N
N

N

HAL

open science

The Steam Boiler Controller Problem in ESTEREL and

its Verification by Means of Symbolic Analysis
Michel Bourdelles

» To cite this version:

Michel Bourdelles. The Steam Boiler Controller Problem in ESTEREL and its Verification by Means
of Symbolic Analysis. RR-3285, INRIA. 1997. inria-00073403

HAL Id: inria-00073403
https://inria.hal.science/inria-00073403
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073403
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The steam boiler controller problem in
ESTEREL and its verification by means of
symbolic analysis

Michel Bourdelles

N° 3285
Octobre 1997

THEME 1

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

The steam boiler controller problem in ESTEREL and its
verification by means of symbolic analysis

Michel Bourdellés

Théme 1 — Réseaux et systémes
Projet Meije

Rapport de recherche n° 3285 — Octobre 1997 — 23 pages

Abstract:

We describe the use of the verification tools XEVE and FC2SYMBMIN on the ESTEREL
encoding of a Steam Boiler controller proposed by J.R. Abial.

XEVE is a verification tool set dedicated to the analysis of synchronous reactive systems
in the form of boolean equations, using the symbolic representation of BDDs for implicit
state representation.

FC2SYMBMIN is a latter addition to this toolset, and allows verification after reduction
and abstraction with respect to bisimulation of explicit finite state machines with a symbolic
treatment (using BDDs again) of input event predicates. This specific representation triggers
new algorithmic issues in the computation of bisimulation classes.

We demonstrate the power of FC2SYMBMIN in terms of reduction of states, but also in
terms of reduction of transitions for which the gain is often dramatic.

Key-words: Synchronous reactive systems, symbolic bisimulation, verification by observer

(Résumé : tsup)

Unité de recherche INRIA Sophia Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA ANTIPOLIS Cedex (France)
Téléphone : 04 93 65 77 77 — international : +33 4 93 65 77 77 — Fax : 04 93 65 77 65 — international : +33 4 93 65 77 65

Description en ESTEREL du contrdleur d’une turbine &
vapeur et sa vérification par analyse symbolique

Résumé :

Nous décrivons l'utilisation des outils XEVE et FC2SYMBMIN sur la description en ESTEREL
du controleur d’une turbine & vapeur proposé par J.R. Abrial.

XEVE est un ensemble d’outils de vérification basé sur ’analyse de systémes réactifs
synchrones & partir d’équations booléennes, utilisant une représentation implicite de ’espace
d’états par des BDDs.

FC2SYMBMIN s’ajoute & cet ensemble d’outils, et permet la vérification aprés réduction
et abstraction suivant une bisimulation & partir de la représentation explicite des machines
d’états finis dans laquelle les prédicats d’événements d’entrée sont traités symboliquement
(en utilisant encore des BDDs). Cette représentation améne a modifier 1’algorithmique de
calcul des classes d’équivalence.

Nous démontrons la puissance de FC2SYMBMIN en terme de réduction du nombre des
états mais aussi et surtout de transitions.

Mots-clé : Systémes réactifs synchrones, bisimulation symbolique, vérification par obser-
vateur

Verification of the Steam Boiler controller 3

Introduction

Synchronous langages such as ESTEREL[4], LUSTRE [5] and SIGNAL [3] are convenient to ex-
press the behavior of system controllers, allowing structured programming including paralle-
lism between subcomponents. They are based on Mealy finite state machine interpretation.
The ESTEREL compiler can generate low level code based on two alternative representations
for the underlying state space.

The first one is an implicit representation which uses registers to store state variables and
boolean equation systems to compute the output and next state function. The second one is
an explicit representation which enumerates the state space of the Mealy machine. On this
explicit representation, called reactive automaton, a transition matches several transitions of
the corresponding classical Mealy machine by allowing as input part of the label a predicate
which represents symbolicaly a set of possible input events (with similar behavioral effects).

Due to parallelism, the reachable state space may grow very large. The ESTEREL verifica-
tion environment provides two approaches to solve the state space explosion, corresponding
to the alternative representations above.

The first one combines the reachable state space (symbolic) computation and verification
by observer; it corresponds closely with the first form of ESTEREL compiled code.

The second one consists of a conjunction of compositional reductions and abstraction by
signal hiding, and is applied to the second representation. We apply the strong bisimulation
on explicit reactive automata (again: Mealy machines with symbolic input predicates). We
have defined a new algorithmic on computation classes to adapt this bisimulation on the
reactive automaton representation.

These verification techniques are implemented in the software tools XEVE and FC2SYMBMIN
devoted respectively to the implicit and explicit finite state machine representation. XEVE
and FC2SYMBMIN belong to the FC2TOOLS verification package [2]. XEVE uses BDDs to re-
present the implicit state space, and also FC2SYMBMIN to represent and operate on input
transition label predicates.

We present an ESTEREL encoding of the celebrated Steam-Boiler problem [1] as a non trivial
running example. In Section 1, we describe the verification techniques. In Section 2, we
introduce the Steam Boiler Specification. In Section 3 we describe the ESTEREL encoding
and in Section 4, we check properties with the help of our tools. We conclude in Section 5
with possible future work.

RR n~ 3285

4 Michel Bourdellés

1 Verification techniques description

1.1 Definition of the implicit state space representation

In this model, a state of the finite state machine is defined as a valuation of boolean state
variables (called also registers or latches). Two vectors of boolean functions compute the
next state variables valuation and the output boolean variables valuation from the current
state variables valuation and an input variables valuation. This model need not be aware of
the reachable state space of the underlying Mealy finite state machine.

1.2 Verification by observer

The basic idea behind “observers” is to use the reactive paradigm itself for verification by
building a composed system from the program and an auxiliary one aimed at checking a
given property.

e

Reactive Program Observer

N

Figure 1: Verification by observer

Fail

Success

Observers are reactive programs set in parallel with the program to be analysed, and
interacting with it. They may emit additional success/failure signals for diagnostics. Ob-
servers may test signals from the program but also simulate the program environment by
feeding signals to the program, guiding it to desired configurations. So the observer para-
digm can be seen as a generalised “symbolic testing” procedures, where all possible tests will
be conducted simultaneously in a reachable state space search.. Several observers can be set
in parallel with the same main module (if they don’t interfere). Input and output signals
from the controller can be made internal to the global program to avoid interference from
the potentially remaining environment.

Observers based verification reduces safety problems to reachability of a configuration in
the product machine, and thus leads itself quite nicely to implicit representation treatment
based on BDD symbolic methods. Some liveness properties can also be verified by detection
of infinite sequence of behaviours, (and thus in a finite state system, loops) during which a
signal is not eventually emitted.

INRIA

Verification of the Steam Boiler controller 5

XEVE: Esterel Vertfication Environment

FILES SIGNALS COMMANDS [~ BEGINNER'S MODE |Info | Help
Biif File: | 265 2BAT
5] p— |
INPUTS OUTPUTS
steam_boiler_waiting faill
physical_level fail2
pump_repared faild
IfoutWire31_3_3 faild
stop fails
physical_units_ready fail6
IFOutWired1_7_10 fail7
ctl_failure_ack Taild
level_failure_ack Taild
ctl_repared faill0
steam faill1
IfoutWire32_10_25 fail12
ctl_pump_opened steam_failure
IfOutWire33_11_27 program_ready
pump_opened SUCCess
IfoutWire41 14 47 ROOT_RETURM_
Ifoutire31_20 97 success1
IfoutWire32_18_72 ROOT_HALTING_
IfOutWire33_19 74 1l
Ifoutwire32 21 101 £ 4
Select Al | unselectan | Select Al | Unselectan |

Figure 2: The XEVE graphical interface

Properties are expressed as modules in a programming operational style, and so, this verifica-
tion technique is homogeneous, opposite to model checking which introduces extra temporal

logic syntax. Programs can also be synthetized from specific temporal logics (based on past
operators).

1.3 Definition of reactive automata

A Mealy machine M is defined from a finite state set Q, an initial state ¢ and two alphabets
3, and T (the input and output alphabets), and computes two partial functions, the next
state function A : Q@ x ¥* — Q, and the output function A : Q@ x ¥* — I'*. For more
information, refer to [6].

Synchronous reactive systems are based on deterministic and complete finite state Mealy
machines interpretation. That is to say , for all (g, (o1, ..,00)) € (Q X £*), it exists only one

(¢, 71, -, Ym) € (Q x T*), such that N (q,01,..,00) = ¢ and X(q,01,-,0n) = (Y1, --»Ym)

In our representation of the Mealy machine, called reactive automaton, a transition may
stand for several transitions from the classical Mealy machine representation.

RR n~° 3285

6 Michel Bourdellés

Definition (Reactive automata)
A reactive automaton is a 5-uple :

(Q7 q0, 27 F7 TTLLTLS)
Where

Q is a finite set of states.

Qo is the initial state.

Y is a finite set of input signal names.

e T is a finite set of output signal names.

Trans is the transition relation, Trans C @ x Pred(X) x Prod(I") x @ with

e Pred(Y) is the set of predicates on elements from the set ¥. For convenience
we shall only deal with propositional boolean formulas represented as sums of
products of positive and negative literals. Negative literals are identified by a
prefix instead the classical bar on top. Symmetrically positive literals are
identified by a ? prefix. For instance figure 3 represents transitions from a Mealy
machine and the respective transition from a corresponding reactive automaton.

e Prod(T) is the set of the subsets of . Prod(T") comprises the empty set noticed
tau (no visible action).

pred

Trans satisfies the following condition: ¢ — /5

false

q' € Trans = pred A\ ,c,,0470 #

A reactive automaton is complete if and only if for all states, the disjonction of input pre-
dicates of on outgoing transitions is equal to True.

A reactive automaton is deterministic if for all pair of transitions leaving the same state
wiyh different output part, the input part of the transitions are disjoint.

Reactive automata generated from ESTEREL encodings are deterministic and complete.

1.4 Reduction

At First, We assume composition of automata reduced and/or with signals hidden stay al-
ways acyclic. This can be garantee in a causality analysis of the corresponding modules set
in parallel, from an intermediate equational format of ESTEREL.

This verification technique takes advantage of the modular structure of ESTEREL encodings.
Tt consists of the reduction of the reactive automaton associated to each ESTEREL parallel

INRIA

Verification of the Steam Boiler controller 7

@)

#0.#11.212
+#0.211.22
+20.4#11.22
+210.211.212/0

22/0

O

Figure 3: transitions from two states of a Mealy machine and from the corresponding reactive
automaton states

submodule with the help of a particular reduction, followed by computation of the synchro-
nous product of minimised automata. We can hide signals not relevant to the property to
check. Afterwards, we can either visualise the resulting automaton with the help of the
AUTOGRAPH tool, or applying further verification techniques or even observation on as des-
cribed previously.

The equivalence relation we shall consider will be the strong bisimulation on Mealy machines.
Due to the symbolic input parts on input signals, the definition becomes a bit more involved
when applied to reactive automata: a transition recovers now a set of possible behaviours,
and the behavioural matching may preserve sets of transitions.

Definition of the symbolic bisimulation relation [9]
Let R = (%,T,Q, g0, T'rans) be a reactive automaton.

The symbolic bisimulation relation ~ is defined on @ x @ like below :
p ~ g if and only if

Vpred € Pred(X) Vprod € Prod(T) Vp' € Q, such as p—>§i2ip’
dg; € Q,...,¢,, € QIpredl € Pred(X), ...,predn € Pred(X), such as q—>§:23iq:i
Avec Vi, p' ~ ¢} et Pred = | predi

and g ~ p

In essence p ~ ¢ if and only if they both produce identical outputs leading to equiva-

lent states under the same input predicates, possibly divided differently along subcases. We
make this formal in the following lemma.

RR n~ 3285

8 Michel Bourdellés

notation
Let UnionIn(p,prod,p’) = |J pred; such thatflpi,p—>z::;jipi and p; ~p'

Lemma
States p and ¢ are bisimilar if and only if,

Vr Vprod € Prod(T), ,UnionIn(p,prod,r) = UnionIn(q, prod,r).

proof

The lemma can be deduced from the definition with the fact that symmetric implication
certifies that, assume p ~ ¢, one product given, all the predicates of transitions from p (resp
q) can be matched with union of predicates of transitions from ¢ (resp p) to states bisimilar.

Informally, two states are considered as equivalent for this bisimulation if they access to
equivalent states in emitting the same output signals for the same combination of input
signals. In the example of Figure 4, states ¢; and g are bisimilar iff ¢, ¢}" and ¢} are
bisimilar, and also ¢} and ¢ .

Important to note, bisimulation now needs to match several transitions to several others,

instead of matching transitions pairwise.

#1.101
21.101

ql

Figure 4: states equivalent for a special bisimulation relation

INRIA

Verification of the Steam Boiler controller 9

Partitioning algorithm

We exploit the lemma’s result to propose an algorithmic adapted from the Kannelakis &
Smolka partition refinement algorithm [7]. Consider blocks B and B’ (we call block a class
of states for an intermediate refinement equivalence) and a set of output signals prod. We
split B by B’ in computing for each state of the class B the union of all the input predicates
from all the transitions emitting prod whose target states belong to the class B’. States with
identical unions stay paired.

B can thus be divided in more than two sub-classes. Note that this coarsest partition re-
finement process does not require a choice among possible matching subsets of transitions,
unlike forward on-the-fly (or local) methods would, leading to combinatorial explosion.

We have implemented the symbolic bisimulation algorithm in a tool called fc2symbmin
In addition, FC2SYMBMIN computes also the product of automata, hiding of signals and the
verification by observer. The product of automata implements the ESTEREL synchronous
parallel operator. The hiding of signals reduces the size of behavior label. To hide input
signals can create non-determinism, and is used to abstract an automata on signals inter-
acting to a property in a verification by observer. Compositional linking is under way. We
shall exam verification on the Steam Boiler in section 4. The UNIX command attached to
the FC2SYMBMIN processor is detailed in Annex 1.

Experimental results

We present results obtained using symbolic bisimulation minimisation with the FC2SYMBMIN
processor on a selection of automata produced from ESTEREL programs together with com-
puting time on an Ultra Sparc, 320 Mbytes memory size.

Table 1 provides figures before reduction, and table 2 the corresponding number after re-
duction. Memory size is in bytes.

RR n~° 3285

10 Michel Bourdellés
controller initial automaton
name # nodes | #transitions | mem. size
Steam Boiler 1298 188515 8982788
One_Pump(v2) | 139 3212 123424
One_ Pump(vl) | 70 2484 102058
Car 162 2968 146979
master 18 86 3795
lift 9 29 1576
submarinel 116 871 35932
submarine2 74 1926 87776
arbiter1?2 14 170 8163

Table 1: Size of few reactive automata

controller reduced automaton
name # nodes | #transitions | mem. size time
Steam Boiler 139 2346 242203 | 536 sec
One_ Pump(v2) | 65 299 10783 3 sec
One_Pump(vl) | 11 46 2706 2 sec
Car 29 143 11113 | 2.5 sec
master 13 35 1882 0.3 sec
lift 9 19 1601 | 0.25 sec
submarinel 116 524 23143 4 sec
submarine2 64 372 21142 3 sec
arbiter12 13 13 6097 | 0.4 sec

Table 2: Results about the minimisation of ESTEREL controller encodings

The reduction in the number of states and even more in the number of the transitions is

spectacular.

2 The case study description

This case study reports the behaviour of a Steam Boiler specification as described in [1].
It is composed of several elements: the steam-boiler, a device to measure the quantity of
water, four pumps, four devices to supervise the pumps and a device to control the quantity

of steam.

Five modes are available : Initial, Normal, Rescue, Degraded and Emergency.

INRIA

Verification of the Steam Boiler controller 11

I steam measureme

Mz

N2
water
disp

Ml

M1

valve

Figure 5: The FZI graphical interface linked with the controller

3 ESTEREL encoding of a Steam Boiler Specification

The ESTEREL modular architechture follows from the specification. It comprises :

1. A main Steamboiler module described below.

2. Modules Normal, Initialization, Rescue and Degraded; each implementing
the corresponding mode.

— Module Initialisation opens and closes pumps and valve until the water
level becomes correct then we access the normal or degraded mode.

— Modules Normal, Degraded, Rescue open or close pumps in response to
the water level.

3. In the module Choice_mode, pump failure, pump controller failur or water
level failure detection changes the mode.

4. The module Level management controls the water level. It tests if the water
level value agrees with the expected value.

5. module Pump manager controls the pumps. It receives signals open/close(n)
pumps from the mode modules and send open/close(m) pumps to the physical
systems. m can be different from n because pumps can already be opened closed.
It detects pump failure and pump controller failure, so as not to use the physical
units until it is repared.

The main module is presented below while others can be found in Annex 2.

RR n~ 3285

12 Michel Bourdellés

Tree HainPanal close

%
Ctl Problem #1131
PUmD #9'==i g
Pump Problem Hi10
; bevel management #3
- Cholce mode #7
Rescue Ho6
TDegraded #5
Hormal #4

Steambollier #

Operation initialization H3

Initialization Bi=_ S 1 i
—Test_Inlitlallzation HIZ

;éEE%;

Figure 6: Modular architecture decomposition (viewed in XES, a simulation tool)

main module

module : Steamboiler

Declaration part

trap emergency_stop in
await immediate steam_boiler_waiting;
run Initialization ;
loop
present normal then
run Normal
else present degraded then
run Degraded
else present rescue then
run Rescue
else
exit emergency_stop
end present
end present
end present;
await tick;
run Choice_mode
end loop

await stop;
exit emergency_stop

INRIA

Verification of the Steam Boiler controller 13

run Level_management;
exit emergency_stop
I
run Pump
end trap %emergency_stop

4 Properties verification

4.1 Properties as Observers

We shall present a set of properties. Each property is introduced as informal specification
in english then realized as an ESTEREL fragment. Properties are of the following kinds:

e Properties which certify coherence of the modes settings (properties 1, 2).

e Properties which certify coherence between failures and modes setting (properties
3,5).

e Property which certifies a correct behaviour of the valve (property 4).

e Property which certifies signals open _pump and close_pump can’t be emitted at the
same time (property 6).

property 1

Verification that if the controller is in normal or degraded or rescue mode, either it is still in one of
these mode or the steam boiler stops in one of the possibility among emergency mode, or transmission
failure or a stop message received

weak abort
await [(normal or degraded or rescue)];
await [not (normal or degraded or rescue)l;
emit faill;
when immediate [stop or emergency or transmission_failure]

property 2
The system may be in one and only one mode

every [(normal and (degraded or rescue))
or (degraded and rescue)] do

emit fail2

end

property 3
The system can’t be in normal mode in case of level failure signal emission

RR n~° 3285

14 Michel Bourdellés

every normal do
present level_failure then emit fail4
end present

end

property 4
The system can’t be in normal, degraded or rescue mode with the valve opened

weak abort
loop
await valve; jouverte
abort
await [normal or degraded or rescuel;
emit fail5b;
when valve Y%fermée
end loop
when [normal or degraded or rescue or emergency]

property 5
In case of level_failure and not (steam_ failure or pump_ failure or ctl_failure) when the system is
in normal mode, the system goes in rescue mode

weak abort
loop
await normal;
await tick;
present [level_failure
and not (steam_failure or pump_failure or ctl_failure)] then
present rescue then emit success else emit failure
end
end
end
when [stop or emergencyl

property 6
messages open_pump and close_pump can’t be send to the physical unit in the same instant

every open_pump do
present close_pump then emit fail8
end

end

4.2 Verification from an implicit representation

These observer programs are put in parallel with the Steam boiler program. Interface signals
connecting them are declared as local. We checked the properties with a 2 pumps model from an
implicit representation.

INRIA

Verification of the Steam Boiler controller 15

4.3 Verification by reduction and hiding

The verification techniques from an explicit representation of the ESTEREL encoding is leading to
build from the global automaton an abstraction on which information about the property is kept.
The abstracted automaton is obtained with application of minimisation on the global reactive auto-
maton and in hiding signals which don’t interfere to the verification of the property. Two methods
can then be applied to check the property. The first one is to apply the verification by observer on
this abstracted automaton. The second one consists to check the property in visualisation of the
abstracted automaton with the AUTOGRAPH tool.

The six properties described in Subsection 4.1 have been verified with a one pump model from
an explicit representation where irrelevant signals were hidden away. For each property we record
in table 4 the size of the abstracted automaton. Memory size is in bytes.

automaton #nodes | #transitions | mem. size
initial automaton 1298 188515 8982788
reduced automaton | 139 2346 242203

Table 3: Recalling: size of the automaton and of its minimisation

Figure 7 shows the automaton obtained from the ESTEREL Steam Boiler encoding, after reduction
and hiding of all signals safe valve, degraded, normal and rescue. Weak bisimulation [2] has
been applied on the automaton of table 4 (property 4), to reduce tau transitions.

A node is in degraded, normal or rescue mode if it is the target of a transition including emission of
signal degraded, normal or rescue. We just kept visible states that can access to states from which
signals degraded, normal or rescue are emitted. tau expresses no action.

We check the signal valve is emitted an even number of times before beeing in normal, rescue
or degraded mode.

Indeed, we can observe that an even number of emission of the valve is necessary to acess to vertice
9o, 91, 92, g3, q4 and q7, and an odd number of emission of the valve is necessary to acess to vertice
gs and ge.

5 Conclusion

The FC2TOOLS XEVE and FC2sYMBMIN dedicated to ESTEREL verification can be succesfully used to
verify properties from the Steam Boiler control system case study [1]. The imperative, structured
and modular architecture of ESTEREL encodings is practical to write the specification. We have
interfaced the program with the XES ESTEREL simulation tool. XEs is helpful in playing action
pathes recorded with XEVE if a special observer output signal has been emitted.

We are working on a syncCharts description of the case study. We extend the analysis techniques
to the study of programs with data (counters, valued inputs and variables), foremost the reachable
state space computation from an implicit representation of the finite state machine.

RR n~° 3285

16

Michel Bourdellés

property Ezxternal signals set abstracted automaton
visible #nodes | #transitions | mem. size
property 1 | normal degraded 20 108 3344

rescue emergency stop
transmission failure

property 2 | normal degra_ded 16 73 2091

rescue emergency

property 3 | normal 29 194 4746

level failure

property 4 | normal degraded 23 122 3413

rescue valve

property 5 | normal rescue 113 1821 35248

level failure
steam failure
pump_failure
ctl failure
stop
emergency

property 6 | open_pump 17 83 2631

close pump

Table 4: Results about the abstraction of ESTEREL encodings

References

(1]
2]

(3]

4]

[5]

[6]
[7]

J-R. Abrial, Steam-boiler control specification problem, August, 10, 1994

Formal Methods for Industrial Applications, LNCS 1165

A. Bouali, A. Ressouche, V. Roy and R. de Simone The FCTOOLS User Manual (Version 1.0)
Technical Report INRIA, n°® 0191, April 1996

See also the FC2TOOLS page at: http://www.inria.fr/meije/verification/

A. Benveniste and P. LeGuernic, Hybrid dynamical systems theory and the SIGNAL lanngage.
IEEE Transactions of Automatic Control, 85(5):535-546, May 1990

G. Berry, G. Gonthier, The ESTEREL Synchronous Programming Langage: De-
sign,Semantics, Implementation. Science of Computer Programming vol. 19, n° 2, pp 87-152,
1992

See also the ESTEREL web page at: http://www.inria.fr/meije/esterel/

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud The synchronous dataflow programming
langage LUSTRE. Proceedings of the IEEE, 79(9):1305-1320, September 1991. Science of Com-
puter Programming vol. 19, n° 2, pp 87-152, 1992

S. Eilenberg, Automata, langages and Machines, volume A, Editors P. A Smith and S. Filen-
berg, Collection Pure and Applied Mathematics, ACADEMIC PRESS, 1974.

P.C. Kanellakis and S.A. Smolka CCS expressions, finite state processes and Three problems
of equivalence, Information and Computation, 86(1) May 1990.

INRIA

Verification of the Steam Boiler controller 17

. tau

tnermal _ 'normal
+!degraded

Figure 7: View from the AUTOGRAPH graphical editor

[8] R. Paige and R.E. Tarjan. Three partition refiniment algorithm, STAM journal of computation,
973-989, 1987.

[9] R. de Simone and A. Ressouche, Compositional Semantics of Esterel and Verification by Com-
positional Reductions, Computer Aided Verification. Lecture Notes In Computer Science 818,
pp 441-454, 1994.

RR n~ 3285

18 Michel Bourdellés

Annex 1: Unix Command Line Description of FC2SYMBMIN

o fc2symbmin

SYNOPSIS: fc2symbmin analyses Mealy FSM under the form of fc2 automata produced from
ESTEREL. typical analysis methods comprises minimisation, observation by ide pro-
grams, product, hiding and equivalence checking,.

The minimisation is relative to bisimulation of reactive automata obtained from syn-
chronous language ESTEREL. In this bisimulation the input event of the transition label
is treated symbolically as a propositional formula (encoded as BDDs). For instance the
two Esterel program fragments present I then emit 0 else emit 0 end present;
halt and emit 0; halt are equated.

Observers are programs set in parallel with the main program which interacts with
it and may emit additional success/failure signals to indicate diagnostics. Observers
may test signals from the main pogram but also send it signals to simmulate partly the
ESTEREL environment.

The product of automata implements the ESTEREL synchronous parallel operator (dis-
regarding causality issues) at the level of fc2 automata.

The hiding of signals reduces size of behavior label. To hide input signals can create
non-determinism.

The equivalence checking computes if two automata can behave not the same with
the same environment. It stops as possibly if this is assumed and produces a counter-
example.

Fc2symbmin accepts as input fc2 files obtained from the intermediate formats oc and
blif by the respective ocfc2 and bliffc2 processors.

USAGE: fc2symbmin options file[.fc2]
Minimisation :
fc2symbmin -[il]ib] -[obln]l filel. fc]
ForMAT OF file.fc2 :
fc2symbmin accepts two alternative fc2 representations.
-[illip]:

— -il Here information on input signals is stored in a logical part of the transition
label. It is obtained with the ocfc2 process with the -logic option from the oc
file deduced from the ESTEREL or LUSTRE encoding.

— -ib: Information on input signals is represented “as classically’ in the behav field
of the transitions.

INRIA

Verification of the Steam Boiler controller 19

REsuLTS :
-[obln]:

— -ob: Information on the input signals is represented in the behav field of the tran-
sitions.

— -n: No automaton is printed.
In all the cases, the size of the reduced automaton is printed.
Product :
fc2symbmin -prod filel.fc2] file2[.fc2]
Returns the automaton product of automata file/.fc2] and file2/.fc2].
Verification by observer :
fc2symbmin -[obs| [[may|must] OutputObsSignamel filel.fc2] obs[.fc2]

-obs assumes the property’s output signals from obs/.fc2], may, must be emitted if obs/.fc2]
interacts with filef.fc2]. The following restrictions are available.

-may OutputlObsSigname
Restricts attention to the property "may emit OutputObsSigname".
-must OJutputlbsSigname

Restricts attention to the property "must emit OutputObsSigname".

Hiding :
fc2symbmin [-0l] -[hide|see] sigNamel ... sigNameN file[.fc2]
-hide s1 ... 8,

Returns the automaton with s; ... s, hidden.
-see 81 ... Sn
Returns the automaton with signals other than s; ... s, hidden.

-ol In the automaton obtained, information concerning input signals is stored in a logical
part of the transition label.

Equivalence checking :
fc2symbmin -eq [-debugl filel.fc2] file2[.fc2]
Checks file[.fc2] and file2[.fc2] behave equivalent.

-debug If file.fc2 and file2.fc2 are not equivalent, returns a path going to a state where the
two automata without equivalent in the other automaton.

DEerauLT : Options by default are -ib -ob

MORE INFORMATION :

RR n~° 3285

20 Michel Bourdellés

Annexe 2: ESTEREL Steam boiler control system encoding

main module

Declaration part

trap emergency_stop in
avait immediate steam_boiler_waiting;
run Initialization ;
loop
present normal then
run Normal
else present degraded then
run Degraded
else present rescue then
run Rescue
else
exit emergency_stop / eq to run Emergency module;
end present
end present
end present;
await tick;
run Choice_mode
end loop

await stop;
exit emergency_stop

run Level_management;
exit emergency_stop
I
run Pump
end trap J%emergency_stop

Choice_mode module

Declaration part

present ok_level then
present pb_pump then
emit degraded
else
emit normal
end present;
else
present pb_pump then

INRIA

Verification of the Steam Boiler controller

emit emergency
else
emit rescue
end present;
end present;

Initialisation module
Declaration part

run Test_initialization

run Operation_initialization

Normal mode module

Declaration part

present level then
if SUP(?level,N2) then
emit close_pump;
emit nb_close_2;
else
if INF(?level,N1) then
emit open_pump;
emit nb_open_2;
end if
end if
end present;

One Pump controler module

Declaration part

loop
% check pump and controller closed until open_pump_command included
weak abort
every immediate [pump_opened] do
emit pump_failure_found;
await immediate [not problem];
emit close_pump_command
end
[
every immediate [ctl_pump_opened] do
emit ctl_failure_found;
await immediate [not problem];
emit open_pump_command

RR n~ 3285

22 Michel Bourdellés

end
when [open_pump_command and not problem];
emit open_pump;

% check pump and controller opened until close_pump_command included
weak abort
every [not pump_opened] do
emit pump_failure_found;
await immediate [not problem];
emit close_pump_command
end
[
await tick;
every [not ctl_pump_opened] do
emit ctl_failure_found;
await immediate [not problem];
emit close_pump_command
end
when [close_pump_command and not problem];
emit close_pump;
await tick;
end loop
I
loop
await immediate pump_failure_found;
%present [not ctl_ok] then
run Pump_Problem / Problem [signal pump_failure / failure,
pump_failure_ack / failure_ack,
pump_repared / repared,
ctl_ok / pb_not_real,
no_pump_pb / no_problem];
% end present;
await tick;
end loop
I
loop
await immediate ctl_failure_found;
%present [not pump_ok] then
run Ctl_Problem / Problem [signal ctl_failure / failure,
ctl_failure_ack / failure_ack,
ctl_repared / repared,
pump_ok / pb_not_real,
no_ctl_pb / no_problem];
% end present;
await tick;
end loop

INRIA

Verification of the Steam Boiler controller

23

I
every immediate [pump_failure_found or ctl_failure_found] do
abort
await tick;
sustain ctl_ok;
when no_ctl_pb
I
abort
await tick;
sustain pump_ok;
when no_pump_pb
end

module Problem :
Declaration part

trap problem in
abort
sustain problem
when no_problem

emit failure;
await failure_ack;
await repared;
emit no_problem;

await pb_not_real;
exit problem

end trap

end module

RR n~ 3285

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

