistical criterion using techniques such as maximum likelihood,
coding, pseudo-likelihood, etc. In our inhomogeneous and anisotropic MRF model, they are
estimated in a local adaptive window centered at each clique, see below.

3.2.1 Estimation of Parameters of Cliques of Order 1

The image is to be classified into two classes: urban area and non-urban area. Under the
assumption that the observed data are drawn from a Gaussian distribution, it is natural to
use the mean value and the standard deviation of each class to be the model parameters.
The map image allows us to automatically select the training zones and thus to compute the
model parameters for each class. It also helps to choose the optimal set of texture descriptors
for the image. Indeed, high resolution urban scene satellite images are often very rich in
textures. It is therefore more appropriate to use texture measures rather than grey level
values of the image to label different classes. Texture analysis has been extensively studied
in the literature. In the present work, we do not propose new texture descriptors. Rather, we
study how to select from the existing texture descriptors, those which are the most effective
for the image being analyzed. To this end, we proceed in the following way [31]:

e Firstly, we restrict our selection within a limited number of texture descriptors having
good performance according to results presented in the literature and confirmed by
our experimentations. Such texture descriptors include those based on co-occurrence
matrix [10], on local histogram measures [15], on some gradient measures [9], and
Laws’ texture detectors [14].

e Secondly, we combine these texture descriptors into several sets such that the descrip-
tors of the same set produce texture measures which are as uncorrelated as possible
(this can be checked by means of correlation matrix), and that the whole set is capable
to discriminate certain types of textures. Each set contains a small number of texture
operators, typically between 3 to 6 descriptors.

e Lastly, in order to determine which set of texture descriptors has the best capability
to discriminate different regions for the image to be analyzed, we apply a simple Bayes
classifier to the image with each of the sets. The set yielding the best (preliminary)
classification result (compared to the map image) is considered to be the most appro-
priate one for the image under consideration. The corresponding texture measures are
then used as input image data for our urban area detection algorithms.

RR n° 3293



12 S. Yu, M. Berthod, G. Giraud

3.2.2 Estimation of Parameters of Cliques of Order 2

For parameters related to cliques of order 2, as we mentioned previously, several estimation
techniques exist for homogeneous and isotropic MRFs. For inhomogeneous and anisotropic
MRFs, however, there does not seem to be any technique proposed in the literature for
model parameter estimation.

For our inhomogeneous and anisotropic MRF model, the potential parameter 3; ;) (), ')
depends not only on the position of the clique ¢ in S, but also on the orientation of ¢. We
interprate it as a compatibility coefficient for site ¢ taking label A and site j taking label
A [28]. If we have a statistical model for the problem domain, the value of this compatibility
coefficient can be determined using that model. Unfortunately, in most cases, we do not
posses such a model. Therefore, we estimate its value by taking statistics over small local
regions around clique c.

To estimate the value of ((; ;)(), \'), we consider the image to be a graph G = (V, E)
whose vertices in V represent image sites, whose (weighted) arcs in E represent the constraints
on the label assignment of neighboring sites. We partition the set of arcs £ into D subsets
Ey,Es,+,Ep, with UL_ | Ey = E and E4, N E4, = 0, di # d2. E can be partitioned into
4-connection or 8-connection subsets depending on the definition of the neighborhood sys-
tem. For the case of the 8-connection neighborhood system, E; (Es, E3, E4, Es5, Eg, Er, Eg,
respectively) contains all arcs (7, j) such that j is the North-West (North, North-East, West,
East, South-West, South, and South-East, respectively) neighbor of i.

Let W,,(¢) be the window of size n x n centered at site ¢. Define Eq4 ,,(¢) as the projection
of Eq over W,,(4):

Ein(i) = {(h, k) | h € W,(3), (h,k) € Ea}.

Let P;()) be the initial estimate of the probability that label A € A is assigned to site
i € S. Denote by P; (A, X’) the joint probability that label A € A is assigned to site ¢ and
label A" € A is assigned to site j. For any given local window size n X n, the estimation of
the joint probability is computed as:

PyAN)=—— S RO -R(N), (ij)€Es, 1<d<D, (10)

|Ed,n(l)| (h,k)EEd‘"(i)

where |E4,(4)| is the cardinality at E4,(i). The potential parameters are obtained accor-
dingly, cf. [20],
!
P, (A N) (11)
Pi(A) - Pi(X)

Figure 3 illustrates the computation of f;;(\,A\'). E is defined by the 8-connection
neighborhood system on a lattice. Sites ¢ and j form a second order clique in the North-
West direction. The local window (represented by shaded sites) of size 3 x 3 centered at site
i indicates the region over which the statistic estimation of 3;;(A, \') is carried out. The
arrows represent the pairs of neighbors considered in the estimation of 3;;(A, ).

The choice of the size of window W, (i) depends on the characteristics of the image under
consideration. A common idea is that image sites in a small region are most likely to have

Bii(AA) =

INRIA
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Figure 3: A window of size 3 x 3 centered at site ¢ for the estimation of 3;;(A,X") of clique
¢ = (4,7) in the North-West direction.

the same features. Thus, the window size n represents, in certain sense, the inverse of degree
of likelihood between image sites. On the other hand, we should not take too small regions
due to statistical biases. For example, the Gaussian white noise in the images can influence
significantly feature measures of individual sites. A simple way to decrease the effects of
additive noise is to use a low-pass filter on the image. In order to get an effective smoothing,
the window size should be large enough. Hence, the size of region W, (i) represents, in this
regard, the degree of smoothing. There is a tradeoff between the likelihood of the sites in a
region and the effect of noise elimination in the region. Our experience shows that usually
regions of size n = 5,7,9 and 11 provide very good estimates of the parameter 3;; (s, A;).

When the precision of the labeling is important, we can further determine adaptively the
size of window W, (i) for each site 4. This can be performed as follows: for every site ¢ and
for different size n, where 1 < n < N’, and N’ is a fixed value, we compute the variance
of the quantity Py (\;) - Px();), where (h, k) € Eg,(i), 1 < d < D. We choose the size of
window W, (%) to be the one that yields the smallest variance of the quantity P, (A;)- Py (A;).

The above method of estimating potential parameters for cliques of order 2 can easily
be extended to the computation of potential parameters for cliques of orders higher than 2:
Viy iz, eerim (A1, A2, -+, Am). It can further be generalized to take into account the distance of
the sites in a region:

Pi(AMN)=Kin > ainPu(N) - Pu(XN), (i,7) € B4, 1<d<D, (12)
(hyk)eEd,n(i)

where K; , is the normalization constant, ay,; is a coefficient depending on the distance
d(i, h) between site i and site h. For example, o; » can be defined as 1/(1 + d(¢, h)).

This estimation method (Eq. (10)) can also be used in homogeneous and isotropic MRFs
by taking the average of P(; j)(A:, A;) in all the directions with the whole image taken as the
window.

RR n° 3293



14 S. Yu, M. Berthod, G. Giraud

3.3 Energy Minimization by Optimization Algorithms

Once the urban area detection problem is formulated as an energy minimization problem,
it can be solved by an optimization algorithm. Quite a lot literature exists on optimization
algorithms in this framework, see [1] and references therein.

In the Appendix we have included a brief description of some recently proposed al-
gorithms: Deterministic Pseudo-Annealing (DPA), Game Strategy Approach (GSA), and
Modified Metropolis Dynamics (MMD). We have also included our investigations on the
effectiveness of these algorithms and the impact of model parameter estimation techniques.

4 Integration of Map Knowledge in Bayes Modeling and
in the Labeling Process

To make more efficient use of map information, we integrate it directly in the Bayes modeling
of the image by MRFs and in the labeling process so as to increase the robustness of the
analysis result.

4.1 Integrating Map Knowledge in Bayes Modeling

We partition the set of image sites into two subsets: S =S’ US", ' NS" =0, where S’ is
the subset of sites corresponding to the urban area indicated by the map image. Let L' and
L" be the projection of labeling L on &' and 8", respectively. Let A be the vector of labels
of sites in S’ such that all components are equal to the label “urban area’.

According to Bayes formula, we obtain the a posteriori probability of the labeling L,
given a realization of the observation Y on all the sites in &, and the a priori knowledge of
labels on the sites in S

Y,A|L)-P(L) _ P(Y|L)- P(AIL)- P(L)
P, N P(Y,\) '

Py, A) = 2 (13)

We assume that the urban region presented in the satellite image is a superset of that
represented in the corresponding geographic map. In other words, we assume that urban
areas are growing as time goes. With this assumption, P(A|L) is either 0 or 1. Thus, the
a posteriori probability P(L|Y, A) can be maximized only when P(A|L) = 1, which implies
that L' = A. It then follows from Eq. (13) that

(Y]L") - P(L")
P(Y,L' = X)

P(LIV,A) = P(L"[V, I/ = A) = © (14)

Analogous to the derivations in Section 3, we obtain that the maximization of P(L|Y, \)
is equivalent to the minimization of the following energy function:

UL, ) = Y (log|Se, |+ (ys — )" S (e — i)+ Y Bup(LinLy),  (15)
se8” (i-j)ec”
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where C" is the set of cliques such that one of the vertices is in S”.

One observes that Eq. (15) differs from Eq. (9) only in the set of sites (i.e. S” or S)
to be included in the evaluation of the energy function. Thus, when map information is
integrated in the modeling stage, one only needs to set L' = A and consider L on S"”.

4.2 Integrating Map Knowledge in the Labeling Process through a
Feedback Control Scheme

The above energy function can be minimized by any of the optimization algorithms such
as those of section A, which results in a labeling (i.e. urban area and non-urban area) of
the scene. In order for the detected urban area to be closer to the expected one, we devise
an an iterative process which adjusts the potentials in the energy function according to a
feedback control scheme, see figure 2. In each iteration, the same optimization algorithm is
used as the kernel (in our case, the GSA algorithm has been used) to carry out the labeling
process [29].

Assume first that the growth ratio of the urban area, noted as 7, after the map was
produced is available. This ratio can be obtained, for example, from estimating population
growth or from town planning projects [23]. Let a be the growth ratio of the urban area
computed according to the current labeling result compared to the map information.

Intuitively, if a < 7, the detected urban area is smaller than the expected one. Therefore,
we increase the probability of the “urban area” label and decrease the probabilities of the
other labels. Otherwise, if a > 7, the detected urban area is larger than the expected one.
Therefore, we decrease the probability of the “urban area” label and increase the probabilities
of the other labels.

Observe that for any site, the more neighbors belong to urban area, the more likely
this site belongs also to urban area. Hence, the modification of these probabilities is such
that the increase and decrease are proportional or inversely proportional to the number of
neighbors having the “urban area” label.

Let Ao be the “urban area” label, d the degree of the graph G, and v; the number of
neighbors of site s; having label \y. The adjustment procedure is performed in the following
way (7 is an adaptation parameter, 0 <y < 1):

If a < 7, then,
P(o) = Pi(ho)+ (1= P(X)) -7 =
P() = PA)-PMN-7-=,  A#.
If a > 7, then
Pido) = ()= Pilo) 7+ 1o
PO = PO+ (o - PO) e A
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The adjustment of initial probabilities are then taken into account in the computation
of energy potentials of cliques of order 2 using Eq. (10).

Note that even if the growth ratio of urban area is unknown, one can set 7 = 0 and still
apply the iterative scheme for urban area detection. In most of all our experiments, the
growth ratio a of urban area computed at the first iterations is larger than the expected
one 7. Our experiences indicate that after several iterations the computed ratio a becomes
close to 7, and that the modifications of labeling results of successive iterations are then
very small and almost stagnant. Therefore, in the absence of information on 7 (we set 7 =0
in this case), one can stop the iteration when this phenomenon is observed.

4.3 Experimental Results

Figure 4 illustrates an experimental example of urban area detection. Figure 4-(a) is a
portion of the SPOT XS3 image over the region Calais in France. Since we are interested
in finding urban areas alone, we use just two classes to label different regions of the image:
A1 = “urban area”, Ay = “non-urban area”. The map information corresponding to our
interest is shown in Figure 4-(b), where the white color represents urban areas, the dark
color represents non-urban areas. It is assumed that such information is not perfect. As
we can see, the small urban areas at the top left corner in Figure 4-(a) are not present in
image 4-(b).

Figure 4-(c) shows the urban areas detected by the method presented in Section 3 with
GSA as the optimization algorithm. In this method, map information is only used to select
optimal texture feature descriptors of the input image. There is no integration of map
knowledge in the image model nor in the labeling process. Figure 4-(d) provides the urban
areas detected by the method presented in this section, with GSA as the kernel optimization
algorithm.

Comparing Figures 4-(c) and (d), one observes that the method presented in this section
improves the quality of scene labeling algorithms. The urban areas detected by this last me-
thod is more complete and closer to the reality. As far as this particular image is concerned,
the undetected urban region at the center of Figure 4-(c) is mainly due to the fact that in
this region there is a museum and some monuments surrounded by green area. Hence the
texture features of this region resemble more those of the countryside rather than those of
the urban area in the image. This region is detected as urban area in Figure 4-(d) owing to
the enforced utilization of the map knowledge in the above method.

5 Improving Image Analysis Quality through Fusion

We now present the third step of our work on urban area detection (cf. Figure 1). The
work presented in the previous section has been focused on designing robust image analysis
algorithms. In particular, we use information extracted from geographic maps to improve
analysis qualities of SPOT images. However, satellite images are often very complex. One
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Figure 4: (a): A portion of the SPOT XS3 image over the region Calais in France. (b): Map
information about the urban area obtained from the corresponding geographic map. The
white region represents urban area, the dark region represents non-urban area. (c): Urban
area detected by the simple GSA. (d): Urban area detected by the iterative GSA.

RR n° 3293



18 S. Yu, M. Berthod, G. Giraud

single algorithm may not succeed in analyzing the images with sufficient accuracy and re-
liability.

For a specific scene analysis task, several algorithms may be available and may yield
different but possibly partially redundant and complementary results. In what follows, we
investigate the possibility of the fusion of these results, in accordance with their performance
evaluated using map knowledge, so as to increase the reliability of the final result. The work
is performed in two steps, as in [27] First, we evaluate the quality of each (intermediate)
result with the help of map knowledge. Then, based on this evaluation, we consider the
problem of fusion of these results.

5.1 Quality Evaluation

To evaluate the quality of an image analysis result, we first compute a local error measure
E(s) for each site s, then sum it up over all the image sites to get a global error measure
Egiobar for the result. The global error measure determines whether a result is good enough
to be used in the fusion process. For those retained for the fusion process, the local error
measure determines how each pixel in different results should be taken into account in the
fusion process: a pixel with a smaller local error measure has a higher reliability, and thus
has more influence in the fusion process.

The ideal way to assess the quality of an image analysis result would be to use the
ground truth of the scene. Unfortunately, it is not always available. In this work, we use
information extracted from geographic maps instead. Note that although map information,
being simplified and labeled, is easy to use, it provides only a rough model of the scene. It
is therefore imprecise and uncertain. This factor should be taken into account when used
for evaluating the quality of image analysis results.

For any s € S, let Map(s) denote the label of site s according to the map information,
and I'mg(s) the label of site s given by the image analysis result. Suppose that Map(s) = A;,
Img(s) = Aj. The change of label from A; (in the map) to A; (in the image analysis result)
may incur an “error” that we call a risk:

. =0 ifi=j
A >0 if i # g

The value of zy,; ;, depends on the specific labels A; and );. Generally speaking, the
risk of changing from a label of a natural object (e.g. the forest) to a label of a constructed
object (e.g. a road) is smaller than that of changing from constructions to natural scenes.
For example, the risk of a site of label “countryside” according to the map changing to label
“road” in the image analysis result is smaller than that of a site of label “town” in the map
becoming label “forest” in the image analysis result. In our work we use information from
both the map and the image analysis result, as well as some common sense knowledge about
the world model, to assign a value to the risk.

An image site cannot be analyzed without being related to its neighbors. Let s’ be a site
in the neighborhood Vs of site s, and d(s,s’) the distance between s and s’. We compute
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the following two measures:

Limap(s)=2,}
a(s) = Z W (16)
s'eV, ’
L rmg(s=1,1
bs) = > W, (17)
s'eVs ’

where 1,y is the indicator function. Measure a(s) is the number of sites in V, which are
labeled as A; in the map, inversely weighted by their distance to site s. It represents the
support that site s gets from its neighbors in the map for taking A; as its label. Measure
b(s) represents the support that site s gets from the image analysis result for this decision.
The size of the neighborhood depends on the resolution of the image. Higher the resolution
is, larger the size could be.

The local error measure E(s) of site s is then defined as:

-’I;)\,‘,)\j
r-a(s)+b(s)+1’

E(s) = (18)
where r is some positive coefficient. As both image analysis result and the map contain
uncertainty and imprecision, we use the coefficient r to reflect the degree of confidence we
have in the map with respect to the resulting image.

The global error measure Egjopq; is simply the sum of the local error measures over all
the image sites.

5.2 Fusion Process

Once we obtain the global error measure of an image analysis result, we can decide whether
this result is good enough to be used in the fusion process. To do this, we simply take K
best results among all available ones. Another way to de this is to use a threshold h: only
those for which G o001 < h are retained for the fusion process. However it is nontrivial to
determine the value of h.

Though a result selected to be used in the fusion process has a relatively high quality,
all sites in this result do not have the same reliability for the fusion. Thus we compute a
confidence coefficient for each site of the result based on the local error measure of this site:

E(s)

C)=1—-4——"—"——
E,\i,,\jeA TXisXj ’

(19)

where the denominator is for the normalization of E(s) so that 0 < C(s) < 1.
The decision of the final label for a site depends on the accumulation of the confidence
coefficient of the same site through all the retained results:

K
)\(S) = arg H}é’f{ ; Ck (s)l{lmgk(s):)\i}7 (20)
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where Imgy(s) is the k' input image to the fusion process, and C(s) the confidence coef-
ficient of site s in this result.

5.3 Experimental Results

Figure 5 illustrates the experimental result of application of the fusion process presented
in this section on the same scene as in Figure 4. Figures 5-(a), (b) illustrate the urban
areas of the scene detected by the two methods presented in Sections 3 and 4 respectively,
where GSA is used as the optimization algorithm. Figures 5-(c) is obtained from another
algorithm using wavelet transform and region growing techniques. Other algorithms such
as those based on neural networks [26] can also be used. Figure 5-(d) is the map image.
Figure 5-(e) is obtained by the fusion of the above three (intermediate) results and the map
information. Values of different parameters used for this application are as follows: K = 3,
r =2, Ty, = 20, T»,,n, = 1. As for the size of the neighborhood, the second order
neighborhood system is used, i.e., the 8 pixels in the 3 x 3 window centered at site s have
been considered in equations (16) and (17). The improvement by fusion process is clear
from this experimentation.

6 Conclusions

In this paper, we have presented an ongoing work on the interpretation of remotely sensed
images by integrating multi-spectral satellite data, geographic map knowledge and image
contextual information. We first provided an overview of the approach. Then we described
a work on the utilization of map information to improve the effectiveness and robustness
of urban area detection in SPOT images. Finally we presented a method to merge image
analysis results issued from different algorithms performing the same task on a satellite
image so as to increase the reliability of the final result.

Our experiences have shown that information extracted from geographic maps has great
potential in guiding remotely sensed image analysis and in the design of robust algorithms
for cartographic object detection. Though map information usually provides only a rough
model of the scene, such a model is very useful in the learning of knowledge about the scene
and in the optimization of parameters of image analysis algorithms.

Our work also confirms that context information plays an important role in the task of
scene interpretation. When used at pixel level, context information provides neighborhood
information around a pixel, and helps to increase the reliability of each detected object.
When used at object level, it indicates the relative relations among different cartographic
objects, which is useful for obtaining a coherent interpretation of the whole scene.

In order to make more efficient use of available information about the scene, techniques
of data fusion are necessary at different levels of the analysis procedure. At input data level,
they permit to integrate different sources of information to obtain most useful information
and its appropriate representations about the scene. At object level, we can merge results
issued from different analysis algorithms to reach a more reliable interpretation.
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(d) ()

Figure 5: (a), (b), (c): Images of urban area dectected by different methods. (d): Map
information about the urban area obtained from the corresponding geographic map. The
white region represents urban area, the dark region represents non-urban area. (e): Urban
area obtained by fusion of the above three images and the map information show in figure 4-
(b), using the method presented in Section5.
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Until now, our main efforts have been mainly focused on the use of map information to
improve the results of urban area detection. The detection of other cartographic objects
with the help of map information will also be investigated. Furthermore, information from
GIS will be used whenever it is available for the scene.

The ultimate goal of the work is to build an automatic and robust scene interpretation
system. In order for the results to be reliable, the system should contain a set of robust
image analysis tools, and should make full use of available information about the scene
under analysis. Many problems remain to be solved for the scene interpretation to be
effective and efficient. What kind of input data should be used for detecting a specific
object? How to select the most effective image analysis tools for a specific task? What
should the sequence of objects to be detected? What kind of a priori knowledge could be
used to guide an analysis task? How to manage different kinds of information? How to
model the imprecision and the uncertainty of the information? The control of the whole
interpretation process, the management of different information and the selection of image
analysis tools would definitely require a knowledge-based system, such as MESSIE, a multi-
specialist architecture developed in our laboratory for scene interpretation tasks, cf. [5, 7].

A Energy Minimization by Optimization Algorithms

In this appendix, we present experimental results obtained by applying three recently deve-
loped optimization algorithms for the minimization of the objective function (9) established
in Section 3. We also illustrate the impact of the ways model parameters are estimated.

A.1 Brief Descriptions of the Algorithms

The optimization algorithms we implement and compare here are among the most effec-
tive algorithms for MRFs (cf. [1]), and are concerned with Deterministic Pseudo-Annealing
(DPA), Game Strategy Approach (GSA), and Modified Metropolis Dynamics (MMD). De-
tails about these three algorithms and comparisons with other well-known optimization
algorithms in the literature can be found in [1]. Below we briefly present the basic ideas of
these three algorithms.

Game Strategy Approach (GSA). This algorithm is based on the game theory [30].
We define a game by considering image sites as players, and labels as the strategies of the
players. The set of all possible plays corresponds to the set of all possible configurations of
the labeling. The payoff function of each player depends on the strategy of the player and
also on those of its neighbors. The total payoff of the team takes into account our objective
function f(L). With this game view point, we let the players choose their strategies at
discrete time epochs kK = 0,1,2,---. At any time k > 1, each player has one-step delayed
information on the strategies of its neighbors, and each player chooses independently its new
strategy to maximize its expected payoff. The label updating scheme is randomized with a
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probability a (0 < a < 1), which not only guarantees the convergence of the algorithm but
also makes the final labeling result less dependent on the initialization. It is shown in [30]
that the set of solutions of the game (i.e. Nash equilibria) is identical to the set of local
maxima of our objective function f(L).

Deterministic Pseudo Annealing (DPA). Algorithm DPA is a variation of annealing
which shares some common flavors with Mean-Field Annealing [8, 32|, as well as Graduated
Non-Convexity [3, 21]. The basic idea of DPA is to introduce weighted labelings, which
assign a weighted combination of labels to any site, and then to build a merit function of
all the weighted labels. This function, a polynomial with non-negative coefficients, is an
extension to a compact domain of R of an application defined on the finite (but very
large) set of labelings; its only extrema under suitable constraints correspond to discrete
labelings. The algorithm of DPA consists of changing temporarily the constraints, and thus
the subset on which f is maximized, so as to convexify this function, find its unique global
maximum, and then track down the solution until the original constraints are restored, thus
obtaining a usually good discrete labeling.

Modified Metropolis Dynamics (MMD). The algorithm of MMD is a modified version
of Metropolis Dynamics [18]: the choice of the new label state is made randomly using a
uniform distribution; the rule to accept a new state is deterministic. In other words, the
difference between the original Metropolis Dynamics and MMD is on the value of the variable
& which is used in the rule to accept a new state. In the original method, ¢ is chosen randomly
at each iteration; in MMD, £ is a constant, chosen at the beginning of the algorithm. At
high temperature, the behavior of MMD is similar to the stochastic techniques. When the
temperature goes down, it becomes deterministic.

A.2 Performance Comparison and the Impact of Parameter Esti-
mation Techniques

Here we show the experimental results obtained by applying the above three algorithms to
minimize the energy function (9) for urban area detection. We also provide their performance
comparison with respect to different parameter estimation techniques.

Figure 6-(a) is a portion of the SPOT XS3 image over the region Calais in France. The
scene is quite representative of a complex urban environment. Figure 6-(b), the map image,
is used for automatic estimation of parameters of the first order cliques as described in
Section 3.2.1. When we take an heterogeneous and anisotropic MRF model, i.e., parameters
of the second order cliques are estimated as described in Section 3.2.2, cf. Egs. (10) and
(11), we obtain results shown in Figures 7-(a), (b), (c), issued from the algorithms of GSA,
DPA and MMD, respectively. The white regions represent the detected urban areas, and
the dark regions represent the non-urban areas. We can see that the three algorithms have
quite similar performances. Figures 7-(d), (e), (f) illustrate the detected urban scenes from
these labeling results.
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(a) (b)

Figure 6: (a): A portion of the SPOT XS3 image over the region Calais in France. (b): The
map image obtained from the corresponding geographic map.

For comparison, we also take the homogeneous and isotropic MRF model, i.e., parameters
of the second order cliques are obtained using the Potts model, cf. Eq. (7). The labeling
results are shown in Figures 8-(a), (b), (c). Figures 8-(d), (e), (f) are the corresponding
detected urban scenes from these labeling results.

In order to see clearer the impact of model parameters, we use two synthetic images
(cf. Figure 9) so as to compare between the homogeneous and isotropic model and the
heterogeneous and anisotropic model. These comparison results are illustrated in Figures 10
and 11. Table 1 shows the error rates of the labeling results. The columns “heterogeneous
model” correspond to our estimation method based on small windows. We can see from this
table that the error rates with heterogeneous model are reduced by about a half compared
to the homogeneous model (Potts model).

Image of Figure 9-(a) Image of Figure 9-(b)

Potts model | heterogeneous model || Potts model | heterogeneous model
GSA 5.63 % 3.03 % 9.33 % 591 %
DPA 5.33 % 2.78 % 10.25 % 6.03 %
MMD 5.41 % 2.68 % 9.23 % 5.78 %

Table 1: Error rates of texture labeling by different algorithms (GSA, DPA, MMD) and

different parameter estimations in MRF models.
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(d) GSA (e) DPA (f) MMD

Figure 7: (a), (b), (¢): Labeling results obtained by the algorithms of GSA, DPA and MMD,
with a heterogeneous and anisotropic MRF model. White regions represent urban areas,
Dark regions represent non-urban areas. (d), (e), (f): Detected urban scenes from the above
labeling results.
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(d) GSA (e) DPA (f) MMD

Figure 8: (a), (b), (c): Labeling results obtained by the algorithms of GSA, DPA and MMD,
with a homogeneous and isotropic MRF model. White regions represent urban areas, Dark
regions represent non-urban areas. (d), (e), (f): Detected urban scenes from the above
labeling results.
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Figure 9: Two synthetic texture images
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(a) (b)

Texture labeling by GSA. Model parameters estimated by:
(a) Potts model; (b) our method.

L, D
(c) (d)

Texture labeling by DPA. Model parameters estimated by:
(c) Potts model; (d) our method.

> o Li

() (f)

Texture labeling by MMD. Model parameters estimated by:
(e) Potts model; (f) our method.

Figure 10: Comparison results of texture labeling of the image in Figure 9-(a) INRIA
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Texture labeling by GSA.
Model parameters estimated by:
(a) Potts model;

(b) our method.

Texture labeling by DPA.
Model parameters estimated by:
(c) Potts model;

(d) our method.

Texture labeling by MMD.
Model parameters estimated by:
(e) Potts model;

(f) our method.

Figure 11: Comparison results of texture labeling of the image in Figure 9-(b)
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