Grassmann-Cayley Algebra for Modeling Systems of Cameras and the Algebraic Equations of the Manifold of Trifocal Tensors

Olivier Faugeras 1 Théodore Papadopoulo
1 ROBOTVIS - Computer Vision and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We show how to use the Grassmann-Cayley algebra to model systems of one, two and three cameras. We start with a brief introduction of the Grassmann-Cayley or double algebra and proceed to demonstrate its use for modeling systems of cameras. In the case of three cameras, we give a new interpretation of the trifocal tensors and study in detail some of the constraints that they satisfy. In particular we prove that simple subsets of those constraints characterize the trifocal tensors, in other words, we give the algebraic equations of the manifold of trifocal tensors.
Type de document :
Rapport
RR-3225, INRIA. 1997
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073464
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:55:40
Dernière modification le : jeudi 11 janvier 2018 - 16:41:53
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:47:28

Fichiers

Identifiants

  • HAL Id : inria-00073464, version 1

Collections

Citation

Olivier Faugeras, Théodore Papadopoulo. Grassmann-Cayley Algebra for Modeling Systems of Cameras and the Algebraic Equations of the Manifold of Trifocal Tensors. RR-3225, INRIA. 1997. 〈inria-00073464〉

Partager

Métriques

Consultations de la notice

168

Téléchargements de fichiers

986