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Abstract: Many scientific applications require to solve successively linear systems Az = b
with different right-hand sides b and a symmetric positive definite matrix A. The Conjugate
Gradient method applied to the first system generates a Krylov subspace which can be
efficiently recycled thanks to orthogonal projections in subsequent systems. A modified
Conjugate Gradient method is then applied with a specific initial guess and initial descent
direction and a modified descent direction during the iterations. This paper gives new
theoretical results for this method and proposes a new version which seems robust as far as
loss of orthogonality is concerned. Numerical experiments show the efficacy of our method
even for quite different right-hand sides.
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Gradient Conjugué avec sous-espace augmenté

Résumé : Dans beaucoup d’applications scientifiques, il faut résoudre successivement
des systemes linéaires du type Az = b avec différents seconds membres b et une matrice
symétrique définie positive A. Lorsqu’on applique la méthode du Gradient Conjugué au
premier systéme, on génere un sous-espace de Krylov que ’on peut recycler efficacement dans
les systemes suivants grace a des projections orthogonales. On applique alors une méthode de
Gradient Conjugué modifiée, o1 on définit une solution et une direction de descente initiales
spécifiques et o1 on modifie la direction de descente durant les itérations. Ce rapport présente
de nouveaux résultats théoriques pour cette méthode et propose une nouvelle version qui
semble robuste par rapport & la perte d’orthogonalité. Les essais numériques montrent
Pefficacité de notre méthode méme pour des seconds membres tres différents.

Mots-clé :  Gradient Conjugué, sous-espace de Krylov, projection orthogonale
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1 Introduction

In this paper we are concerned with the solution of several symmetric linear systems of the
form
Az® = p(®

where A is a N x N symmetric positive definite matrix. If A is not too large, a direct method
is competitive since it only requires one factorization for several triangular solves. However,
if A is large, an iterative method such as the conjugate gradient (CG) is usually necessary
because of memory constraints. But iterative methods require quite often a preconditioning
to converge fast enough [2, 20]. Classical preconditioners such as Incomplete Cholesky
IC(k) are still memory consuming. Moreover, they do not vectorize or parallelize well on
supercomputers because of short length vectors with indirect addressing. The aim of the
paper is to speed-up the convergence of CG in order to reduce the CPU cost. The method
should keep memory requirements low and vectorize or parallelize easily. The main idea is to
solve the first system by CG and to recycle in the subsequent systems the Krylov subspace
Km(A, so) generated in the first system. Similar ideas have been recently applied to non
symmetric problems using GMRES algorithm [14, 5, 6, 1, 8, 7].

When the different right-hand sides are known a priori, then block-conjugate-gradient
methods are efficient [15]. In [4], block-CG is combined with a seed projection method which
generates a Krylov subspace for the so-called seed system and projects the residuals of other
systems onto this subspace. Similar ideas are developed in [12, 16, 23]. This method is also
extended to varying matrices [3].

A particular case arises when using Generalized-Cross Validation (GCV) to compute a
regularizing parameter for ill-posed problems. This method involves a sequence of linear
systems of the form (A 4+ o(¥I)2(® = b with the same right-hand side. In this case, the
Krylov subspace generated by a Lanczos method is the same for any system and it can
be used very efficiently along with recurrences to compute the quantities required by GCV
[11, 21].

Here we assume that the different right-hand sides b(*) are computed sequentially. This
situation arises for instance when a new right-hand side depends upon previous solutions.
A first idea is to use previous systems to derive an initial guess for the current system. In
[10], the current right-hand side is A-projected onto the subspace spanned by the I pre-
vious approximate solutions, where [ is a user-chosen parameter. When A is symmetric and
possibly indefinite, a similar idea to the seed projection is introduced in [17] and further
analyzed in [19] and [25]. In a first step, this method computes an initial approximation by
using a projection onto the Krylov subspace K, (4, sg). Saad [19] shows that this so-called
restarted Lanczos-Galerkin method is in some sense equivalent to a block-Lanczos method.
In a second step, the modified Lanczos method starts with the same initial approximation
and uses also K,,, (4, sg) in the iterations. More precisely, the classical Lanczos procedure is
modified so that the current Lanczos vector is orthogonal to K., (A, so) and it appears suffi-
cient to orthogonalize it against the last vector in K, (4, s¢). In [18, 9], a similar approach
is applied to the Conjugate Gradient method. A domain decomposition method leads to
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4 J. Erhel and F. Guyomarch

a small interface problem which is solved by CG. The so-called Krylov correction method
also recycles the first Krylov subspace K, (A, so) by computing an initial approximation and
by forcing orthogonality against K,,(A4, se). But here, the current direction is orthogona-
lized against all previous directions to avoid loss of orthogonality due to rounding errors.
Numerical experiments show a significant improvement over the classical CG.

In this paper, we analyze the Krylov correction method from a theoretical point of view
and we give some numerical results. We first design an algorithm where we compute an
initial approximate solution and initial descent direction by projecting onto the first Krylov
subspace K, (4, sg). As in [19] for Lanczos method, we show that this method is in some
sense equivalent to a block-conjugate-gradient algorithm. We then use the framework defined
in [13] to design a new Balanced Projection Method defined by a solution space condition and
a Petrov-Galerkin condition, which we call an Augmented Conjugate Gradient method. The
solution space at step k is here spanned by K,, (A, so) and the previous residuals ro, ry, rg—1-
This algorithm combines the modified Lanczos and the Krylov correction techniques.

We show several new theoretical results for this method. We first prove that this Balanced
Projection Method possesses a four-term recurrence, so that the overhead introduced is very
small. We then introduce a polynomial formalism using polynomials in the two variables
A and P, where P is the matrix of the A-orthogonal projection onto K, (4, s¢)*4. Using
this framework, we show that the solution space is a direct sum of the two Krylov subspaces
Km (A4, so) and Ky (P* AP, ). This allows us to derive an error bound involving the condition
number of the matrix P*AP.

The paper is organized as follows : section 2 defines our new Augmented Conjugate
Gradient method. Section 3 gives a polynomial formalism and proves the main theoretical
results. Section 4 deals with some practical considerations, such as complexity, memory
requirements and numerical stability. Finally, section 5 presents numerical results.

We introduce some notation which will be useful throughout the paper. We note (z,y)
the scalar product between the two vectors z and y of RY ; the transpose of the matrix
B is noted by B*. Span(B) denotes the subspace spanned by the column vectors of B.
R[X] denotes the set of polynomials in one variable ; R;[X] denotes the set of polynomials
in one variable of degree at most j ; R(X,Y") denotes the set of polynomials in two non
commutative variables.

2 Augmented Conjugate Gradient

Let A a symmetric definite positive matrix of RY-" and let
Ay = (1)
Az =b (2)

two successive linear systems to solve.
We assume that a classical Conjugate Gradient algorithm (CG) is used to solve the first
system (1). Below is the algorithm to set the notation :

INRIA



Augmented CG 5

ALGORITHM 1: CG1

* iterative solution of Ay = c¢;

* Initialisation ;

choose yo ;

so=c— Ayo;

Wo = So 5

* Tteration ;

for j =0,1,... until convergence do
Vi = (85,85)/ (wj, Aw;) 5
Yi+1 =Yj +7w;;
Sj+1 = 85 — v Aw;;
0j+1 = (841, 8541)/(85,85) 5
wjt1 = 8j41 + 0j1aw;5;

endo

Let m be the number of iterations and
S =1(80,81,--->8m), W = (wo,w1,-..,Wn)
the set of residuals and descent directions generated. Recall that
S*S=A, W'AW = D, span(S) = span(W) = K,,(4, s9), (3)

where A and D are diagonal matrices and K, (A4, so) is the Krylov subspace of dimension
m + 1 generated by the initial residual sq.
We now want to use this information to speed-up the solution of the second system (2).

2.1 Initial guess

A first idea, introduced in [17, 19, 25] for Lanczos method, is to choose an initial guess zg
such that the initial residual rg = b — Az is orthogonal to the Krylov subspace K, (A, so)
and an initial descent direction py conjugate to the descent directions W. We thus want to
enforce the orthogonality conditions

W¥re = 0,W*Apg = 0. (4)
Let z_; be an initial approximate solution and r_; = b— Az_;. To guarantee (4), we choose
o =2_1 + WD_IW*T‘_l, ro =b— Axg, po = (I - WD_I(AW)*)T(). (5)

We then use the Conjugate Gradient algorithm as usual. However, the initial choice of
Po is not usual, so that the algorithm, which we call InitCG, is no longer, strictly speaking, a
Conjugate Gradient method. It is in fact a non-polynomial projection method, as defined in
[13]. However, we now prove that this algorithm is equivalent to a Block Conjugate Gradient
method, following the proof of [19] for Lanczos method.

RR n3278



6 J. Erhel and F. Guyomarch

Theorem 2.1 Let n the number of iterations in the second resolution. For n < m/2, the
Conjugate Gradient algorithm applied to the linear system Ax = b, started with the initial
guess ro and initial direction py given by (5), is mathematically equivalent to the block-
conjugate gradient algorithm with block size of 2 started with the block (so,T¢)-

Proof. We first prove that W*ro =0 and W*Apy = 0.

Let P = I-WD~(AW)* be the matrix of the A-orthogonal projection onto K, (4, so)14 ;
P* =1 — (AW)D71W* is the A~!-orthogonal projection onto K, (4, so)*.

From the definitions (5), we get readily r¢ = P*r_; and pyp = Prg so that the result
follows.

Let S; = (s0,81,---,8;) and R; = (ro,71,...,7:). We will show that Span(S;) is
orthogonal to Span(R;) Vi,j such that ¢ + j < m. The proof of the theorem immediately
follows.

Let s and 7 be two vectors of Span(S;) and Span(R;) respectively. Thanks to (3), there
exist a polynomial @ € R;[X] and a polynomial P € R;[X] such that s = Q(A)se and
r = P(A)rg. Therefore

(5,7) = (Q(A)so, P(A)ro)

and we only have to prove the orthogonality for monomials such as A’sy and Airg. This
property comes from the choise of the initial residual r¢; indeed, since A is symmetric,

(AJSO ) Ai,’,,o) = (Aj+i80 ) TO)'

Now, since i +j < m, Aitisy € K, (A, s0) = Span(W) and we proved that W*reg = 0 so we
conclude that ' .
(AJSO 5 Alro) = 0

and consequently (s,r) = 0. O

Therefore, for the first m/2 iterations, we get an accelerated scheme compared to a
classical CG method.

2.2 Augmented CG

Another way to improve the resolution is to keep the orthogonality condition throughout
the iterations. This method was developed for Lanczos method in first [17] and then [19].
It was also defined for Conjugate Gradient in [18, 9].

The idea here is to split the search for the minimum in two sub-spaces: The Krylov
subspace K., (A, sq) already computed and another subspace which replaces the Krylov
subspace we should have computed to solve the second system. A condition to satisfy is
that both spaces are A-conjugate; this requirement guides our choice for the second subspace:
at each iteration, we force the new descent direction to be A-conjugate with KCpp, (4, so). This
orthogonality condition will appear to be satisfied by a recurrence relation, as in [19] and
contrary to [18, 9], where the context required a full conjugaison with W.

INRIA



Augmented CG 7

We denote by xj the current approximate solution, by ry the current residual r; =
b— Axy, by er = x — x, the current error where x is the exact solution and by py, the current
descent direction.

We thus start with zq, 70, po as defined by (5). The method is still a projection method
onto a subspace which is no longer a Krylov subspace. This subspace, called the solution
space, is defined by

K.k (A, 80,70) = span(8o, 815« ,Sm,T05 15+« Tk)- (6)
Our projection method is then defined by the solution space condition
Trt1 — 2k € Kk (4, 50,70) (7)
and by the Petrov-Galerkin condition
(rp41,2) =0 Vz € Ky (A4, s0,70). (8)

The algorithm, which we call "Augmented Conjugate Gradient (AugCG)", defined by
(6) (7) and (8), is a Balanced Projection Method (BPM) based on the matrix B = A as
defined in [13]. Since A is HPD we therefore have immediately the following result.

Theorem 2.2 Let A be a symmetric positive definite matriz. The algorithm AugCG applied
to the linear system Ax = b will not break down at any step. The approximate solution xy
is the unique minimizer of the error |lex||a over the solution space K, (A, so,70) and there
ezists € > 0 independent of eg such that for all k

leella < (1 —¢) [lex—1lla-
Proof. see theorems 2.4, 2.6 and 2.7 in [13]. O

We will now prove that AugCG can be implemented with a four-term recurrence. The
solution space condition (7) is satisfied as usual in the Conjugate Gradient. The Petrov-
Galerkin condition (8) is satisfied simply with two orthogonality conditions : the current
descent direction pry1 must be orthogonal to the last descent direction p and to the last
vector w,, respectively. This recurrence means that the complexity of the inner loop is
similar to the classical Conjugate Gradient. Our new method adds merely one dot-product
and one vector update at each iteration.

We have the following Augmented CG algorithm :

ALGORITHM 2: AugCG

* iterative solution of Az =b;
* Initialisation ;

choose z_1 ;

r_1 = b— AiL'_l ;

o =2_1+WD'W*r_y;

RR n3278



8 J. Erhel and F. Guyomarch

ro =b— Axg;
po = (I —WD™L(AW)*)rg ;
* Tteration ;
for £k =0,1,... until convergence do
ar, = (rk,7k)/ (P, Apr) ;
Tp+1 = T + QkPr 5
Thy1 =Tk — 0 Apy ;
Br+1 = (Tr41,Tk+1)/ (Ths 1) 5
Pt = (Th1, Awm) [ (Wi, Awn,) 5
Pk+1 = Tkt1 + Brt1Pk — k1 W 5
endo

As shown in Algorithm 2, we introduce a new scalar pgy1 and a new update for the
descent direction pg41. Of course, zo and ro must satisfy (5), a condition which is guaranteed
by the inintialisation step.

We now prove that this algorithm is equivalent with the method defined by (7) and (8).

Theorem 2.3 Algorithm 2 is equivalent to the Balanced Projection Method AugCG defined
by (7) and (8). More precisely,

(2,7%41) =0 and (2,Apry1) =0, Vz € Kn (4, s0,70).

Proof. Algorithm 2 readily satisfies the solution space condition (7). As in the classical
Conjugate Gradient, it is easy to prove by induction that (z,7x41) = 0 and (z, Apgy1) =
0, Vze€ Span(rg,...,r). So it is sufficient to prove the following assertions :

W*rgs1 =0, W*Apgq1 = 0. 9)

We prove this by induction. For k& = 0, we already proved in theorem 2.1 that W*rqg = 0
and W*Ape = 0.
Now we assume the assertion (9) true for k; So

W*’I“k_;,_l = W*rk — akW*Apk =0.
Now we prove that Pryy1 = Tg+1 — fr+1Wm. We have
Jj=m-—1

) (41, Awy)

(wj ’ ij)

Prig1 = rpg1 — Pe1Wm — wj.

=1

Now, for j < m — 1, Aw; € span(wo,...,wjt1) C Span(W) so that (ri41,Aw;) = 0,
because W*rgy1 = 0. Consequently, Prr41 = Tk4+1 — Mk+1Wm and

W*Apry1r = W*APrp 1 + Bpa W Ap = 0.

This completes the proof. |

INRIA



Augmented CG 9

3 Polynomial Formalism

We will now describe a polynomial version of the Augmented CG algorithm, which enables
us to derive properties of the solution space K,,, more easily. We use again the matrix
P =1—-WD71(AW)* of the A-orthogonal projection onto Kn,(4,s0)*# and the matrix
P* =1 (AW)D~'W* of the A~1-orthogonal projection onto Ky, (4, s0)~. We will express
r, and pg with polynomials in two variables A and P. More precisely, we have the following
result.

Theorem 3.1 For k > 0, r, = ¢x(A,P)rq and pr = ¥r(A, P)ro with ¢ and ¢y €
R(X,Y). Furthermore ¢po =1, 1o =Y and we have the following recurrence relations :

.

Yey1 = Yortr + Brt1¢n.
Proof. The values of ¢ and vy come directly from (5). The recurrences are readily
available from algorithm 2 ; it is easy to see that ¢r41 = ¢r — ar X ; recalling that
Priy1 = rg41 — prr1wm we get

Yrt1 = Y Prt1 + Brt1x.

O
We define a symetric bilinear form on R(X,Y) x R(X,Y") with :
(¢|’l/)) = (¢(A: P)TO:¢(A7 P)TO) .
The coefficients o and B can be expressed by means of this bilinear form :
(T k) (Pk|dk)
ap = = ; 10
BT ok Apr) (kI X) (10)
Thy1,T
By = (Tht1,Thy1) (¢k+1|¢k+1)‘ (11)

(resri) (Brlow)

So we can rewrite the algorithm in a polynomial form :

ALGORITHM 3: AugCG polynomial version

* resolution of Az = b;

* Initialisation ;

$o =1;

o =Y;

* Tterations ;

for £k =0,1,... until convergence do
o = (Pr|dr)/(r| X1br) ;
Sry1 = dr — ap XYp;
Brt1 = (Prt1|Br+1)/ (Pr|dk) 5
Yet1 = Y drt1 + Brt1¥r-

endo

RR n3278



10 J. Erhel and F. Guyomarch

We can now simplify the polynomial expression by introducing polynomials in only one
variable XY. Indeed, we have the following result.

Theorem 3.2 For k > 0, there ezxists P, € R[X] and Q) € R[X] such that
oe(X,Y) = P(XY) and Yp(X,Y) =Y Qr(XY). (12)

More precisely, ¢y is given by

Pr1 = Pr — Z::il (Hf:k_j /Bl) XY pp—j-1.

Proof. We will prove the theorem by induction :
For k =0, since ¢9 = 1 and ¢y =Y, it is true.
Assuming it is true at step k, then

Orr1 = P — o Xy
= Pk(XY) — OékXYQk(XY)
= P (XY).

Vet1 = Yopyr + Brr1v¥r
= YP1(XY) + B Y Qr(XY)
= Y (Pey1(XY) + Br1 Qi (XY))
= YQui1(XY).

Now we prove the recurrence formula for ¢y, :

Ory1 = Ok — ar XY + Brthr—1)
Ok — o (XY ¢ + B X (Y Pr—1 + Br—19¥r—2))
= ¢r —ar(XY¢r + B XY pp_1 + Brfr—1XVr_2)

= d)k.—ak(XYd)k +ﬂkXY¢k_1 =+ +ﬂk ﬂlXY¢0)
O

This simple polynomial formulation leads to a new definition of the solution space
K,k (4, s0,70) as a direct sum of two Krylov spaces.

Theorem 3.3 For k > 0,Span(ro, ... ,rr) = Kx(P*AP,ro) and

La
ICm’k(A,So,To) = ’Cm(A;SO) D ’Ck(P*AP, To).

Proof. From theorem 3.2, it is easy to see that the polynomial P} is of degree k, so that
polynomials (P;),_,_, are independent and build a basis of Ry [X]. Therefore

Span(ro, ... ,rr) = Kr(AP,19).
Now, it is easy to show that P*AP = AP so that by induction (P*AP)irq = (AP)'ry and
Span(ro, ... 1) = Kp(P*AP,19).

The characterization of Xy, 5, follows immediately. O

INRIA
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We can now use classical results of conjugate gradient theory : our algorithm AugCG
computes the minimum over K, ; which is lower than the minimum over Ky (P*AP,ro).

Corollary 3.1 Let k1 be the condition number of P*AP ; the error at iteration k in algo-

rithm AugCG satisfies
k
K1 — 1)
e <2|le Y=
lexla < 2leola (Y

This result means that the asymptotic rate of convergence of AugCG is better than for
the classical CG because the condition number x; of P*AP is smaller than the condition
number kg of A.

4 Practical considerations

We first consider operations count. The initial guess is the most time-consuming overhead.
Both computations of o and po are BLAS2 type operations (projection onto a subspace
of size m). On the other hand, each iteration adds merely one dot-product and one vector
update (BLAS1 type operations) which are very cheap. We emphasize that AugCG does
not induce new matrix-vector products. Hence the global overhead introduced should be
easily balanced by the reduction in the number of iterations. Moreover, all operations are
of type BLAS2 or BLAS1 so that they easily vectorize or parallelize.

Let us examine now the memory requirements. Here too, the initial guess computation
is the most expensive. It requires to store the m vectors W and the other m vectors AW to
avoid re-calculation which would be too expensive. On the contrary, the iterations need no
more than two extra-vectors (w,, and Aw,,). Hence it seems reasonable to use secondary
storage for W and AW if the main memory is not large enough.

If we do not rely on secondary storage, the question of the choice of m and sq arises.
This will be analyzed in numerical experiments.

Now, we must also analyze the effect of rounding errors. Quite often in Lanczos-type
methods, rounding errors lead to a loss of orthogonality which implies poor convergence or
divergence. This situation is analyzed for modified Lanczos method in [17] and [25]. In
Augmented CG, we enforce the initial orthogonality conditions (4) and two orthogonality
conditions during the iterations. As far as (4) is concerned we follow the scheme proposed in
[25] for the initial residual 7o which merely implements a Modified-Gram-Schmidt process.
We extend this scheme to the initial descent direction pg. This ensures numerical stability
for both 7y and pg. Details are given in algorithm 4 below. During iterations, the new
descent direction pg41 is enforced to be A-orthogonal to the last vector in the previous
system w,, and to the previous descent direction p,. Here too, we apply a Modified Gram-
Schmidt process, by first A-orthogonalizing against w,, then A-orthogonalizing against py.
We finally get the practical implementation described in algorithm 4 below.

ALGORITHM 4: Stable-AugCG
* jterative solution of Az = b;

RR n3278



12 J. Erhel and F. Guyomarch

* vectors w; and Aw; stored in secondary storage j =1,... ,m —1;
* yectors wy, and Aw,, stored in main memory ;

* quantities (w;, Aw;) stored in a vector of lenght m ;

* Initialisation ;

choose z_1 ;
To=2T-1;
rog = b — A.Z'o ;

for j =1tomdo
zo = o + (ro, w;)/(w;, Aw;)w; ;
ro =10 — (1o, w;)/(w;, Aw;) Aw; ;
endfor ;
20 =To;
for j =1tomdo
2o = 20 — (20, Awj) /(w;, Awj)w; ;
endfor ;
Po = 20 ;
* Tteration ;
for £ =0,1,... until convergence do
ag = (rk, 2k) [/ (Pr: Apk) 5
Tp+1 = Tk + QgPr 5
Thy1 = Tk — 0 Apy ;
He+1 = ('rk—}—laAwm)/('wmaAwm) 5
241 = Tk+1 — Hk4+1Wm ;5
Br+1 = (Tk+1, 2k+1) [ (Th, 28) 5
Pk+1 = 2k+1 + Br1Prk 5
endfor

This algorithm is mathematically equivalent to the previous formulation (algorithm 2)
so that all theoretical results still apply. But this implementation appears to be numerically
stable, contrary to the previous one, as numerical experiments show.

5 Numerical Experiments

We report here results on a few test problems We present some numerical experiments which
study the efficiency of our InitCG and AugCG methods. We report here results on a few
test problems but we could draw the same conclusions from many other experiments. We
implemented the method in Matlab, so we give only convergence results, since CPU times
would not give realistic comparisons. We solve a first system Ay = ¢ then a second system
Az = b for different matrices A and right-hand sides ¢ and b.

Since we study only the convergence behaviour, we select diagonal matrices for which
we can easily choose the eigenvalues. This is quite usual as noted in [25, 24]. We also run
experiments with the matrix of the Laplacian discretized by a five-point finite difference

INRIA



Augmented CG 13

N=500;a=diag([0.1:0.5:2],[5:500]);c=random;b = 0.01*c

10 T T T
107k E
IS
S
o
g InitCG-1
10 .
InitCG
107° L L L L L

0 5 10 15 20 25 30
iterations

Figure 1: Results for example 1.

scheme over a square grid, because this matrix is very often used. For the right-hand side ¢,
we choose a random vector. For the right-hand side b, we choose either a vector close to ¢ by
defining b = ¢ + u where  is a random vector with ||u||s small or b = ac or a vector quite
different (a random vector). The guess z_; is taken as y.,, the solution obtained after m
iterations in the first system. For these various systems, we also study the effect of the size
m, that is to say the number of vectors (wqg, w1, - - . ,w.,) we keep from the first system. The
different examples we report here are described in Table 1. D(random) means a diagonal
matrix with random entries whereas D([0.1 : 0.5 : 1.6], [5 : 500]) means a diagonal matrix
with entries 0.1,0.6,1.1,1.6,5,6,7,...,500.

We implemented five different versions of InitCG and AugCG in order to study numerical
stability. They are described in Table 2 which includes also classical CG for comparison.
Unstable P*r_; and Pry refers to the straightforward implementation for computing the
initial residual ro and the initial descent direction py as written in algorithm 2. On the
contrary, stable P*r_; and Prg refers to the implementation given in algorithm 4. Similarly,
first Prigy1 + Br+1pr and modified Priy1 + Br+1pr refer respectively to the implementation
of iterative correction in algorithms 2 and 4. Finally, total Prg41 + Br+1pr means an
implementation using not only wy, but also all the vectors w; as used in [9] for example.
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Figure 2: Results for example 2.
Table 1: Description of examples tested
example N matrix A vector ¢ vector b m
1| 500 | D([0.1:0.5:1.6],[5:500]) | random 0.01 x ¢ 40
2 | 5000 D(random) random | b=c+u,||ullo=1.e—6 50
3 | 5000 D(random) random random 50
4| 900 Laplacian random random 80
5 | 5000 D(random) random | b=c+u,||ullec = 1l.e — 6 | variable

All figures plot the norms of the residuals versus the number of iterations (which is here
equal to the number of matrix-vector products).

We first study the numerical stability of the initial vectors computation. Figure 1 com-
pares the convergence of InitCG-1 and InitCG for example 1. Here the gain due to the initial
guess is very high because b and ¢ are very close. As can be seen from Figure 1, there is a
slight difference in the initialisation between InitCG and InitCG-1, which increases because
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Figure 3: Results for example 3.
Table 2: Different InitCG and AugCG versions
version initial residual iterative correction
CG r_q none
InitCG-1 unstable P*r_; and Pry none
InitCG stable P*r_; and Prg none
AugCG-1 stable P*r_; and Prg first Pri41 + Br410k
AugCG stable P*r_; and Prg modified Prr4+1 + Bk+1Pk
AugCG-total stable P*r_; and Prg total Priy1 + Br+1Dk

of numerical instability in InitCG-1, as expected from section 4. Hence InitCG will be the
reference for further comparisons.

We then study the numerical stability of the iterative correction. In all our experiments,
we do not observe any difference between AugCG-1,AugCG and AugCG-all. Therefore we
conclude that the three schemes are quite robust in many cases and we keep AugCG as our
final algorithm.
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A=laplacian(900);b and ¢ random;m=80
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Figure 4: Results for example 4.

Now we compare InitCG with CG. The main difference comes from the initial choice.
As long as k < m/2, there is some benefit in InitCG which is then similar to the block-
CG(sg,70) algorithm, as proved in Theorem 2.1. So InitCG is efficient when the second
right-hand side b is close enough to the first one ¢. This is cleary illustrated on Figure 2
which compares InitCG, AugCG and CG for example 2.

Figures 3 and 4 show the convergence curves for examples 3 and 4. The behavior of
AugCG and InitCG are similar during the first iterations, say about for k¥ < m/2. However,
the asymptotic behavior of InitCG and CG are quite similar. On the other hand, the
asymptotic behavior of AugCG is much better, as expected from Corollary 3.1. When the
right-hand sides b and ¢ are not close, AugCG provides an impressive acceleration compared
to InitCG and CG.

We finally study the impact of the Krylov subspace size m on the efficiency of AugCG.
Clearly, m must be large enough in order to capture the smallest eigenvalues of A which
mostly affect the convergence of CG [24, 22]. Nevertheless, memory constraints limit the size
m: indeed, the initial guess computation requires the storage of m full vectors of length N. If
secondary storage is used, the gain in iterations must balance the overhead due to I/0. Also
the CPU cost increases with m for the initial guess computation. Moreover, the size m+ k of
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Figure 5: Results for example 5.

the solution space Ky,  must stay smaller than N. Otherwise, loss of orthogonality occurs
since (Wi, D0,DP1,--- ,Dk) is no longer a basis and the method fails. Figure 5 shows the
influence of m for example 5. As expected, the number of iterations decreases significantly
when m increases. But the optimal choice of m yielding a minimal CPU time is still an open
question.
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6 Conclusion

This papers considers the problem of solving Az = b once another system Ay = ¢ has already
been solved, where A is symmetric positive definite. The Conjugate Gradient applied to
Ay = c generates a Krylov subspace K, (A4, sg) which is used in the second system. The
method InitCG computes an initial guess zg, residual ry and an initial descent direction
po using a stable formulation of the A-orthogonal projections P and P* onto respectively
Km(A, s9)*4 and K,,(4,s0)*. The method AugCG not only starts with zo and py but
also modifies the descent direction pyy1 using a cheap and stable formulation. This paper
shows that during the first m/2 iterations, InitCG is equivalent to a block-CG method
started with the 2-block (sg,70)- It also shows that convergence of AugCG is governed by
the condition number of P*AP, so that AugCG converges asymptotically faster than CG.
Numerical experiments demonstrate the efficiency of the method. In particular, we did not
observe relevant loss of orthogonality for our stable variant.

Though this method is described here for only two systems, it can be easily extended to
more, by involving all previous Krylov subspaces in the current system. However, the main
drawback of this approach is the rapidly increasing memory requirement. But secondary
storage is here possible for large systems because it would be used only in the initialisation
part of AugCG. We are planning further experiments on large and realistic scientific problems
in order to measure performances.
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