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Abstract: Many distributed database applications need to replicate data to improve data
availability and query response time. The two-phase-commit protocol guarantees mutual
consistency of replicated data but does not provide good performance. Lazy replication
has been used as an alternative solution. In this case, mutual consistency is relaxed and
the concept of freshness is used to measure the deviation between replica copies. In this
paper we present a framework for lazy replication and focus on a special replication scheme
called lazy master. In this scheme the common update propagation strategy used is deferred
update propagation and works as follows: changes on a primary copy are first commited at
the master node, afterwards the secondary copy is updated in a separate transaction at the
slave node. We propose strategies based on what we call immediate update propagation.
With immediate update propagation, updates to a primary copy are propagated towards a
secondary copy as soon as they occur at the master node without waiting for the commit-
ment of the update transaction. We study the behavior of these strategies and show that
immediate update propagation may improve freshness with respect to the deferred approach.
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Stratégies de Propagation de Mise a Jour pour
Améliorer la Fraicheur des Données dans un Schéma de
Réplication Asynchrone

Résumé : Les systémes de gestion de bases de données distribuées ont besoin de répliquer
leur données pour améliorer la disponibilité des données et les temps de réponse des requétes.
Le protocole de validation en 2 étapes garantit la cohérence mutuelle des données mais ne
fournit pas de bonnes performances. Une alternative & ce protocole est l'utilisation de
techniques de réplication asynchrone. Dans ce cas, la cohérence mutuelle n’est plus garantie
et le concept de fraicheur sert & mesurer les différences existantes entre les réplicats de
données. Nous présentons un nouveau cadre pour la réplication asynchrone et nous nous
concentrons sur un schéma de réplication appelé asynchrone-maitre. Dans ce schéma, la
stratégie de propagation des mises a jour utilisée, appelée propagation des mise a jour
retardée, fonctionne de la maniére suivante: une transaction de mise a jour d’une copie
primaire est d’abord validée sur le noeud maitre puis la copie secondaire est mise a jour dans
une transaction séparée. Nous introduisons de nouvelles stratégies basées sur un principe de
mise a jour immédiate. Avec la propagation des mises a jour immédiates, les mises & jour
sur une copie primaire sont propagées vers une copie secondaire dés qu’elles sont détectées
sur le noeud maitre sans attendre la validation de la transaction de mise a jour. Nous
étudions les performances de ces stratégies et nous montrons que la propagation immédiate
peut améliorer la fraicheur des réplicats par rapport aux stratégies retardées.

Mots-clé : Bases de données distribuées, Réplication Asynchrone, Propagation de mise a
jour
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1 Introduction

Data is replicated in database applications to improve query performance and data avai-
lability. In a replication scheme, data is replicated through a set of replica copies that
are placed on distinct nodes of an interconnected system. The problem is then managing
updates over replica copies. With two-phase-commit protocol (2PC, each time an update
transaction updates its replica copy all other replica copies are also updated inside the same
atomic transaction, which guarantees that the replica copies are mutually consistent. Ho-
wever, this solution is limited because replica processing is blocked in the case of network or
node failure [PHN87]. In addition performance degrades as the number of nodes increases.
An alternative solution relaxes the mutual consistency requirement by using lazy replication
[Lad90], [Gol95]. In this case, each time an update transaction updates its replica copy it
is committed locally and afterwards all other replica copies are updated in separate refresh
transactions. Since mutual consistency is relaxed, the concept of freshness is used to measure
the degree of deviation between replica copies [GN95].

The framework we define for a lazy replication scheme is characterized by four basic
parameters: owenership, update granularity, refreshment and configuration. The ownership
parameter [GHOS96] defines the permissions for updating replica copies. If a replica copy
is updatable it is called a primary copy otherwise it is called a secondary copy. The up-
date granularity parameter defines when the updates are to be propagated towards replica
copies. Update granularity is said to be deferred when update propagation is done after
the commitment of an update transaction. In addition, it is said to be immediate when
update propagation is perfromed after each update on the replica copy. The refreshment
parameter defines how refresh transactions are managed. Therefore, this parameter is also
related to concurrency control protocols. Each combination of an update granularity para-
meter and refreshment parameter results in a specific strategy. The configuration parameter
is concerned with nodes and network characteristics.

Our work is situated on the lazy master replication scheme that is a specific lazy re-
plication scheme. Lazy master is used in several replication environments [Dav94]. This
scheme fixes the ownership parameter. There is a master node that stores a primary copy
and a set of slave nodes that stores secondary copies [GHOS96] of the same data. Our
goal is to improve freshness. Therefore, we propose two new strategies that uses what we
call immediate update granularity called immediate-immediate and immediate-wait. The
difference among the two strategies relies on when refreshment transactions are triggered.
With immediate-immediate the refresh transaction is triggered for execution when the first
update is received. In contrast, with immediate-wait the refresh transaction is triggered
at commit reception. To understand the behavior of the proposed strategies we perform
some experiments and analyze the freshness and query response time results. Furthermore,
we compare our strategies to the results obtained by using the deferred update granularity,
implemented in commercial systems like Sybase. We use as freshness measures the number
of missed versions. This measure borrows the principle of versions found in multiversions
protocols but with respect to a primary copy.

RR n"3233



4 E. Pacitti, E. Simon

In this paper we show that immediate update granularity may improve freshness. For
some workloads the improvement is quite significant. However, an increase of queries res-
ponse times is perceived. We show that by using a multiversion protocol queries response
time may be drastically reduced with out a significant loose of freshness.

The remainder of this paper is structured as follows. In Section 2 we present some basic
definitions. In Section 3, we present our strategies. In Section 4 we present the freshness
measure we use. In addition, we present our performance evaluation and the simulation
model with results that shows the trade-offs among the strategies. Section 5 relates our
work to other works, section 6 points out future work on the topic. Finally, we conclude in
Section 7.

2 Preliminaries

A transaction T consists of a sequence of operations that manipulates a set of database
objects. Transactions terminate either successfully by a commit operation or unsuccessfully
by an abort operation in which the ACID (Atomicity, Consistency, Integrity and Durability)
properties are assured [PHN87]. Read and write operations executed by 7T; are noted generi-
cally by r; or w;, respectively. Let T'= {T1,T5,...T,,} be a set of transactions. An history is
a partial order of the set of operations executed by transactions in 7. An history is serial if
for every two transactions 7; and Tj, either all operations of T; precede all operations in 7},
or vice-versa. When a transaction contains only read operations it is called query. When it
contains write operations (update, insert, delete) it is called update transaction. The density
of an update transaction 7; corresponds to the average interval of time (noted by €) between
write operations inside an update transaction. Therefore, the time spent to execute T; is
(w1, €, wa, €, ...wp, €, commit). If, on average, ¢ > ¢, where ¢ is system parameter, 7; is said
to be sparse. Otherwise, T; is said to be dense.

We assume that the relational model is the common data model used in all nodes and that
a replica object is a relation. We use R to denote a primary copy and r denotes a secondary
copy of R. Tuples are identified by their primaries keys. Write operations performed by
user transactions are logged in a local history log (denoted H) on a stable storage using a
Write Ahead Log Protocol [GR92]. This protocol ensures that user transactions operations
that are logged and then committed, are subsequently correctly reflected in the database.
We assume that each log record has the following structure:

<timestamp, primary_id,tuple_id, item_id, new_value, operation>

Messages are exchanged among the nodes of the replicated system through a reliable
communication network that check for errors, loss and duplication of messages. Furthermore,
messages are received in the same order of sending (order preserving) and fault tolerance is
provided by the use of persistent queues.

INRIA



Ot

New Update Propagation Strategies...

Slave

H A A

Master 1 Master 2| - Master n

Figure 1: Lazy Master Reception Approach

We focus on the lazy master replication scheme. To simplify the description of our
strategies and experiments, we consider a one master-one slave framework. Each update
transaction 7; that updates R has a corresponding refresh transaction, RTj, that refreshes
r. Each refresh transaction RT; is composed by the sequence of write operations performed
by T; to update R. The process of transmitting these write operations towards the slave is
called update propagation (for short, we shall e use the term propagation). Write operations
on primarys copies are captured by reading continuously the log (log sniffing) [SKS86, KR87,
Moi96].

The slave is exclusively dedicated to query replica copies and its derived data, while the
master performs update transactions and local queries. Incomming messges are read from a
persistent queue ¢q. For k masters, we assume that the slave node uses one persistent queue
gk to store the incomming messages from each master k (see Figure 1). We call reception
the process of reading a message or a group of messages from gg.

3 Strategies

We consider two update propagation granularities: deferred and immediate. For simplicity,
we use the terms deferred update propagation and immediate update propagation. Deferred
update propagation is the common approach used in a lazy master replication scheme [M0i96]
(see Figure 2). In this case, update propagation occurs after the commitment of each Tj,
and the update propagation message contains the RT;. The log sniffing algorithm used for

RR n"3233
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Update Transaction Processing

Update Propagation "

' Reception and Refreshment
Slave SE
RT1
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Figure 2: Deferred Update Propagation

Monitor(H)
Repeat
Search for next begin of T; ;
Repeat
search for w;;
read(w;);
add w; to the update propagation message;
Until (w; = commit) or (w; = abort);
If w; = commit
update propagate (RT; );
For ever

Figure 3: Deferred Log Sniffing

deferred update propagation is shown in Figure 3. Notice that this algorithm guarantees
that update propagation is performed using the master serial execution order.

When a slave node receives a RT;, it is subsequently submitted for execution as shown on
Figure 2. Since refresh transactions are executed immediately after their reception, we call
this strategy deferred_immediate. If T; is dense, RT; takes about the same time to execute
T;. Otherwise, if T; is sparse, RT; can take less time to execute than T;.

With an immediate update propagation, update propagation occurs after the execution
of each w; in T;. Figure shows 5 shows the immediate log sniffing algorithm. Each update
propagation message contains a w; (see Figure 4). It is important to notice that the notion of

INRIA
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Figure 4: Immediate Update Propagation

Monitor(H)
Repeat

For ever;

Search for next begin of T;;

Repeat
search for w;;
read(w;);
update propagate (w; );

Until (w; = commit) or (w; = abort);

Figure 5: Immediate Log Sniffing

refresh transaction still remains since (wy, wa, ...wy,, commit) is executed in the same order.
However, the additional network overhead delay introduced to propagate each w; (noted

by d) may increase update propagation time. Therefore, we consider three refreshment

algorithms.

3.1 Immediate Immediate

With an immediate_immediate strategy (see Figure 6), each propagated w; is read from

gr and subsequently submitted for execution. When commit is received the refresh tran-

saction is committed. Abort operations that may occur in the master are also propagated

and executed in the slave. Concurrent update transactions execution at the master yields

RR n"3233
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Immediate_ Immediate
Refresh(r)
Repeat
read(q,w;);
if begin of RT; is received
open database channel 1;
Repeat
read(gr ,w;);
execute(w;);
Until (w; = commit) or (w; = abort);
close database channel(i);
end-if
For ever

Figure 6: Immediate Immediate

concurrent refresh transaction at the slave. Therefore, each incomming RT; is associated
with a database connection. Its imortant to notice that the log sniffing algorithm guarantees
that refresh transactions are executed in update propagation order to follow the master’s
serial execution order.

Effective refresh time is defined as the delay of time between the commitment of RT;
and its corresponding T;. When ¢ > §, effective refresh time corresponds to the time spent
to propagate and execute RT;’s commit. However, if € < J, then effective refresh time may
be increased by nd, where n is the size of T;. In both cases, replica data items that are
being updated will be blocked for reading during a longer period of time, if compared with
the deferred approach.

3.2 Immediate_Wait

The second strategy we examine is called immediate_wait (see Figure 7). This strategy is
an attempt to reduce RT; execution time. In this case write operations are received one
after the other, and the RT; is triggered for execution only after commit reception. When
€ > 4, effective refresh time corresponds to the time spent to propagate the commit plus
the execution time of RT;. Otherwise, if € < d, then effective refresh time may be increased
by nd. It is important to notice that network delays do not impact on RT; execution time,
however it may delay the moment at which it is triggered for execution. Futhermore, in case
of network or node failures using immediate_wait avoids keeping replica copies data items
locked during recoverment.

INRIA
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Immediate_Wait
Refresh(r)
Repeat
read(qx w;);
if begin of RT; is received

open database channel(i);

read(qx,w;);

While((w; # commit) and (w; # abort))
Pre_Compute(RV;, DVi, DV,...DVy, wj);
read(qk,w;);

end-while;

if w; = commit
apply(RV;);
apply(DV1, DV;...DV,,);

execute(w;);

close database connection(i);

end-if
For ever.

Figure 7: Immediate_ Wait Algorithm

Refresh transactions may have different sizes and write patterns. A data item may
be written several times inside a refresh transaction. With immediate_wait, the result of
a sequence of write operations on the same data item may be pre-computed during RT;
reception and applied as a single write operation avoiding redundant disk accesses. For
instance, when a sequence of updates on a same data item is received only the last update is
applied. Furthermore, materialized derived data refreshment (e.g. aggregates: sum, average)
may also be optimized by pre-calculating its final value during reception.

Refresh transaction optimization is done using a dynamic auxiliary structure called re-
ception vector ( denoted by RV;), one for each RT; that refreshes r. This vector has one
entry point for each data item being updated. In addition, for each materialized derived
data that uses r a derwed data variable DV, is also defined to pre-compute its new value.
At commut reception each entry point of RV; stores the last pre-computed value for each
updated data item. The contents of RV; is then applied to r. In the same way, the contents
of each DV} is applied to each materialized derived data. The apply function reads each
entry point of RV; and each DV} to update r and the derived data, respectively.

RR n"3233
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Figure 8: Freshness Measure

3.3 Immediate Lock

The third strategy is called immediate_lock. With immediate_lock (w1, wa, ...w,, commit) is
received one after the other. However, in this case, each w; received triggers the locking of
the data item it updates. This strategy provides the freshness issues of immediate_immediate
by blocking the reading of stale data and provides the pre-computations features of imme-
diate_wait.

4 Performance Evaluation

4.1 Objectives

In a lazy master replication scheme a deviation between R and r may occur as a result of
a network delay, that slows down update propagation, the update transaction workload at
the master node, and the query workload at the slave node.

Figure 8 shows a timing graph when using deferred_immediate update propagation. Three
time lines are shown that corresponds to the serial execution of update transactions at the
slave, the reception and execution of R7’s and query processing at the master.

The example of figure 8 shows a workload were a deviation between the primary and
secondary copy occurs . In this situation, during @ evaluation R7’s were in there way to be
received or in execution at the slave. Therefore, at time ¢ the state of r does not correspond
to the current state of R.

INRIA
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More precisely, consider that the serial execution of {71, T5...T;} generates the respective
sequence of states of R, (Ri, Ra...R;), where each subscript i denotes a version number of
R. Similarly, consider that the serial execution of { RT1, RT5...RT;} generates the respective
sequence of states of r, (r1,ra...r;), where each subscript j denotes a version number of 7.
Now suppose that at time ¢, () is being simultaneously processed at the master and slave
nodes. In this situation the version number of R is i’ and the version number of r is j. The
freshness measure that we use in our experimentations corresponds the number of missed
versions expressed as V(R;,rj,t) =14 — j'. For instance, V(Rs, 72, 10) = 3 means that at
time 10 there are 3 states of R that were not perceived by a query that reads r.

Freshness may be improved by increasing slave nodes or network speeds. However in our
experimentations we study freshnees improvement when using immediate_immediate and
immediate_wait strategies.

4.2 Framework

To perform our practical experimentations we implement a simulator shown in Figure 9. The
performance model we use is presented in Table 1. Four processes that executes asynchro-
nously are defined. The first, source, simulates log sniffing for a single database connection
on the master. Write arrivals in the log is simulated be defining e. We focus in dense update
transactions and vary its arrival rate distribution (noted by A;). Update transactions are
composed by a sequence of write operations, each write updates a different tuple in the same
attribute (noted by atr). Each update propagation message is written in order in pipe p;
that is afterwards read by the update propagator process.

The update propagator process, simulates the communication network. This process has
as input the propagation messages written by the source process. The network is modeled
as a FCFS server. Network delay is calculated by calculating § + ¢, where § is the network
delay introduced to propagate each message and ¢ is the transmission time on-wire. In
general, § is considered insignificant and ¢ is calculated by dividing the message size by the
network bandwidth [CFLS91]. In our experimentations, we fix a short message transmission
time (noted by tsport) to 300ms. This time corresponds to the time spent to transmit a
write message and its size corresponds to a log record. In addition, we consider that the
time spent to transmit a R7 is linearly proportional to the number of write it carries. The
network overhead delay to propagate each message is modeled by the system overhead to
read and write from pipes.

With immediate update propagation the propagation time is calculated by n(d + tsp0rt)
while with deferred update propagation the propagation time is (8 + ntspore). Network
contention occurs when d increases due to the increases of traffic in the network. In this
situation, the delay introduced by § may impact update propagation time specially with im-
mediate update propagation. The output of the update propagator process are the messages
that are written in order in pipe po that are afterwards read by the refresher process.

The third process, refresher, implements message reception and refreshment at the slave
node. Refresh transaction execution is performed on top of Oracle 7.3/Sun-Solaris system
using C/SQL. Each write operation corresponds to an UPDATE command that is submitted

RR n"3233
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P1 P2

S——
Replica
Oracle

S——

Simulation Environment

Figure 9: Simulator

to the sever for execution. The refresher process and the server are hosted in the same
machine to avoid additional delays. The secondary copy uses a scheme definition based on
AS3AP benchmark [Gra91] and was populated with 20000 tuples.

Finally, the third process, readers, implements query processing on the slave. The query
expression we use is Select atr from r where atr > ¢1 and atr < ¢s, where ¢; and ¢y are
fixed. Query arrival rate distribution (noted by A,) is defined to a load that we call low.

Using S2PL (strict two phase lock) as the underlying concurrency control protocol may
increase query response time in conflict situations. A conflict situation happens when a
query tries to read data items that are being updated. To improve query response time
we consider the use of MV2PL (multiversion two phase lock) and examine its impact on
freshness. MV2PL (multiversion two phase lock) explores the use of versions to increase
concurrency between transactions. The principle is that queries reads committed versions of
data items whereas update transactions write new ones. Its important to notice that queries
never conflict with refresh transactions and do not need to take or wait for locks as with
S2PL (strict two phase lock).

To compare the impacts of using S2PL and MV2PL we fix a 50% conflict situation.
This means that the refresh transactions updates 50% of the tuples that are to be read by
@. We simulate S2PL by using the select command followed by for update. Since refresh
transactions contains only write operations MV2PL is easily experienced by using Oracle
multi-version consistency model [ea96] 1.

LOracle provides “Snapshot Isolation” in which queries read old versions and update transactions write

new versions through a technique called “READ CONSISTENCY”.

INRIA
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| Parameters | Values |
€ Exponential (mean = 100ms)
A Exponential: low (mean = 10s),bursty (mean = 200ms)
Aq Exponential: low (mean = 15s)
Q size 5
R1’s sizes 5,50
Conflicts 50%
Protocols S2PL, MV2PL

tshore (1 write) | 300ms

Table 1: Performance Model

We define two update transactions types. When the update transaction size is 5 we
call it a small transaction. In addition when update transaction size is 50 we call it long
transaction. To understand the behavior of each strategy on the presence of short and long
transactions we define four scenarios. Each scenario corresponds to a long transaction ratio
(noted by {tr). In the first scenario, {tr = 0 (only short update transactions are executed),
in the second ltr = 30 (30 % of the executed update transactions are long ), in the third
ltr = 60 (60 % of the executed update transactions are long ) and in the forth [t = 100
(all executed update transactions are long). The results we show are the averages values
obtained for the execution of 40 update transactions.

Experiment 1

The goal of this experiment is to show the averages values of both freshness, query
response time when using deferred_immediate, immediate_immediate and immediate_wait
strategies for what we call a low update transaction arrival rate on the master.

Figure 10 shows that in average for the three strategies freshness is not significantly
impacted. When ltr = 0 freshness is almost not impacted (0.3) because only short refresh
transactions are produced and in this case, both propagation and refreshment times does not
introduce a significant amount of delay if compared to A;. That is, in average, the interval
of time between update transactions is big enough to permit update propagation and re-
freshment execution before another update transaction is triggered for execution. Therefore,
deviations between primary an secondary copies are not so frequent. However, when long
update transactions are introduced both propagation and refreshment time increases and im-
pacts freshness. In these cases, refresh transaction are triggered later since propagation time
increases. Furthermore, its execution time also increases due to the refresh transaction size.
In this situation, immediate_immediate and immediate_wait improves freshness. However,
the best results are obtained with immediate_immediate. Since we are mixing transaction
sizes and our freshness measure is transaction based, freshness does not increases linearly
with ltr.

RR n"3233
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Since the query size is small, the delays introduced when using S2PL in a conflict situation
does not impact significatively refreshment time. However, it impacts queries response times.
Figure 11 shows the response times. We do not show the curve for deferred_immediate since
query response time is impacted in the same way when using immediate_wait. However, this
not true with immediate_immediate since RT execution time is increases due to e. During
this period all data items that are being updated are locked until commit reception. As
shown in Figure 11, with immediate_tmmediate in the presence of long transactions, query

response times are almost doubled compared with immediate_wait.

INRIA
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Experiment 2

The goal of this experiment is to show the values of both freshness, query response times
when using deffered_immediate, immediate_immediate and immediate_wait strategies for a
high workload that we call bursty.

Figure 12 shows the freshness results. When ltr = 0 (only short transactions) freshness
if not significantly impacted because the delay introduced by update propagation and re-
freshment is still not big enough compared to A; to cause a significant deviation between
primary and secondary copies. It is important to notice that deferred_immediate presents
better freshness results compared to immediate_wait in bursty workloads because J increases
sufficiently to impact update propagation time. Therefore, the time spent to propagate a
short refresh transaction using deferred update propagation may be less than the time spent
when using immediate update propagation. However, immediate_immediate still shows bet-
ter results compared with both deferred_immediate and immediate_wait because the refresh
transaction is triggered for execution as soon as the first write is received.

When long transactions are introduced freshness is significantly impacted because A
is small compared to the delay introduced by both update propagation and refreshment.
Network contention may also occur, however the time spent to wait the complete execution
of an update transaction before update propagation exceeds the contention delay. Notice
that immediate_wait begins to improve better than deferred_immediate when ltr increases.

A queue of messages is produced in the slave. With deffered_immediate the queue is
formed by refresh transactions messages. In addition, with immediate update propagation
the queue is formed by write messages. For ltr = 30 and ltr = 60, immediate_.immediate
still presents better results compared with immediate_wait and deffered_immediate.
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Figure 13: Bursty Workload - Response Time

For {tr = 100 (i.e. all update transactions are long and have the same size) imme-
diate_.immediate and immediate_wait presents almost the same freshness results due to the
constant refresh transaction size. In this situation, freshness converges to a constant value
for both immediate_wait and immediate_immediate. When using immediate_wait this value
varies around the average value but not significantly. Figure 14 shows a freshness snapshot
for a sequence of queries execution. Therefore, in this case, immediate_wait may be used
in place of immediate_immediate with very small amount of loose of freshness. Notice that
the gain of freshness when compared to deferred_immediate is more than a half. Besides,
with deferred_immediate freshness does not converge to a constant value, instead, it keeps
on growing.

Figure 13 shows the response times. When using immediate_immediate in the presence
of long transactions, response times may be significantly delayed because of ¢ and network
contention. Therefore, data items are blocked for longer periods of times compared to the
low workload experiment. In this case, immediate_wait presents much better results.

4.3 Experiment 3

The goal of this experiment is to show the impacts of using MV2PL on freshness and response
time. In average query response time for all cases (low and bursty workloads) is 1.2s. With
respect to freshness Table 2 shows the results for the bursty workload. In general the loose of
freshness is not impacting. The worst case occurs when ltr = 30 because refresh transactions
have different sizes and the majority of the are small. The best case happens when ltz = 100
because transaction are all long and have the same size.
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Figure 14: Bursty Workload - Freshness Behavior ({tr = 100)

| ltr | Deferred| Immediate-immediate | Immediate-wait
0% 1.1 0.8 0.9

30% | 1.7 2.8 1.3

60% | 0.4 0.6 0.2

100% | 1.7 0.3 0.2

Table 2: Bursty Workload - Freshness loose with MV2PL
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| Replication Scheme | Ouwnership | Update Propagation | Refreshment |

A Group Deferred Immediate
Immediate (Reconciliation)
B Master Deferred Immediate
Immediate On Demand
Group
Periodic

Table 3: Replication Schemes

5 Related Work

Table 3 presents 2 lazy replication schemes and its basic parameters. We use this table to
situate our work.

Replication scheme A corresponds to a lazy replication scheme where all replica copies
are updatable (update anywhere). A conflict happens if two or more nodes update the same
replicated object. There are several policies for conflict detection and resolution [Gol95, ea96]
that can be based on timestamp ordering, node priority and others. The problem with
conflict resolution is that during a certain period the database may be in a inconsistent state.
Normally in this replication scheme uses the deferred_immediate strategy. However, the
strategies proposed in this work may be used to detect and solve earlier conflict situations.

Replication scheme B is the focus of out work. There are several refreshment strategies
for this replication scheme, since we are interested in freshness improvement we focus on
deferred and immediate update propagation and refreshment strategies. With on demand
refreshment, a replica copy is refreshed before a query is submitted for processing. Therefore,
a delay may be introduced on query processing because all refresh transactions that were
already received must be executed before processing the query. When group refreshment is
used, refresh transactions are grouped executed in accordance to the applications freshness
requirements. With periodic the approach, refreshment is triggered in fix interval of times.
At refreshment time, all received refresh transactions are executed. In all cases, immediate
update propagation may be experienced to improve freshness and optimize refreshment time.

[CMAP95] proposes a strategy called incremental agreement that has some features in
common with our proposed strategies. However, they focus in managing network failures in
replicated database and do not address the problem of improving freshness. Furthermore,
optimization techniques are not proposed.

[GHOS96] compares the stability and convergence of replication schemes A and B through
an analytical model. They introduce several concepts that were used in our work and explore
the use of mobile and base nodes.

[GNO95] presents formal concepts for specifying coherency conditions for replication scheme
B in a large scale systems. These concepts permit to calculate an independent measure of
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relaxation, called coherency index. In this context, versions conditions are closely related to
our freshness measure.

Freshness measures are closely related to coherency conditions that are widely explored
in [ABGMS88, ABGM90, AA95, BGM90, SMAS94, WQ90, AKGM96, ZGMW95, WQ90,
AKGM96].

[AKGMO96] proposes several derived data refresh strategies: no batching, on demand,
periodic and others for a similar scenario. Replica refreshment and derived data refreshment
are done in separate transactions. They address freshness improvement, however they focus
in the incoherency between derived data and the secondary copy.

6 Conclusions

In this paper, we presented a new frame work for lazy replication and proposed two strategies
to improve freshness in a lazy master replication scheme. There behavior has been analyzed
through practical experimentations and reveals that immediate_immediate strategy always
improves freshness if compared with deferred_immediate and immediate_wait. The impacts
are most significant for a special type of workload that we call bursty, specially when the
majority of the update transactions are long. On the other hand, immediate_wait only shows
results close to the ones revealed by immediate_immediate for bursty workload in the case
where the majority of transactions are long. Using immediate_wait in these scenario avoids
aborting transactions in case of network and site failures. Besides, refresh transaction and
view maintenance optimization is possible, permitting even more the increase of freshness.

The downside of using immediate_immediate is the increase of query response time due
to network delays. However, query response time may be reduced by using immediate_wait.
Furthermore, it can be drastically reduced by using a multiversion protocol without a si-
gnicant loose of freshness, as shown in our experimentations. Finally, our analysis reveals
that network traffic has significant impact on immediate_wait, specially if the majority of
the transactions are small.
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