On the Analysis of Linear Probing Hashing

Abstract : This paper presents moment analyses and characterizations of limit distributions for the construction cost of hash table under the linear probing strategy. Two models are considered, that of full tables and that of sparse tables with a filling ratio strictly smaller than~1. For full tables, the construction cost has expectation $O(n^3/2)$, the standard deviation is of the same order, and a limit law of the Airy type holds. (The Airy distribution is a semi-classical distribution that is defined in terms of the usual Airy functions or equivalently in terms of Bessel functions of indices $-\frac{1}{3},\frac{2}{3}$.) For sparse tables, the construction cost has expectation $O(n)$, standard deviation $O(\sqrt{n})$, and a limit law of the Gaussian type. Combinatorial relations with other problems leading to Airy phenomena (like graph connectivity, tree inversions, tree path length, or area under excursions) are also briefly discussed.
Type de document :
[Research Report] RR-3265, INRIA. 1997
Liste complète des métadonnées

Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:46:40
Dernière modification le : jeudi 30 novembre 2017 - 01:20:16
Document(s) archivé(s) le : jeudi 24 mars 2011 - 12:43:06



  • HAL Id : inria-00073424, version 1



Philippe Flajolet, Patricio Poblete, Alfredo Viola. On the Analysis of Linear Probing Hashing. [Research Report] RR-3265, INRIA. 1997. 〈inria-00073424〉



Consultations de la notice


Téléchargements de fichiers