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Abstract: We consider a symmetric random walk of length n that starts at the origin and
takes steps uniformly distributed on the real interval [—1, +1]. We study the large-n behavior
of the expected maximum excursion and prove a very precise estimate. This estimate applies
to the problem of packing n rectangles into a unit-width strip; in particular, it makes much
more precise the known upper bound on the expected minimum height when the rectangle
sides are 2n independent uniform random draws from [0, 1].
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Le maximum d’une marche aléatoire et son application
au placement de rectangles

Résumé : On considére une marche aléatoire partant de l'origine, de longueur n, et
suivant des étapes uniformément distribuées dans D'intervalle [—1,+1]. Cet article étudie,
pour n grand, le comportement du maximum attendu de la marche aléatoire et fournit une
estimation asymptotique précise de I’espérance. L’estimation s’applique alors au placement
de n rectangles dans une bande de largeur unité; en particulier elle permet de rendre beau-
coup plus précise la borne supérieure sur la hauteur d’un tel placement lorsque les cotés des
rectangles sont des variables aléatoires uniformément distribuées sur I'intervalle [0, 1].
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Abstract

Let Sp, ..., S, be a symmetric random walk that starts at the origin
(So = 0), and takes steps uniformly distributed on [—1,+1]. We
study the large-n behavior of the expected maximum excursion and
prove the estimate

/2 1 /2
E max Sk = —n_c_|__ _n_1/2+0(7’l,_3/2),
0<k<n 3T 5V 3nr

where ¢ = 0.297952.... This estimate applies to the problem of
packing n rectangles into a unit-width strip; in particular, it makes
much more precise the known upper bound on the expected min-
imum height, 7 + %Emaxosjgn S; + % =7+ O(n'/?), when the
rectangle sides are 2n independent uniform random draws from [0, 1].

1 Introduction

We compute the large-n behavior of the expected maximum of a symmetric
random walk S, = >, 1<, Z&, n > 0, with the initial position Sy := 0, and
with steps Zj drawn independently and uniformly at random from the interval
[—1,+1]. Our result is applied to strip packings of rectangles and sharpens an
expected-height estimate of Coffman and Shor [3] for rectangles with dimensions
drawn independently and uniformly at random from [0, 1].

In broad outline, the analysis begins with an explicit formula for E maxo<g<n S
which involves an awkward combinatorial sum. The asymptotic analysis of this
sum is approached via Rice’s method, which in turn entails the asymptotics of
the integral

n )

e x
I, = 1-— — | d=. 1
/(; H I2+]2 z ( )

ji=1

4The work of Philippe Flajolet was supported by the Long Term Research Project ALCOM-
IT (# 20244) of the European Union.



Interesting in its own right, the analysis of I, is given in Section 2, where we

prove the following large-n asymptotic behavior.

Theorem 1 For the integral in (1),

_ |7 _3/2 7_\/37" 1/2 —1/2
In_\/;n + 10 n/'*+0(n ).

Then Section 3 proves our main result.

Theorem 2 The expected mazimum in n steps of the random walk Sy, s

_ 2 L /2 1 -3/2
Eo?kafns’“_ 37r_c+5 37 +0(n ),

where a numerical evaluation gives the constant ¢ = 0.297952 .. ..

It will be clear that coefficients of further lower-order terms could be calculated
for Theorem 2, but it will be equally clear that the calculations quickly become

very awkward.

We apply Theorem 2 to the average-case analysis of the following simple
algorithm for obtaining short packings of n rectangles into a semi-infinite strip
of width 1 (rectangles have widths at most 1, they can not be rotated, and they
can not overlap each other or the boundaries of the strip). The algorithm is

illustrated in Figure 1.
Algorithm:

1. Stack the rectangles with widths exceeding 1/2 along the left edge of the
strip in order of decreasing width. Let Hy;5 denote the height altained by

these rectangles.

2. Starting at height Hy o, stack the remaining rectangles along the right edge

of the strip in order of increasing width.

3. Slide the stack on the right down until it rests on the bottom of the strip,
or a rectangle in the right stack comes in contact with a rectangle in the

left stack, whichever comes first.

4. Repack the rectangles lying entirely above Hy o into two stacks, one against
the left edge of the strip and the other along the right edge. Pack these
rectangles in decreasing order of height, with the i-th rectangle being placed

on the shorter of the two stacks created by the first i — 1 rectangles.

Let X;,Y; <1 be the width and height dimensions of rectangle i and define

fw= >, Y- > Y (0<y<l/2

1/2—y<X,;<1/2 1/2<X:i<1/2+y

(2)

It is not hard to verify that the height of the packing produced by the algorithm
at the end of step 3 is Hq 9 + maxo<y<1/26(y), so the final height H after step

4 is bounded by

1 1
H<H - s -
SHijppt g max () +3

2

(3)
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Figure 1: A packing after step 3 of rectangles Ry,..., Ri5. In the
4*h step Rg would be moved over and put on top of Rs.



For an average-case analysis, we adopt the uniform model in which the X; and
Y; are 2n independent uniform random draws from [0, 1]. Then we obtain

1 1
EH§E+§E max Sy + (4)

4 0<k<n 2’

since as observed in [3], maxo<y<1/2 6(y) is equal in distribution to maxo<x<n Sk-
We have EH = 7 + O(n1/2) from classical results, but by substitution of The-
orem 2 into (4), we obtain a much more precise estimate of the bound.

Theorem 3 In the uniform model, the expected height after step 3 is

n 2n 1 2 _1/2 _3/2
1tV3r etsygn o),

and so after the final step, step 4, the expected height is bounded by

n n 1—c¢ 1
EH < = AT A TR -3/2
<TitVet T Traer | o)
with ¢ = .297952 . . ..

We remark further on this bound in the last section.

2 Asymptotics of I,

We begin with a vital, but easily proved fact, viz., that the integral I,, converges
for all n > 1. To see this, it is enough to observe that

1_11]32‘1sz - 1_11[1+0(ri2)]
= 1-[140(5)] = 0(-)

Before giving the proof of Theorem 1, we need a few lemmas.
Lemma 1 Let j > —1 and a > 0. Then

¢ —nw,,.j F(j + 1) e

Proof: Let y = nw. Then

a X 1 na .
e "wdw = —- e Yy d
/(; n.?+1 /0 y] Y

- # [r(j+1)—Lme‘y¢dy], (6)

a



and since

d T /e . o d .
el -y — e i o LT
12 [/x € y]dy]_ e "x —[e™"2!],

as ¢ — 0o, we have, by ’Hospital’s rule,

/ e Yy dy ~ e (na)’,

a

as n — oo, which on substitution into (6) gives (5). |

Lemma 2 Let f,(z), n > 1, and f(z) be analytic for |z| < r, and let f,(0) =
f(0) =0 and f'(0) # 0. Furthermore, let f,(z) converge uniformly to f(z) for
|z| < r. Then

(i) there exist ri,79 > 0 and N > 0, such that for n > N, f(z) and fn(2)
are univalent for |z| < r1. The functions z = g(w), z = gp(w), which are the
respective inverses of w = f(z), w = fu(2), are univalent for |w| < ra. In
addition, g,(w) converges uniformly to g(w) for |w| < ra.

(ii) there exists a k > 0 such that

|'lU| m+1 s
<k|— , |w|<7,n>N,m20.
3

Proof: Part (i) follows from a careful examination of the inverse function
theorem for analytic functions applied to the sequence {f,(z)}. Part (ii) then
follows from the Cauchy estimate for the coefficients of the power series for
gn(w). We omit the details. |
Let

1 n -2
wp(z) = EZ]H(I + 2—22), n>1, (7
j=1

Weo(2) = /Oln(1+x2z)dm, (8)

where In is interpreted to be the principal value of the logarithm. Thus, w,(2)
and weo(z) are analytic in the region D defined as the complex plane minus the
slit [—o0, —1]. The functions wy(z) and we(z) play a critical role in the proof of
Theorem 1. In the next lemma, we collect various properties of these functions.

Lemma 3 The functions w,(z), weo(z) satisfy the following:

(i) imy oo wn(2) = weo(2), 2 € D;

(ii) wn(z) and we (2) are strictly increasing for 0 < z < 00; Wy (0) = W (0) = 0,
and lim, _co wp(2) = lim, oo Weo (2) = 00

(iii) for 0 < r < 1, limy— oo wn(2) = w(z) uniformly for |z| < r;

(iv) w',(0) = 1/3.



Proof: Part (i) follows from the fact that wn( ) is the Riemann sum for weo(2)
and part (ii) follows from the fact that In(1 + z) is strlctly increasing for 0 <

z < 0o, with In(1 4 0) = 0 and lim, o In(1 4+ z) =
To verify (iii), write

jln -2

|Weo (2) — wn(2)| < Z/ |In(1+ z22) — In(1 + i—zz)|dr

(G=1)/n
and observe that, for |z1], |z2] < 7,

|22 — 21|
1—7r

[In(1 4 21) —In(l + z2)| =

/22 dz
<
o 14z ™

Substituting z2z for z; and £ 22 for z, we obtain from (9) and (10)

|Weo(2) — wn(z

which proves (iii).
Differentiation gives

12
wl(2) :/0 ———dz, z €D,

1+ x2z

and in particular, w/_(0) = fol z?dz = 1/3, as desired for part (iv).
From the power series expansion for In(1 + z) we get

= E(_l)k_lAnkzka |Z| < 1a
k=1
with

Lok
Ank = En2k+l E] '
ji=1

(10)

(12)

(13)

In the sequel, we only need A,,1, A2 which we rename as A,, and B,,. Formulas

for A,, and B,, are well known and yield

1 1

A, = -+ —
3+2 +O(n2)
1

B, = —

Proof of Theorem 1: Rewrite (1) as

[} n -2
In:/ 1 —exp —Zln(l—}—j—z) dx.
0 i=1 z

6

(14)

(15)

(16)



In terms of z = n?/x?, this becomes

I, = E/ [1 — e mwn(2)| ,=3/2g, (17)
2 Jo

where w,(z) is given by (7). Integration by parts then yields

[e¢] d ’n
I, = n2/ 12w (x) 2n gy (18)
0

dz

Let z = z,(w) be the inverse of w = wy,(z). By Lemma 3(ii), z,(w) is defined
for 0 < w < 00, and so (18) may be rewritten

I, = n2/0°o[zn(w)]—1/2e—”wdw. (19)

The power series for z, can be computed by inverting the power series in (12)
for wy(z). Thus, we can conclude from (12) and Lemmas 2 and 3 that, for some
0<a<l,
w B, , 3
zn(w):A—n Ew +0(w”), 0 <w<a, (20)
with the constant factor hidden in the O-term being the same for all n, up to a
factor of (1 4+ O(n~1!). Taking the square root of (20), we find, for 0 < w < a,

B
—1/2 _ 41/2, -1/2 _ _Dn_ 172 . 3/2
272 = AL 2t 2A2/2W/ +Ow??), (21)
where w'/2 > 0, and the hidden constant factor is still uniform in n.

We now rewrite (19) as

I = /0 K(w)dw + /aoo K(w)dw, (22)

where
K(w) = n?[zp(w)] " 2™,

From Lemma 2 we obtain that z,(w) increases in both n and w, for w > 0.
Hence, for large n,

/00 Kw)dw < n?[z,(a)]"'/? /00 e "dw
< nlem(a@)] 2, (23)

From (14), (15), and (21), we get, for 0 < w < a,

2—1/2(.w) = |37z 4 ﬁ + O(i) w12 _ g + 0(1) wl/? 4+ 0(.w3/2)
n 4n n? 20 n ’
(24)



the hidden constant factor in O('w3/2) being independent of n. Combining this
estimate with Lemma 1, we get

/‘1 K(w)dw = n* [3_1/2F(%) + 31/2F(%) - 33/2F(%) + O( ! . (25)

nl/2 An3/2 20n3/2 n5/2)

Finally, we insert F(%) = /7 and F(%) = % w into (25), then add (25) to (23)
and obtain the result of Theorem 1. |

3 Emaxg<i<n Si: Explicit Formulas

The density of the position S, of the random walk is well known [4] and given

by
) = ey oV () ek -2

where as usual y* := max(y,0). The distribution of the maximum of the random
walk is given by the Pollaczek-Spitzer identity [6]. For the first moment we have

0<k<n

E | max Sk] = ZH:E[S:]/]@’. (27)
k=1

To evaluate ES,': using (26), the following combinatorial identities will be useful.

Lemma 4 For n > 0, we have

= ey ()

Proof: For any function F'(z) defined for all real «, let AF(z):= F(z+1)—
F(z). An induction argument establishes

n

A"F(z) = (-1)" Y (1) CL)F(I + ). (28)

j=0
Also by induction, one proves in particular that

A"(E") =nl, A" = (n+ Dz + g(n + 1), (29)

In (28), let F(z) be 2™ then 2"+, and put z = 0. The lemma follows from (28)
and (29). |



Returning now to the calculation of ES,':, write

+ _ , , o - _ 1\ .
ES] —/0 zfn(x)dz = 27(n — 1)! Jz:%( 1) <j)In]: (30)
where "
L= [ (v = 2 — )" Led. (31)
max(0,2j —n)

To compute I, let y = & — [2j — n] and consider the following cases.

Case 1. n/2 < j < n.Then

2
I,; = / y* T (y+ 25 —n)dy
0
2n+1(n _j)n+1 n AN

Case 2. 0<j < n/2. Then

2(n—j)

Lnj = /n_zj vy + 25 — n)dy
_ —% 20+ e (=2 (39)
Now substitute (32) and (33) into (30) and let k = n — j. We get
ESH= - ﬁ(_m ]z:(—l)j <’;)j"+1 + (2-_1):)! Jzi:o(_l)j <?>J"
R CEEC

By Lemma 4, the first two terms on the right-hand side of (34) cancel, so we
are left with

2(=1)n Sn\ .

ESH = -1y —n/2)" 35

Pl s cw(G)u-n) (35)
n/2<j<n

This sum does not seem to simplify, and adding the summation in (27) does not

help. But to make an asymptotic analysis easier, we can convert (35) into an

integral form using Rice’s method as follows.

Let ES,': = kz?Dk to allow neater expressions. Then
(=D* <k’) : k1 _ L (s — k/2)"
Dk: —IJ . _]—]{7/2 + = — dS,
k! k/;ﬂf ) J ( ) 27 Jo, s(s—1)---(s — k)



where Cy is the contour shown in figure 2, that consists of a half circle with
the diameter boundary passing through the real value k/2. The integral rep-
resentation follows from Cauchy’s theorem, since the only singularities of the
integrand in (36) are poles, and for N > k the residues at the poles inside Cn
are just those terms of the sum.

ki2 k

Figure 2: Integration contour for equation (36)

Let F(s) denote the integrand in (36). By one more application of Cauchy’s
theorem, we may replace Fj(s) by Fy(s)—11in (36). A simple calculation shows
that Fi(s) — 1 = O(|s|7%) as s — oco. Hence, as N — oo, the contribution of
the half circle to the integral vanishes, and we conclude that

Dy = — 1| ds, (37)

1 k/2+ic0 [ (5—]€/2)k+1
s(s—=1)---(s—k)

2m k/2—ico

We can simplify (37) as follows, with the resulting form depending on the parity
of k,

1 [ i z2
Doy = = =T =2 | de, n>1, 38
’ W/o Eww bonE (%)
1 [ - z?
Dop_1 = — 1-J——— | dz, n>1. 39
n = 2 N g=p | 2 (39)

10



4 Emaxg<i<n Si: Asymptotics

The leading term in Emaxo<y<n St is easy to find, since the functional central

limit theorem states that the process (05\75,15 > 0) converges in distribution to

standard Brownian motion (¢? = 1/3 is the variance of the uniform step distri-
bution on [—1,+1]). The probability that the maximum of standard Brownian
motion starting at the origin exceeds z in the time interval [0,¢] is given by

2[1 — ®(z/\/1)] [4, p. 175], so we obtain

2 2
1 ~ — -z /2 :
P(Oglkaé(n Sk > y) 27 /—\y/— ’ dr,

as n — 0o. An integration over 0 < y < co then shows that

Emax0<k<n Sk 2
_ T araR TR -
vn V 37’

as n — oo, the desired constant. This constant will be verified below in an
analysis that also yields lower order terms.

Note that formula (38) is I, /m, where the asymptotics of I, are given in
Theorem 1. An analysis of (39) leads us to a similar asymptotic result, as
shown below.

Lemma 5 We have

1 7 [3
D= ——k324 [ 22 L Ok, 40
T 9V6n TVt T ( ) (40)

Proof: Theorem 1 proves (40) for even k. For odd k we need the asymptotics
of
[e%e] n ,1‘2
Jn = 1-— ——— | dz. 41
IR (41)

i=1

We prove next that

T = [ En32 2 33T a1y, (42)
3 40
The proof of (42) mimics that of Theorem 1. We replace j by j — 1/2 in (16),
so that now
_1y (G —1/2)°
j=1
With this replacement, Lemma 3 still holds, but we must now remove the term

% from the asymptotic formula for A,, given in (14). (The asymptotic formula

for B, remains the same.) This in turn forces the removal of the terms % and

11



% from (24) and (25), respectively. Carrying out these changes yields

(42) as desired.
Now write Dy = LJ441 for odd k. Letting n = (k + 1)/2 in (42) and using

(k + 1)1/2 JRYE: —|—O(/<:‘1/2)
(k177 = 074 21024 o),
we obtain (40). a
By Lemma 5, we now have
E;j: _ k(ilj_kl) _ éwk_l/er ﬁk_B/Q-F@k, (43)

where the remainder term satisfies 0, = O(k’_5/2).

Proof of Theorem 2: Express Emaxo<g<n S as the sum in (27), and then
substitute for ES;} /k from (43) to obtain

n

" EStH 1 < 1
E max S; = ko— B2 4 k3240, 44
o<k<n * k 671'; 20\/672 (44)

k=1
where ©, := >, 1<, 0r. Now apply the Euler-Maclaurin formula to the last
two sums in (44). Standard manipulations show that (see e.g. [7, Ex. 3.2, p.
292])

SO = 20?4 ((1/2) 4 02 4 O(n= ) (45)
k=1
Zk_3/2 — ¢(3/2) — 2072 4 O(n—P1?), (46)
k=1

where ((s) = > .51 k7%, R(s) > 1, is the Riemann zeta function, and where,
by analytic continuation (see e.g. [1], formula 23.2.9),

¢(1/2) = lim Z L1122 _ 9,172

n—oo

1<k<n

Substituting (45) and (46) into (44), we get

]2 L /2 ~3/2
Eorsnkasxn Sy = 37rn cn + 5 3ﬂ_n +0(n ), (47)

where
o [ew/2) | <(3/2)
e = [ N +20¢67+@”]' (48)

12



Now 8, = O(k_5/2) so an easy application of the Euler-Maclaurin formula gives
Ek>n 0, = O(n_?’/z), and therefore O, = O, + O(n_?’/z) and ¢ ;= ¢ =
¢n +O(n=3/?). Thus, we can replace ¢, by ¢ in (47), since the error introduced
in doing so is of the same order as the error term already in (47). The limit
n — oo in (44) yields

ES+ k,—l/E k_3/2
eoo = @, = ko _ — ) ,
20 Z( k 67 20V6n

E>1 E>1

so on substitution into the limit n — oo of (48), we get

__ a2 | B/2) O S ik
=7 Ver T ver ,;( 6 20\/6_7) ;o (49)

where ES} is determined by (35). Equation (49) and straightforward compu-
tations show that ¢ = .297952 ... is precise to 6 decimal digits, so Theorem 2 is
proved.

Remark. As might be expected, the constant ¢ can be computed to much
greater accuracy than that given above. With Maple doing the computations,
we demonstrated this, basing our numerical method on Romberg acceleration

(see e.g. [5, §11.12]). Our results indicate that ¢ — ¢, | & %"&%2, and that

c = 0.2979521902800477642. . .,

with an error of at most 10~ 1°.

5 Final Remarks

It would be interesting to know whether (4) is tight, or asymptotically so, within
a constant term, i.e., does there exist a constant such that for any algorithm,
T+ %E maxXo<g<n S i within that constant of the expected packing height for
all n sufficiently large? Note that this would follow if it could be shown that,
with a probability that tends to 1 as n — oo, all rectangles above the point
where the downward slide of the right stack is stopped (see Figure 1) have a
width at least 1/3.

The rectangle packing problem is an extension of the square packing problem
studied earlier in [2], in which square sizes are determined by uniform random
draws from [0, 1]. For squares, the Y; in (2) need to be changed to X;. The
problem is again to find the expected maximum positive excursion of an n-step
random walk starting at the origin, but the random walk is now biased and
nonhomogeneous. It is known that the expected packing height is

EH = %" +0(n'/?),

13



where the first term is EH;/5 and the second term is the expected maximum of
the random walk. However, the techniques in [2] shed no light on the hidden
multiplicative constant (much less on lower-order terms).
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