N

N

Computing the Dimension of a Projective Variety: the
Projective Noether Maple Package

Marc Giusti, Klemens Hagele, Grégoire Lecerf, Joél Marchand, Bruno Salvy

» To cite this version:

Marc Giusti, Klemens Héagele, Grégoire Lecerf, Joél Marchand, Bruno Salvy. Computing the Dimen-
sion of a Projective Variety: the Projective Noether Maple Package. [Research Report] RR-3224,
INRIA. 1997. inria-00073465

HAL Id: inria-00073465
https://inria.hal.science/inria-00073465
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073465
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Computing the Dimension

of a Projective Variety:
the Projective Noether Maple Package

Marc GIUSTI, Klemens HAGELE, Grégoire LECERF, Joél MARCHAND, Bruno SALVY

N ° 3224
Juillet 1997

THEME 2

apport
derecherche

Zd INRIA

ROCQUENCOURT

Computing the Dimension
of a Projective Variety:
the Projective Noether Maple Package

Marc GIUSTI, Klemens HAGELE, Grégoire LECERF, Joél MARCHAND,
Bruno SALVY

Théme 2 — Génie logiciel
et calcul symbolique
Projet Algo

Rapport de recherche n ° 3224 — Juillet 1997 — 18 pages

Abstract: Recent theoretical advances in elimination theory use non-classical data struc-
tures to represent multivariate polynomials. We present the Projective Noether Package
which is a Maple implementation of a series of these new algorithms for the computation
of the dimension of a projective variety. The package contains hybrid code mixing the old
and new approaches, thus allowing to investigate the potential of the new techniques. We
present a comparison of the more traditional algorithms already available within Maple with
the new ones, trying several possible strategies. Comparative results on benchmarks for time
and space of three different families of multivariate polynomial equation systems are given
and we point out both weaknesses and advantages of the different approaches.

(Résumé : tsvp)

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : (33) 01 39 63 55 11 — Télécopie : (33) 01 39 63 53 30

Calcul de la dimension d’une variété projective :
le package Maple “Projective Noether”

Résumé : Des avancées théoriques récentes en théorie de I’élimination utilisent une
représentation des polynomes multivariés par des structures de données non-classiques. Nous
présentons le package Projective Noether qui est une implantation en Maple d’une série de
ces nouveaux algorithmes pour le calcul de la dimension d’une variété projective. Le package
contient du code hybride mélant ’ancienne et la nouvelle approche, ce qui permet d’étudier
le potentiel des nouvelles techniques. Nous présentons une comparaison des nouveaux algo-
rithmes avec ceux plus traditionnels déja disponibles en Maple, en expérimentant différentes
stratégies. Nous comparons ’occupation mémoire et les temps de calcul sur trois familles de
systemes de polynomes multivariés et soulignons les faiblesses et les avantages des différentes
approches.

Computing the Dimension of a Projective Variety:
the Projective Noether Maple Package

MARC GIUSTI', KLEMENS HAGELE*, GREGOIRE LECERF,
JOEL MARCHAND!, BRUNO SALVY*

 Laboratoire GAGE, Ecole polytechnique, F-91128 Palaiseau, France
Y Matemdticas, Universidad de Cantabria, E-39071 Santander, Spain
*Projet ALGO, INRIA Rocquencourt, F-78153 Le Chesnay Cedex, France

(31 July 1997)

Recent theoretical advances in elimination theory use non-classical data structures to
represent multivariate polynomials. We present the Projective Noether Package which is
a Maple implementation of a series of these new algorithms for the computation of the
dimension of a projective variety. The package contains hybrid code mixing the old and
new approaches, thus allowing to investigate the potential of the new techniques. We
present a comparison of the more traditional algorithms already available within Maple
with the new ones, trying several possible strategies. Comparative results on benchmarks
for time and space of three different families of multivariate polynomial equation systems
are given and we point out both weaknesses and advantages of the different approaches.

Keywords: Benchmark, Maple, polynomial equation system, Noether position, straight-line
programs.

1. Introduction

Classical methods to study and solve systems of polynomial equations are based on nu-
merous avatars of Grobner (or standard) bases algorithms or Riquier-Janet type methods
(Ritt-Wu’s algorithm). All these methods use implicitly but deeply the dense or sparse
representation of multivariate polynomials, which is the computer science counterpart of
the expansion of these mathematical objects on the monomial basis of the polynomial
algebra. And all these methods can be interpreted as rewriting techniques.

Considerable efforts have been made in order to improve both theoretical and practical
aspects of these techniques and to produce efficient algorithms and implementations.
Restricting to Grobner bases algorithms and to quote only the most commonly available
packages, see the Maple grobner package (Char et al. 1991), axiom (Watt et al. 1995),
gb (Faugére 1995), singular (Greuel et al. 1997), macaulay2 (Stillman and Bayer 1996),
reduce Hearn (1987). Some very recent benchmarks can be found in (Faugére 1997).

The knowledge of a standard basis yields as a simple byproduct the dimension of the
algebraic variety defined by such systems. Actually, one can show that focusing on the
simpler problem of computing the dimension of a projective algebraic variety will lead to

2 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

a better worst-case complexity than the whole construction of a standard basis (Giusti

1988).

We consider the unit cost measure model, i.e., each arithmetic operation of the ground
field is counted as one. Then the complexity is polynomial in the size of the intermediate
expressions computed. Its seems that there is no hope to design an algorithm whose
complexity is polynomial in the size of the input, since the intermediate computations are
not. But this observation is only valid if we stay stuck in the dense representation context.
A breakthrough was obtained by Giusti and Heintz (1993), resulting in the existence of
an algorithm with polynomial behaviour, provided one uses a mixed representation for
intermediate computations.

Actually the algorithm described in loc. cit. computes a little bit more, i.e., a change of
coordinates putting the new variables in Noether position. Informally speaking, the vari-
ables are separated into two subsets of different nature: the independent and dependent
ones. Furthermore the polynomials occurring as intermediate computations are coded in
the dense representation w.r.t. the dependent variables, while their coefficients are poly-
nomials in the independent ones coded by arithmetic circuits, also called straight-line
programs. This means that these latter polynomials are represented by programs evalu-
ating them at a point (of the ground field) using only additions and multiplications (of
the ground field). We will conveniently refer respectively to the writing data structure
and the evaluation data structure.

Mixing these two data structures was successfully used in a series of papers to design
a new geometric elimination algorithm (see in the references the joint works by Giusti,
Hagele, Heintz, Montana, Morais, Morgenstern, Pardo 1995-97). An efficient implementa-
tion of the complete elimination algorithm will require some time to collect more practical
experience with the first experimental prototypes for some of its components. Some basic
but important steps were made already, but there is still a lot of work left (on the use of
evaluation data structures, see the works by Aldaz Zaragueta, Castano, Hagele, Llovet,
Martinez, Matera within the Tera project http://hilbert.matesco.unican.es/tera).

We present here another step, a Maple program called the Projective Noether Package
implementing the algorithm from (Giusti and Heintz 1993). (The package and its doc-
umentation are available at http://medicis.polytechnique.fr/tera/soft.html). It
turns out that a not so well-known functionality of Maple is the systematic use of the
evaluation data structure, which is described in the first part of this article. Consequently
we can compare the more traditional algorithms already available within Maple with the
new ones, experimenting with several possible strategies. The package contains hybrid
code mixing the old and new approaches, thus allowing to investigate the potential of the
new techniques. Comparative results on benchmarks for time and space of three different
families of multivariate polynomial equation systems are given and we point out both
advantages and weaknesses of the different approaches. One of the most encouraging
results is provided by an example where our Maple implementation computes an upper
bound for the dimension more than fifty times faster than the gb system.

A cknowledgments. This work was supported in part by the Long Term Research
Project Alcom-IT (#20244) of the European Union, the French and Spanish grants:
GDR CNRS 1026 MEDICIS and PB93-0472-C02-02.

The Projective Noether Package 3

2. Evaluation data structure and Maple implementation

2.1. DIRECTED AcycLiC GRAPHS AND STRAIGHT-LINE PROGRAMS

Let k be an infinite effective field; this means that the arithmetic operations (addition,
subtraction, multiplication, division) and basic equality checking (comparison) between
elements of k are realizable by algorithms. All algorithms below will be represented by
arithmetic networks over k i.e., directed acyclic graphs (DAG’s) whose internal nodes are
labelled by arithmetic operations of &k, by Boolean operations corresponding to propo-
sitional logic, and by selectors associated with equality checking of elements of k. The
external nodes of the graph represent the inputs and the outputs of the network. The
inputs are always elements of k and the outputs may be elements of &k, Boolean values,
or integers of limited range (represented by vectors of Boolean values).

Particular arithmetic networks are of special interest: arithmetic circuits or straight-
line programs (SLP’s), without divisions nor branching, containing neither selectors nor
(propositional) Boolean operations. Generally speaking the size of the DAG (or the
sequential complezxity of the arithmetic network) is nothing but the number of its nodes
(thus for a SLP the number of additions and multiplications involved). For details and
elementary properties of the notion of straight-line programs we refer to Strassen (1972),
von zur Gathen (1986), Stof8 (1989) or Heintz (1989).

Let @1,. .., z, be indeterminates over k. A polynomial of k[z1, ..., z,] is usually coded
in the so-called dense representation as the vector of its coefficients. But straight-line
programs can also be used to code a multivariate polynomial, computing its value at a
point of k&”.

The only non-trivial point when dealing with this data structure is equality checking
(or zero testing). We shall perform this task by choosing a suitable “correct test sequence”
of points with coordinates from k according to a theorem of Heintz and Schnorr (1982),
which we recall for completeness:

Let D and L be two positive integers, and let us define the subset W(D,n, L) of
polynomials of k[z1, ..., 2,], of degree at most D, which can be coded by a SLP with at
most L arithmetic operations. Let us consider m := 6(L + n)(L + n + 1), and a family
v :={71,...,Ym} of m points in k™. Such a set is a correct test sequence for W(D,n, L)
if every polynomial in the latter vanishing on the points of v is actually identically zero.

THEOREM 2.1. (HEINTZ AND SCHNORR (1982), THEOREM 4.4) With the notations
above let us fix a subset T of k of cardinality #U = 2L(D+1)2. The subset 7(D,n,L,T) €
™™ of correct test sequences for W(D,n, L) satisfies:

#T(Da n, L’ F) > (#F)nm(l - (#F)_%)'

Although the choice of such a correct test sequence could be done algorithmically,
the cost of doing so would exceed the main complexity class we want. Therefore the
algorithms we study below will be non-uniform insofar as they depend on the choice
of correct test sequences. On the other hand, the theorem allows us to randomly choose
correct test sequences with a probability of failure which becomes arbitrarily small as the
parameters D, n and L increase. Therefore our algorithms can be uniformly randomized
within the same order of (average) complexity. In doing so we encounter the following
kind of probabilistic procedure which we call a randomized algorithm. A randomized
algorithm has error probability bounded by some 0 < ¢ < 1/2 when accepting an input

4 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

and error probability zero when rejecting it (in our case we may choose ¢ = 1/262144).
As far as our algorithms compute polynomials or rational functions the correctness of
the output depends only on the correctness of previous and intermediate decisions made
by probabilistic procedures and can be checked randomly. In this sense, we apply also
the term randomized procedure to the computation of polynomials or rational functions.
Thus our results are valid not only in the sense of the non-uniform complexity model,
but also in the sense of probabilistic (randomized) algorithms (see Balcazar et al. (1995),
§ 6.6, Giusti and Heintz (1993), § 1.2.3, § 1.3 and § 2.2 and Fitchas et al. (1995), § 1.3
and § 2.1 for more details).

To sum up we get the weakened following form which allows a probabilistic treatment
of the theorem:

THEOREM 2.2. (F1TcHAS et al. (1995), THEOREM 2.1) There exists an arithmetic
network over k of size O(Lm) = O(L(L +n)?), which given any SLP (without divisions)
of size at most L, checks if the n-variate polynomial it represents is identically zero.
Moreover the network can be constructed by a probabilistic algorithm in sequential time
O(L(L + n)?) with a probability of failure uniformly bounded by ¢ := 1/262144.

2.2. EFFICIENT EVALUATION IN MAPLE

The Maple computer algebra system is based on a systematic use of common subex-
pression sharing. Objects which might look like expression trees to the user are actually
stored as directed acyclic graphs, where only one copy of each distinct subtree is kept.
This is realized by maintaining a hash table of all the expressions occurring simultane-
ously in a session. The structure thus obtained can be viewed as a single directed acyclic
graph the children of whose root correspond to all the distinct subexpressions residing
simultaneously in memory. A simple consequence of this representation is that syntac-
tic equality of expressions is reduced to checking equality of addresses and can thus be
performed in constant time. This provides the basis for the efficiency of Maple’s option
remember which can be used to record the pairs (input, output) of a procedure. When
the procedure contains a recursive call to itself on the subexpressions of its argument, it
then performs a DAG traversal of the expression, instead of a tree traversal without this
option. This can lead to an improved complexity of the algorithm.

For instance, it is unfortunate that up to the current version (V.4), Maple’s subs
command, which is commonly used to evaluate an expression at a point, does not benefit
from this nice mechanism and has a complexity related to the size of the tree instead
of the size of the DAG. The use of a DAG traversal to improve the complexity can be
illustrated with a simple alternate procedure:

dagsubs := proc(tosubs::{name = algebraic, list(name = algebraic)}, expr)

local dosubs, 1;

dosubs := proc(ezpr) option remember;
if 1 < nops(ezpr) then map(procname, ezxpr) else ezpr fi end;

if type(tosubs, name = algebraic) then dosubs(op(1, tosubs)) := op(2, tosubs)
else for i in tosubs do dosubs(op(1, 7)) := op(2, i) od fi;
dosubs(ezpr)

end

The Projective Noether Package 5

Table 1. Substitution and DAG’s

n 30 31 32 33 34

subs 10sec 16sec 26sec 38sec 62sec
46Mb 76Mb 120Mb 199Mb 321Mb
dagsubs 5sec Tsec 17sec 24sec 43sec

25kb 26kb 28kb 28kb 29kb

In Table 1, we give examples of the time and memory]L required by both subs and this
simple dagsubs. The test suite is the following sequence of polynomials:

Py(z) =1, Pi(z) ==z, Poya(z) = 2 Poyi(2) + Po(x)+ 1, n >0,

where z is replaced by another variable y. The time difference is not very large, but subs
is a function of Maple’s compiled kernel, whereas dagsubs is interpreted. However, while
dagsubs needs a very limited amount of memory, subs requires more than one thousand
times this amount, and the ratio increases very fast with the index of the polynomials.
This example clearly demonstrates that working with DAG’s when possible can be crucial
in terms of efficiency.

When the DAG is large and many evaluations of it at different values are required,
it is possible to convert this DAG into a so-called computation sequence, which is a
Maple variety of straight-line programs, with nodes of arbitrary arity. This computation
sequence is obtained by Maple’s optimize command. For instance, on the polynomial P
above, one obtains:

tiy=2% ty==xz(t1+2), ts=za(ts+z+1), tr==z(s+t;+3),
to=a(tr+ts+ae+2), tn=zlo+ts+t1+4), tizs=ax(t1+tr+is+2z+3),

tis=w(x(tis+tot+ts+t1+5)+tnn+tr+is+a+4)+tis+to+1t5+1t1 +6.

This can then be translated into a Maple procedure or alternatively into Fortran or
C code by the ‘optimize/makeproc‘, Fortran or C commands. Here is for instance the
corresponding Maple procedure:

proc(x)
local t1, t18, t13, t11, t9, t7, t5, t3;
t1 = x72;
t3 = x*(t1 + 2);
t5 = x*%(t3 + x + 1);
t7 = x*%(t5 + t1 + 3);
t9 = x*x(t7 + t3 + x + 2);
t11 := x*%(t9 + t5 + t1 + 4);
t13 = x*(t11 + t7 + t3 + x + 3);
$18 := x*(x*(t13 + t9 + t5 + t1 + 5) + t11 + t7 + t3 + x + 4) + t13

e tests 1n this article have been performed on pierre.polytechnique.fr, a entium Pro
T Th in thi icle h b f d pi poly iq PC Penti P
(200Mhz) with 512Mb of memory, running Linux 2.0.27 and Maple V.3. This computer forms part of
the equipment of GDR Medicis: http://medicis.polytechnique.fr.

6 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

+ t9 + th + t1 + 6
end

The Fortran and C routines are entirely analogous.
2.3. EXAMPLE: TESTING THE REGULARITY OF A MATRIX

In this section, we illustrate how the systematic exploitation of the DAG structure leads
to improved algorithms checking whether square matrices of multivariate polynomials
with integer coefficients are singular or not. This task turns out to be a basic building
block of the algorithm developed in the next section.

The matrices we take in our examples are square k X k matrices with polynomial entries
having between 3 and 9 variables. The matrices are sparse with 5k entries at random filled
by polynomials provided by Maple’s randpoly function. To obtain regular matrices, the
diagonal is first filled with 1’s. To obtain singular matrices, the columns from 1 to k£ — 1
are summed into the kth one. Timings for regular and singular matrices turn out to be
similar, thus we give only one table (Table 3) of results.

Naive approach

The simplest idea is to compute the determinant of such a matrix using for instance
Maple’s det command, which is based on a mixture of fraction free Gaussian elimination
and minor expansion. The matrix is singular if and only if the resulting polynomial is 0.
Since the resulting polynomial is always expanded, recognizing zero is very easy, but
the computation itself is expensive because of the exponential growth of the number of
multivariate monomials as the degree increases. This shows in Table 3, since on all of
our examples, Maple returns an error message “object too large” (abbreviated ‘otl’ in

the table).

Straight-line programs and Berkowitz’s algorithm

In order to overcome the exponential complexity of expanding determinants, it is natu-
ral to turn to DAG’s or to straight-line programs evaluating them. Recognizing zero with
this data-structure becomes the expensive operation. Thus an approach based on Gaus-
sian elimination does not apply anymore. Several other algorithms can be applied. We
use an algorithm due to Berkowitz (1984) which has the advantage of a simple descrip-
tion. Given an n x n matrix, it computes its characteristic polynomial (and in particular
its determinant) in O(n*) arithmetic operations on the coefficients and requires neither
test nor division.

On a generic square matrix of size n, the number of nodes of the DAG evaluating the

Table 2. Sizes of different representations of the determinant of an n x n matrix

dimension 2 3 4 5 6 7 8 9

dag size (expanded) 3 7 25 121 721 5041 40321 362881
dag size (Berkowitz) 3 20 64 169 343 664 1104 1817

The Projective Noether Package 7

Table 3. Computations on matrices with polynomial entries

dimension 10 20 50 100 200
naive otl otl otl otl otl
Berkowitz .08 1.5 400 > 5000

test sequence (#pts) 5.7107 2.310'° g.010!°

DAG subs 53 > 5000

DAG optimize .02 > 5000

direct Maple .03 .20 23 47 1050

expanded determinant and the one produced by Berkowitz’s algorithm are indicated in
Table 2. In this case, the polynomial complexity of Berkowitz’s algorithm quickly yields
better results than the number n! + 1 of monomials of the generic determinant. This
is naturally reflected by the time required for the computation. For our test matrices,
the results turn out to be very similar: Berkowitz’s algorithm takes almost no time on
matrices for which det cannot compute the result. This appears in the second line of

Table 3.

Fvaluation and test sequences

In order to prove that the matrix is regular from the DAG computed by Berkowitz’s
algorithm, it is sufficient to find a point where the evaluation of this DAG yields a non-
zero result. In practice, any random point will do. When the matrix is actually singular,
we rely on correct test sequences as explained in §2.1.

In line 4 of Table 3, we give the time used to evaluate the DAG computed via
Berkowitz’s algorithm at one point. In regular cases, this is usually also the time required
to prove that the matrix is regular. In the singular cases, we also show an estimate of the
number of points m forming the correct test sequences for DAG’s of the corresponding
size. The table shows that although this approach makes it possible to deal with ob-
jects which are too large for Maple when expanded, it also rapidly produces objects with
which it is impossible to proceed in a reasonable amount of time. This might be due to
the limited size of the hash tables used by Maple. Whatever the speed of evaluation, the
number of points indicated on line 3 leads to the conclusion that the theoretical bound
which leads to polynomial complexity is much too large to be of practical use.

Direct evaluation

The process outlined above consists of two steps. First a DAG is constructed via
Berkowitz’s algorithm, then this DAG is evaluated at one or several points. It is then
a natural strategy to first evaluate the matrix at these points and then compute the
determinant. In the regular case this is clearly an improvement, since the DAG for the
determinant does not need to be stored in memory anymore and the determinant can
be evaluated in O(n?®) arithmetic operations. In the singular case, this approach also
works because we can still use the bound on the number of points which follows from
considering the DAG produced via Berkowitz’s algorithm without actually executing
this algorithm. Thus we use the theoretical results on the complexity of a straight-line

8 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

program based approach to guide the practical computation, without actually computing
with straight-line programs. The resulting timings appear in the last line of Table 3 and
vindicate this strategy. Preliminary experiments in C using LEDA’s bignums (Mehlhorn
et al. 1997) seem to indicate that we can only expect an improvement of a factor four to
five by performing this evaluation directly in C.

3. Computing the dimension of an algebraic variety

3.1. NOETHER POSITION

Let k be an infinite effective field, and k be an algebraic closure of k. Given a set
of homogeneous polynomials fi,..., fs in k[zg,...,2,], consider the projective variety
V =V(f1,...,fs) generated by the f; in projective n-space (IP)". We want to calculate
the dimension of the projective variety V.

There are several approaches to this problem. We distinguish two different tasks, first
to give some upper bound; and second to certify that an integer known to be an upper
bound is actually the dimension by a deterministic or probabilistic algorithm.

Giusti and Heintz (1993) gave an algorithm to compute the dimension, which actually
computes a change of coordinates putting the new variables in Noether position.

The variables g, ..., z, are said to be independent with respect to V if (f1,...,fs) N
klzg, ..., z,] is the trivial ideal (0). If moreover the canonical homomorphism

klzg,...,xr) — klxo, ..., znl/(f1,- - [5)

is an integral ring extension, the variables zg, ..., z, are said in Noether position with
respect to V. The latter condition means that the canonical images of the variables
Zyy1, ..., Ly satisfy integral dependence relations (in other words are algebraic integers)
over k[zg,...,2,]. As a consequence the dimension of V is nothing but r. In order to
simplify the complexity considerations we shall suppose that d is at least n.

THEOREM 3.1. (G1usTI AND HEINTZ (1993)) Let f1,..., fs be homogeneous polynomi-
als of degree at most d in kf[xo, ..., x,], defining a projective variety V in (IP3)". There
exists a randomized algorithm without divisions which computes with sequential complex-
ity s dO) g linear change of coordinates over k such that the new variables are in
Noether position with respect to V.

Let us recall the main steps of this algorithm. It is organized around a loop. The
n — mth iteration is entered with the condition: the images of 41, ..., z, are already
algebraic integers over R(™) = k[zo, ..., &x].

— Let z be a new variable; we denote by fl»(m) the polynomial
fi(Z;l‘o,Z;l’l, s Z8my Tmtls - 'J'rn)~
This is an homogeneous polynomial in k[zo, ..., Zm]|[Zm+1, - -, Tn, 2].
— Let W be the projective variety in IP"~"™ 5 defined by ffm), .. .,fs(m), where K =
K(™) is the field of fractions k(zo, ..., &m).
— In this situation a criterion for independence is that W is not empty, which can

be checked by computing a Grobner basis or by applying an effective projective
Nullstellensatz.

The Projective Noether Package 9

— If the criterion is satisfied, we are in Noether position and we stop.
— Otherwise, there exists a non-zero homogeneous polynomial ¢ in k[zo,...,zm],

which both techniques can exhibit, and a point of IP} with homogeneous coor-
dinates (ag, ..., am) (With a, # 0) on which g does not vanish. After the change
of coordinates xg «— x¢ + ag, ..., Tm — Tm + @, the polynomial ¢ becomes monic
in Z,,, hence we can enter the n + 1 — mth iteration.

3.2. THE PROJECTIVE NOETHER PACKAGE

The above mentioned algorithm still leaves some choices for different implementation
strategies, especially the order of evaluation and specialisation and the option of mixing
the straight-line program ideas with the more traditional Grobner bases techniques. We
now describe the different strategies implemented in the Projective Noether Package:

1 The pure SLP strategy, denoted [BDE], implemented directly as proposed in (Giusti
and Heintz 1993), consists of three main steps:

[B] Let N = 1+ .;_,(deg(f;) — 1) (the bound of the effective projective Null-
stellensatz). Create @, the matrix of the linear application (hy,..., hs) —
hlfl(m) +-- -—}—hsfsm), h; being homogeneous polynomials of degree N —deg(f;)
in R [41, ..., &n, 2]. The coefficients of @ are in R(™),

[D] Use Berkowitz-Mulmuley linear algebra (Berkowitz (1984), Mulmuley (1987))
to construct the DAG corresponding to the determinant of the product matrix
Q'Q to check the surjectivity of @ (this determinant lives in R("™)).

[E] Using the Maple functions optimize and makeproc, the DAG is transformed
into a Maple procedure. A probabilistic test is then performed to determine
whether this DAG represents zero or not.

2 The evaluation and determinant strategy, denoted [ED], is organised as a loop on
a set of values assigned successively to zg, ..., z,,. At each step we

[E] specialize the fl-(m) with the values given to zg, ..., Tpm;

[D] build the matrix @ as before, but then use the Maple determinant function to
decide whether the linear application associated with @ is surjective or not.
Note that) has now integer coefficients.

3 The evaluation and Grébner basis strategy [EG] replaces the determinant step [D]
of the previous strategy by a Grobner basis computation:

[E] Specialize the fl»(m) for a given set of values for zg, ..., z,p;
[G] Apply a Grébner basis algorithm with total degree ordering to the specialized
fl-(m) to compute a standard basis and then determine whether the variety W

is empty or not.

4 The last strategy [EG-gb] is an optimized version of [EG], with the Grébner basis
computation being handled by the gb program of Faugére (1995) called via gblink
(Lecerf and Schost 1997), instead of Maple’s grobner package.

3.3. FAMILIES OF SYSTEMS OF POLYNOMIAL EQUATIONS

We present here three families of polynomial equation systems which we have used to
compare the different strategies discussed above.

10 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

Table 4. Lower bounds for the dimension of the system infcyclic H;°

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ping(R) -1 -1 -1 o 0o 1 1 2 3 3 4 5 5 6 7 8 8

The sac polynomial system

This system is inspired by an example taken from (Pardo 1995). The affine system can
be interpreted as a way of writing how many numbers can be represented with n bits, the
first £ bits being fixed. The actual system used here is a homogenized, slightly twisted
version of the initial one. It depends on two parameters n, k and has k£ 4+ 1 homogeneous
equations of degree 2 in n + 1 variables. The dimension of the system is (n — k — 1):

n
fj:r?—mjxo for 1<j<k, fk+1222j1‘n$]'.
j=0

The homcyclic and infcyclic polynomial systems

These systems are related to the question of finiteness and structure of the correspond-
ing set of cylic n-roots (Bjorck 1990). Let 21, . . ., z, be variables and M; be the monomial
xy1---z;. Let o be the cycle (1,2,...,n) of the nth permutation group. We define the ith
cyclic equation of the nth system as:

n—1
=Y o"(M;) for 1<i<n—1, H}=M,.
k=0

Now, homcyclic n and infcyclic n define the systems:

Hy = af, o =0,

"yt = 0, or=1 = o,
homcyclic H, = . infeyclic H® =

HY = 0. HY = 0.

For example, when n = 3 the system H$® is {z12223 = 0, 2129 + 2923 + 2321 = 0,21 +
o+ r3 = 0}

ProOPOSITION 3.1. (IN COLLABORATION WITH E. SCHOST) The system infcyclic
H defines in P"~1(C) a projective variety of dimension at least:

n

T'inf(n) =n-—- [W-‘ — I_\/EJ

ProOF. Let k = | /n], | = [ﬁw Assume x1,Z14k,...,2140-1)% to be zero. Thus

there remain n — [non zero variables. And only the k — 1 first equations are non zero,
thus applying Krull’s Lemma (Eisenbud 1995, 8.2.2) completes the proof. U

The resulting lower bounds for the dimension of the system infcyclic H;° are given in

Table 4.

The Projective Noether Package 11

3.4. EXPERIMENTAL DATA

We present the tables of experimental results obtained for the two tasks of bounding
and computing the dimension of the families of polynomial equation systems from §3.3.
The different strategies (BDE, ED, EG and EG-gb) introduced in §3.2 are applied and also
compared with Maple’s grobner function (g) and with gb applied directly to the systems.
Time is measured in seconds and memory space in kilobytes. A time t preceded by the
symbol > means that the computation has been manually aborted after ¢ seconds, the
corresponding value in the column labelled space is the memory allocated until then.
Empty entries in the tables are due to technical problems measuring very small quantities
and/or their scaling with the rest of the entries in the same table.

Bounding the Dimension

The first task is the determination of upper bounds on the dimension of the variety.
Using the algorithm of §3.1, we know that at step m of the iteration the dimension of the
variety is at most m—1. It is also possible to compute upper bounds on the variety during
the calculation of the Maple grobner function: the dimension is at most the dimension of
the monomial ideal generated by the leading monomials of the syzygies computed when
performing a Buchberger algorithm, see e.g., (Cox et al. 1997).

We compared the following strategies: EG refers to the strategy presented in §3.2, g
refers to the Maple grobner function, with total degree ordering on the variables, and gb
refers to the gb program (Faugére 1995) applied directly. The gb computation uses the
function sugar, with the optional parameter "info", and a total degree ordering. The
abbreviations used here are: UBD — an upper bound on the dimension, infcyclic n
— the polynomial system introduced in §3.3. For example the first line of Table 5 reads:
the dimension of the system infcyclic 6 has been proved to be at most 2 in 0.2 seconds
with a memory space of 720kb, using the strategy EG, whereas using the Maple grobner
function it took 0.71 seconds and 1180kb.

Comment on Table 5

The computation of upper bounds on the dimension of the projective variety is the
strong point of the EG method. Where the Grobner bases algorithms are forced to work
with the complete equation system in many variables, our recursive approach yields
the correct answer a lot faster. First, it can be seen that the g strategy corresponding to
Maple’s grobner function is the least efficient approach. We observe then, that even using
this same Maple grobner function for the intermediate calculations in the EG method,
the resulting performance is already competitive with the stand-alone gb program. Note
that any improvements in the field of Grobner bases computations will also yield direct
improvements for the EG and EG-gb strategies.

Comment on Table 6 and Figures 1, 2

Even though it is possible to decompose by hand the polynomial equation system
infcyclic 8 and thus obtain better time/space results, the same is not true for its twin
homcyclic 8. Table 6 and Figures 1 and 2 illustrate the very similar time/space be-
haviour of gb for both systems, thus showing that the decomposability of the infcyclic
family does not influence excessively the results. The reason for us to use the infcyclic
system for our tests is the known lower bounds for the dimension from Table 4.

12 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

Table 5. Benchmarks for the infcyclic systems

system / method EG g gb

UBD Time Space Time space Time space

infcyclic 6
2 0.2 720 0.71 1180
1 2.5 1400 8.48 1500 1.0 1200

infcyclic 7

4 1.7 1400
3 0.2 720 2.5 1500
2 2.5 1440 65 2230 7 2200
1 900 3200 13000 6200 950 3200

infcyclic 8

5 5.8 1500
4 0.3 720 6.18 1500
3 3.0 1500 396 2700 3 2200
2 1400 4130 > 250000 > 18000 54000 27600

infcyclic 9

6 21 1900

5 0.3 720 22 1900

4 5.1 1700 2293 3080 3 3400

3 1600 7000 >200000 > 8000 > 108000 > 180000

Table 6. homcyclic 8

homcyclic 8 EG-gb gb
UBD Time Space Time Space
5 1
4 2.4
3 11.2 3 2200
2 1300 4400 50000 20000

4e+07 4e+07
__spaceftftes) +— Space(bytes) —

350407 {/ 350407

3e+07

3e+07
/ —

250407 250407

2e+07 2e+07

15e+07 15e+07

1e+07 1e+07

5e+06 5e+06

0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

Figure 1. homcyclic 8 Figure 2. infcyclic 8

The Projective Noether Package 13

Table 7. Benchmarks for the sac, homcyclic and infcyclic systems

BDE ED EG g
System Dim. Time Space Time Space Time Space Time Space
sac
2.1 0 0.13 518 0.06 297 0.11 479 0.03 168
3.1 1 0.16 675 0.30 820 0.32 1054 0.04 189
3.2 0 20539 186153 1.02 3491 0.37 1202 0.12 527
4.1 2 0.22 750 0.25 861 0.44 1229 0.06 203
4.2 1 > 3617 > 24379 2.21 5466 1.28 3461 0.23 730
4.3 0 > 23290 > 122793 1.64 4531 0.68 1991
homcyclic
2 0 0.09 395 0.06 243 0.06 317 0.00 118
3 0 > 2580 > 14973 2.06 6558 0.14 545 0.01 169
4 1 > 48541 > 228118 1.88 4625 0.10 280
infcyclic
2 -1 0.05 311 0.05 195 0.01 243 0.05 105
3 -1 > 11537 > 47863 1.15 2883 0.13 448 0.04 149
4 0 > 105057 > 494245 0.70 2165 0.13 481
5 0 65 1834 4 1507
6 1 1075 2948 114 2424
7 1 > 174167 > 16508 85204 21360

Computing the Dimension

The second task is to determine the exact dimension of the given variety. The correct
test sequences (see §2.1) are mimicked by 10 points picked up at random with integer
coordinates in {0, ...,255}. The dimension computed is indicated in the second column

of Table 7.

Comment on Table 7

First, we comment on the difference between the strategies BDE and ED. In the BDE
method, it is necessary to construct the matrix of the linear application @ with poly-
nomial entries. The application of Berkowitz’s algorithm gives the determinant of the
matrix Q'@ in the form of a DAG, which has to be written down completely before pro-
ceeding to its evaluation. The big space requirement for this step prevents this method
to work successfully on the bigger systems (lines 5, 6 of Table 7). This is due to the size
of the matrices involved, which is indicated in Tables 8 and 9. The ED strategy improves
upon the BDE strategy by first specializing the variables zg, ..., z, with some integer
values, and then treating the resulting matrix Q). Again interferes the size of the matrices
(Tables 8 and 9), but this time over Z. This step reduces the problem to the efficient
computation of a determinant of an integer matrix. As illustrated in §2.3, this can be
done by applying the Maple det function.

Next, the comparison between the ED and EG methods shows the effect of two different
ways of implementing a Nullstellensatz function. In the EG method the matrix @ is not
built at all, and the determinant is replaced by a Grobner basis computation handled by
Maple’s grobner function. Indeed, performing a Buchberger algorithm on the fl»(m) (see

14 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

Table 8. Matrix size for sac Table 9. Matrix size for infcyclic

n Matrix Size n Matrix Size

sac.2.1 [10, 6]

[3 [15,19]
sac.3.1 [10, 6] 4 [36, 74]
sac.3.2 [35, 30] 5 [364, 875]
sac.4.1 [10, 6] 6 [969, 3161]
sac.4.2 [35, 30] 7 [14950, 54152]
sac.4.3 [126, 140] 8 [40920, 184206]
9 [101270, 548022]
Table 10. infcyclic 8 EG-gb Table 11. homcyclic 8 EG-gb
Dimension Time per point tested Dimension Time per point tested
7 0.03 8 0.1
6 0.05 7 0.3, 0.2
5 0.02 6 0.02, 0.4
4 0.02, 0.07 5 14
3 2.66, 5.1 4 3.5, 5.3
2 2660, 6400, 5700 3 191, 1057
2 > 50400

§3.2) can be seen as an efficient way of calculating a Gauss pivot on Q. This explains the
better results for the EG method.

Finally, the comparison between the EG and the g methods seems to be in favor of the
g method. What happens is that this strategy reduces the computation of the dimension
for the system in n variables to k£ well-behaved Grobner bases computations on systems
in n —d — 1 variables where d is the dimension and k is the number of test points. Here,
well-behaved means that the complexity is bounded by that of a Gaussian elimination
on the ¢ matrix. Thus our method performs best when the dimension is large.

Comment on Tables 8 and 9

Tables 8 and 9 give the size of the matrix ¢ which appears in the last step of the algo-
rithms BDE and ED, the certification of the dimension. These matrices grow exponentially
with the binomial coefficients depending on the codimension and the degrees of the poly-
nomials involved. This growths is reflected by the time taken by any strategy (even EG).
Since for small codimension this growth is still moderate, our approach is very efficient
compared to a direct Grobner basis computation on varieties of small codimension, even
for systems in many variables.

Comment on Table 10 and 11

These tables illustrate the point made in §2.1 about the probabilistic nature of a zero-
test with correct test sequences. Our algorithm is very fast for bounding the dimension
of the variety and takes then some more time (corresponding to the certification step) to
actually verify it (with bounded error probability). This is reflected by the time necessary
for testing the chosen points.

The Projective Noether Package 15

4. Conclusions

The theoretical results on the polynomial complexity obtained by a straight-line pro-
gram approach to the computation of the dimension are used here as a guide to an
efficient implementation based on evaluation rather than rewriting.

When trying to certify the dimension, the a priori size of the matrices (and the DAG’s)
involved in the pure SLP strategy (BDE) prevents it from defeating rewriting techniques
regularly, especially when they are implemented in an incremental way.

In the EG strategy which gives the best results, these straight-line programs them-
selves are never actually produced. However, the evaluations that are performed have
an execution time which is bounded by the length that the corresponding straight-line
program would have if written down. Thus we preserve the polynomial complexity while
gaining speed and memory.

In situations of low codimension, our implementation gives an upper bound for the
dimension and, with an extremely low (uniform) probability of failure, certifies that this
bound is sharp much more quickly than the implementation of Grobner basis used. In
this sense it provides a very important speed up.

References

Balcazar, J. L., Diaz, J., Gabarré, J. (1995). Structural complezity. I. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, second edition.

Berkowitz, S. J. (1984). On computing the determinant in small parallel time using a small number of
processors. Information Processing Letters, 18(3):147-150.

Bjorck, G. (1990). Functions of modulus 1 on Z, whose Fourier transforms have constant modulus,
and “cyclic n-roots”. In Recent advances in Fourier analysis and its applications (Il Ciocco, 1989),
volume 315 of NATO Advance Science Institutes Series C: Mathematical and Physical Sciences,
pages 131-140. Kluwer Academic Publishers, Dordrecht.

Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M. (1991). Maple V
Library Reference Manual. Springer-Verlag.

Cox, D., Little, J., O’Shea, D. (1997). Ideals, varieties, and algorithms. Undergraduate Texts in Math-
ematics. Springer-Verlag, New York, second edition. An introduction to computational algebraic
geometry and commutative algebra.

Eisenbud, D. (1995). Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-
Verlag, New York. With a view toward algebraic geometry.

Faugeére, J.-C. (1995). GB Reference Manual. LITP. http://posso.ibp.fr/GB.html.

Faugeére, J.-C. (1997). Gb: State of gb + tutorial. LITP.

Fitchas, N., Giusti, M., Smietanski, F. (1995). Sur la complexité du théoréme des zéros. In Approz-
imation and optimization in the Caribbean, II (Havana, 1992), volume 8 of Approzimation and
Optimization, pages 274-329. Peter Lang Verlag, Frankfurt am Main. With the collaboration of
Joos Heintz, Luis Miguel Pardo, Juan Sabia and Pablo Solerné.

Giusti, M. (1988). Combinatorial dimension theory of algebraic varieties. Journal of Symbolic Compu-
tation, 6(2-3):249-265. Computational aspects of commutative algebra.

Giusti, M., Heintz, J. (1993). La détermination des points isolés et de la dimension d'une variété
algébrique peut se faire en temps polynomial. In Eisenbud, D., Robbiano, L., editors, Computa-
tional algebraic geometry and commutative algebra (Cortona, 1991), volume XXXIV of Symposia
Matematica, pages 216—256. Cambridge University Press, Cambridge.

Greuel, G.-M., Pfister, G., Schonemann, H. (1997). Singular. Universitat Kaiserslautern, Germany.
http://www.mathematik.uni-kl.de/wwwagag/.

Hearn, A. C. (1987). Reduce user’s manual, Version 3.3. The RAND Corporation.

Heintz, J. (1989). On the computational complexity of polynomials and bilinear mappings. A survey.
In Applied algebra, algebraic algorithms and error-correcting codes (Menorca, 1987), volume 356
of Lecture Notes in Computer Science, pages 269—-300. Springer, Berlin.

Heintz, J., Schnorr, C. P. (1982). Testing polynomials which are easy to compute. In Logic and Algorith-
mic (Zirich, 1980), volume 30 of Monographie de ’Enseignement Mathématique, pages 237-254.

Lecerf, G., Schost, E. (1997). Maple Package: GB link. Laboratoire GAGE, Ecole polytechnique,
Palaiseau, France. ftp://medicis.polytechnique.fr/pub/tera/soft/gblink.

16 M. Giusti, K. Hagele, G. Lecerf, J. Marchand and B. Salvy

Mehlhorn, K., Naher, S., Uhrig, C. (1997). Library for Efficient Datastructures and Algorithms. Max
Planck Institute for Computer Science, Saarbricken. http://www.mpi-sb.mpg.de/LEDA/leda.html.

Mulmuley, K. (1987). A fast parallel algorithm to compute the rank of a matrix over an arbitrary field.
Combinatorica, 7(1):101-104.

Pardo, L. M. (1995). How lower and upper complexity bounds meet in elimination theory. In Cohen,
G., Giusti, H., Mora, T., editors, Applied algebra, algebraic algorithms and error-correcting codes
(Paris, 1995), volume 948 of Lecture Notes in Computer Science, pages 33—69. Springer, Berlin.

Stillman, M., Bayer, D. (1996). Macaulay 2 User Manual. http://www.math.uiuc.edu/Macaulay?2.

Stofl, H.-J. (1989). On the representation of rational functions of bounded complexity. Theoretical
Computer Science, 64(1):1-13.

Strassen, V. (1972). Berechnung und Programm. I, II. Acta Informatica, 1(4):320-355; ibid. 2(1), 64-79
(1973).

von zur Gathen, J. (1986). Parallel arithmetic computations: a survey. In Mathematical foundations
of computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes in Computer Science,
pages 93-112, Berlin. Springer.

Watt, S., Broadberry, P. A., Dooley, S. S., Iglio, P., Morrison, S. C., Steinbach, J. M., Stutor, R. S.
(1995). Aziom Library Compiler. NAG.

/<

Unité de recherche INRIA Lorraine, Technopéle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex

Unité de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105,

78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS
Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
(France)
http://www.inria.fr
ISSN 0249-6399

