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Abstract: Given three partially overlapping views of a scene from which a set of point
correspondences have been extracted, recover the three trifocal tensors between the three
views. We give a new way of deriving the trifocal tensor based on Grassmann-Cayley al-
gebra that sheds some new light on its structure. We show that our derivation leads to a
complete characterization of its geometric and algebraic properties which is fairly intuitive,
i.e. geometric. We give a set of algebraic constraints which are satisfied by the 27 coef-
ficients of the trifocal tensor and allow to parameterize it minimally with 18 coefficients.
We then describe a robust method for estimating the trifocal tensor from point and line cor-
respondences that uses this minimal parameterization. Our experimental results show that
this method is superior to the linear methods which had been previously published.
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Estimation non-lineaire de la géométrie projective associée a
trois vues

Résumé : Etant données trois vues d’une méme scéne pour lesquelles on dispose d’un
ensemble de de triplets de points-image en correspondance, il s’agit de déterminer les trois
tenseurs trifocaux qui lient ces trois vues. Une nouvelle présentation du tenseur trifocal
basée sur I’algebre de Grassmann-Cayley permet de mettre en évidence certaines propriétés
structurelles de ces tenseurs. Nous avons ainsi obtenu une caractérisation compléte et assez
intuitive de leurs propriétés algébriques et géométriques. Nous décrivons également un en-
semble de contraintes algébriques qui doivent étres satisfaites par les 27 coefficients de ces
tenseurs. Celles-ci nous permettent de définir une paramétrisation minimale des tenseurs
a I’aide de 18 paramétres. Cette paramétrisation nous a permis de développer une mé-
thode non-linéaire robuste pour I’estimation du tensor trifocal a partir de correspondances
de points et de droites. Nos résultats expérimentaux montrent que cette méthode donne de
bien meilleurs résultats que les méthodes linéaires qui ont été publiées jusque ici.

Mots-clé :  Géométrie multi-vues, Tenseur trifocal, Matrice fondamentale, Algébre de
Grassmann-Cayley, Calibration



A nonlinear method for estimating the projective geometry of three views 3

1 Introduction

This article deals with the following problem:
Given three partially overlapping views of a scene from which a set of point correspon-
dences have been extracted, recover the three trifocal tensors between the three views.

This problem is important because once the trifocal tensors are known, they can be
used for a variety of useful tasks, such as transfer [BBHP92, BGP93] computation of the
perspective projection matrices of the three views, and 3D reconstruction of the scene up
to a projective transformation. They could also be used, but this has not yet been much
explored, to perform Euclidean self-calibration [AZH96].

Given three views, it has been shown originally by Shashua [Sha94b] that the coordi-
nates of three corresponding points satisfied a set of algebraic relations of degree 3 called
the trilinear relations. It was later on pointed out by Hartley [Har94a] that those trilinear
relations were in fact arising from a tensor that governed the correspondences of lines bet-
ween three views which he called the trifocal tensor. Hartley also correctly pointed out
that this tensor had been used, if not formally identified as such, by researchers working on
the problem of the estimation of motion and structure from line correspondences [SA90b].
Given three views, there are of course three such tensors, depending upon which view is
selected as the one one wants to predict to.

The trinocular tensors play the same role in the analysis of scenes from three views as
the fundamental matrix play in the two-view case, therefore the question of their estimation
from feature correspondences arise naturally. The question of estimating the fundamental
matrix between two views has received considerable attention in the last few years and ro-
bust algorithms have been proposed by a number of researchers [DZLF94, ZDFL95, TZ97,
Har95]. The main difficulty of the estimation arises from the fact that the fundamental
matrix must satisfy one nonlinear constraint, i.e. that its determinant is equal to 0, which
prevents the straightforward application of quadratic least-squares methods.

The related question for the trinocular tensor has received much less attention except for
the obvious application of quadratic least-squares methods [Har94a, Sha95]. What makes
the use of these methods even more questionable in the case of the trinocular tensor is the
fact that it is much more constrained than the fundamental matrix: even though it super-
ficially seems to depend upon 26 parameters (27 up to scale), these 26 parameters are not
independent since the number of degrees of freedom of three views has been shown to be
equal to 18 in the projective framework (33 parameters for the 3 perspective projection ma-
trices minus 15 for an unknown projective transformation) [LV94]. Therefore the trifocal
tensor can depend upon at most 18 independent parameters and therefore its 27 compo-
nents must satisfy a number of algebraic constraints, some of them have been elucidated
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4 0. Faugeras, T. Papadopoulo

[SW95, AS96]. Unfortunately, since those constraints are a) partially unknown and b) com-
plicated, no estimation algorithm has been published yet that takes them into account.

The contributions of this paper are four-folds. First we give a new way of deriving the
trifocal tensor based on Grassmann-Cayley algebra, second we show that our derivation
leads to a complete characterization of its geometric and algebraic properties, third we give
a set of algebraic constraints which are satisfied by the 27 coefficients of the trifocal tensor
and allow to parameterize it minimally with 18 coefficients, and fourth we describe a robust
method for estimating the trifocal tensor from point and line correspondences that uses this
minimal parameterization. Our experimental results show that this method is superior to the
linear methods which had been previously published. For the sake of brevity, we have in
general omitted the proofs of our theoretical assertions.

We assume that the reader is familiar with elementary Grassmann-Cayley algebra since
the necessary ingredients have already been presented to the Computer Vision community
in a number of publications such as, for example, [Car94, FM95a].

2 Monocular and binocular geometry

We take in this article the viewpoint of projective geometry. We consider that a camera can
be modeled accurately as a pinhole and performs a perspective projection. If we consider
two arbitrary systems of projective coordinates, for the image and the object space, the
relationship between 2-D pixels and 3-D points can be represented as a linear projective
operation which maps points of P3 to points of P2. This operation can be described by a
3 x 4 matrix P, called the perspective projection matrix of the camera:

m =z vy  ~xyzT|PT =MTPT 1)

This matrix is of rank 3. Its nullspace is therefore of dimension 1, corresponding to a
unique point of P3, the optical center C of the camera.

We give a geometric interpretation of the rows of the projection matrix. We use the
notation:

P =17 AT 07] 2

where T, A, and © are the row vectors of P. Each of these vectors represent a plane
in 3D. These three planes are called the projection planes of the camera. The projection
equation (1) can be rewritten as:

z:y:z2=(T,M): (A, M) :(6,M)

INRIA



A nonlinear method for estimating the projective geometry of three views 5

where, for example, (', M) is the dot product of the plane represented by T" with the point
represented by M. This relation is equivalent to the three scalar equations, of which two
are independent:

(A, M) —y(T,M) =0 y(O,M)—-2(A,M)=0 2(A,M)—2z(®,M)=0 (3)

The planes of equation (I', M) = 0, (A,M) = 0 and (®, M) = 0 are mapped to the
image lines of equations x = 0, y = 0, and z = 0, respectively. We have the proposition:

Proposition 1 The three projection planes of a perspective camera intersect the retinal
plane along the three lines going through the first three points of the standard projective
basis.

The optical center is the unique point C which satisfies PC = 0. Therefore this point
is the intersection of the three planes represented by T', A, ®. In the Grassmann-Cayley
formalism, it is represented by the meet of those three planesT" A A A @. This s illustrated
in Fig. 1. Because of the definition of the meet operator, the projective coordinates of C are
the four 3 x 3 minors of matrix P:

Proposition 2 The optical center C of the camera is the meet ' A A A © of the three
projection planes.

The three projection planes intersect along the three linesT' A A, A A®and ® AT
called the projection rays. These three lines meet at the optical center C and intersect the
retinal plane at the first three points e, eo and es of the standard projective basis.

In the case of two cameras, it is well-known that the geometry of correspondences
between the two views can be described compactly by the fundamental matrix, noted F 12
which associates to each pixel m; of the first view its epipolar line noted /,,,, in the second
image:

L, ~ Fiamy

similarly Fy; = FY, associates to a pixel m of the second view its epipolar line I,,, in the
first one.
The matrix F15 (resp. Fsq) is of rank 2, the point in its null-space is the epipole e »
(resp. the epipole es 1):
Fioe1 o = Fo1e1 =0

RR n°3221



6 0. Faugeras, T. Papadopoulo

Figure 1. Geometrical interpretation of the three rows of the projection matrix as planes.
The three projection planes T', A and ® are projected into the axes of the retinal coordinate
system. The three projection rays intersect the retinal plane at the first three points of the
retinal projective basis. The three projection planes meet at the optical center.

INRIA



A nonlinear method for estimating the projective geometry of three views 7

3 Trinocular Geometry

3.1 Trifocal geometry from binocular geometry

When we add one more view, the geometry becomes more intricate, see figure 2. When the
three optical centers Cy, Cy, Cj are not aligned they define a plane, called the trifocal plane,
which intersects the three image planes along the trifocal lines ¢4, ¢2, t3 which contain the
epipoles e; ;, @ #ji=1,...,3,j = 1,...,3. The three fundamental matrices F13, Fa3
and F'3; are not independent since they must satisfy the three constraints:

T T T
ey 3F12e13 =e3,Fozer; =e1,F31e30 =0 4)

which arise naturally from the trifocal plane.

Figure 2: The trifocal geometry.

This has an important impact on the way we have to estimate the fundamental matrices
when three views are available: very efficient and robust algorithms are now available to
estimate the fundamental matrix between two views from point correspondences [ZDFL95,
TZ97, Har95]. The constraints (4) mean that these algorithms cannot be used blindly to
estimate the three fundamental matrices independently because the resulting matrices will
not satisfy the constraints causing errors in further processes such as prediction.

RR n°3221



8 0. Faugeras, T. Papadopoulo

Indeed, one of the important uses of the fundamental matrices in trifocal geometry is the
fact that they in general allow to predict from two correspondences, say (m1, mz) where
the point mg should be in the third image: it is simply at the intersection of the two epipolar
lines represented by F13m; and Fe3my, when this intersection is well-defined.

It is not well-defined in two cases:

1. Inthe general case where the three optical centers are not aligned, when the 3D points
lie in the trifocal plane (the plane defined by the three optical centers), the prediction
with the fundamental matrices fails because, in the previous example both epipolar
lines are equal to the trifocal line ¢3.

2. In the special case where the three optical centers are aligned, the prediction with the
fundamental matrices fails always since, for example, F13 ~ Fa3.

For those two reasons, as well as for the estimation problem mentioned previously, it is
interesting to characterize the geometry of three views by another entity, the trifocal tensor.

The trifocal tensor is really meant at describing line correspondences and, as such, has
been well-known under disguise in the part of the computer vision community dealing with
the problem of structure from motion [SA90b, SA90a, WHA92] before it was formally
identified by Hartley and Shashua [Har94a, Sha95].

3.2 The trifocal tensors

Let us consider three views, with projection matrices P,,n = 1,2,3, a 3D line L with
images [,,. Given two images /; and [, of L, L can be defined as the intersection (the meet)
of the two planes P 1; and P 1;:

L~ P71 a PLl,

The vector L is the 6 x 1 vector of Plicker coordinates of the line L.
Let us write the right-hand side of this equation explicitly in terms of the row vectors of
the matrices P; and P}, and the coordinates of 1; and 1:

L~ (T + A +130;) A (LTk + A, + 1RO)

By expanding the meet operator in the previous equation, it can be rewritten in the following
less compact form with the advantage of making the dependency on the projection planes
of the matrices P; and P explicit:

FjAFk I‘jAAk FjA@k
Lli | AjaTy AjAA; AjA®; | (5)
@jAAk @jAAk @jA@k
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A nonlinear method for estimating the projective geometry of three views 9

This equation should be interpreted as giving the Pliicker coordinates of L as a linear combi-
nation of the lines defined by the meets of the projection planes of the perspective matrices
P, and Py, the coefficients being the products of the projective coordinates of the lines /;
and ;.

The image I; of L is therefore obtained by applying the matrix P; (defined as the 3x6
matrix P, = [AT A @ ©f ATT TT A Al], see [FM95a]) to the Pliicker coordinates
of L, hence the equation:

1; ~ 751(7)311] A 'P{lk) (6)

which is valid for i # j # k. Note that if we exchange view j and view k&, we just change
the sign of 1; and therefore we do not change /;. A geometric interpretation of this is shown
in figure 3. For convenience, we rewrite equation (6) in a more compact form:

L ~ T, 1k) (7

Figure 3. The line I; is the image by camera ¢ of the 3D line L intersection of the planes
defined by the optical centers of the cameras j and & and the lines /; and [y, respectively.

This expression can be also put in a slightly less compact form with the advantage of
making the dependency on the projection planes of the matrices P.,,,n = 1, 2, 3 explicit:

L~ [1TGhy, 1763, 17G3,)" 8)

This is, in the projective framework, the exact analog of the equation used in the work of
Spetsakis and Aloimonos [SA90b] to study the structure from motion problem from line
correspondences.

RR n°3221



10 0. Faugeras, T. Papadopoulo

The three 3 x 3 matrices G}',n = 1, 2, 3 are obtained from equations (5) and (6):

[Aiaeiarjark] [Aiveivrijk] [Aiaeivrjvek]
Gi = | [Ai,Oi,A;,Ti] [A;,0;,A;,Ay] [Ai,O;, A, O
[Aia Gia ®ja Fk] [Alv Giv ®j7 Ak] [AZJ Gia Gja Qk]

Note that equation (6) allows us to predict the coordinates of a line I, in image 4 given
two images /; and [, of an unknown 3D line in images j and %, except in two cases:

1. When the two planes determined by 7; and [, are identical i.e. when [; and [, are
corresponding epipolar lines between views j and k. This is equivalent to saying that
the 3D line L is in an epipolar plane of the camera pair (7, k). The meet that appears
in equation (6) is then O and the line I; is undefined, see figure 4. If L is not in an
epipolar plane of the camera pair (4, 7) then we can use the equation:

I ~ Pu(PT1; & PTL)

to predict {;, from the images /; and /; of L. If L is also in an epipolar plane of the
camera pair (¢, ) it is in the trifocal plane of the three cameras and prediction is not
possible by any of the formulas such as (6). We will see in the next sections how the
problem can be solved in the case of point correspondences.

2. When [; and [;, are epipolar lines between views 7 and j and ¢ and &, respectively.
This is equivalent to saying that they are the images of the same optical ray in view ¢
and that /; is reduced to a point (see figure 5).

Except in those two cases, we have defined an application 7; from P*? x P*2, the Cartesian
product of two duals of the projective plane, into P*2. This application is represented by an
application 77; from R? x R? into R3. This application is bilinear and antisymmetric and is
represented by the three matrices G, n = 1, 2, 3. It is called the trifocal tensor for view 1.

1

The properties of this application can be summarized in the following theorem:

Theorem 1 The application 7; : P** x P** — P*? is represented by the bilinear applica-
tion 77; such that 77(1;,1x) = Pi(P] L; A PL1i). T has the following properties:

1. Itis equal to O iff

(@) 1; and [, are epipolar lines with respect to the sth view, or

(b) I; and I are corresponding epipolar lines with respect to the pair (j, k) of
cameras.

INRIA
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<
N\
, Ch

Cj
Figure 4: When [; and [}, are corresponding epipolar lines, the two planes ’P]le and P11,
are identical and therefore 77;(1;,1;) = 0.

2\

Cj

Figure 5: When [; and [, are epipolar lines with respect to view 1, the line /; is reduced to a
point, hence 7;(1;,1;) = 0.
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12 0. Faugeras, T. Papadopoulo

2. Letly; be an epipolar line with respect to view 7 and I;;, (resp. /;;) the corresponding
epipolar line in view 7 (resp. in view j), then for all lines /; in view j not equal to [;;:
Ti(L, ki) =~ Lig.

3. Similarly, let ;; be an epipolar line with respect to view ¢ and /;; (resp. Ix;) the
corresponding epipolar line in view 4 (resp. in view k), then for all lines [ in view &k
not equal to Iz T3(155,1x) =~ L;;

A more pictorial view is shown in figure 6: the tensor is represented as a 3 x 3 cube, the
three horizontal planes representing the matrices G, n = 1,2, 3. It can be thought of as a
black box which takes as its input two lines, /; and /;, and outputs a third one, /;.

Gl
1 T2 3 ‘ ‘ 2
=1 5 - ~
i U
1 ' k 1
— d K b
¢l |
K B 2
F=Uo5 o8 — -~k
| P B
; — k 1
| — ol
(O ! k

Figure 6: A three-dimensional representation of the trifocal tensor.

3.3 Algebraic and geometric properties of the trifocal tensors

The matrices GI',n = 1,2, 3 have interesting properties which are closely related to the
epipolar geometry of the views j and k. The nullspace of G is the set of lines [} such that
T(1;,1%) has a zero in the n-th coordinate for all lines /;. The corresponding lines I; such
that I; = 77;(1;,1%) all go through the point represented by e,,, » = 1,2, 3 in the i-th retinal
plane. This is true if and only if [} is the image in the k-th retinal plane of the projection
rayA; A©®;(n=1),0; AT;(n=2)and I'; A A; (n = 3). Theorem 1 shows that /; is
independent of /; and represented by e,, x e; ;. We have proved the following proposition:

INRIA



A nonlinear method for estimating the projective geometry of three views 13

Proposition 3 The matrices G7* are of rank 2 and their nullspaces are the three epipolar
lines in the k-th retinal plane of the three projection rays of camera i. These three lines
intersect at the epipole ey, ;.

A similar reasoning applies to the matrices G"%"

Proposition 4 The nullspaces of the matrices G?” are the three epipolar lines, noted
l7,m = 1,2,3, in the j-th retinal plane of the three projection rays of camera . These
three lines intersect at the epipole e; ;, see figure 7.

The three corresponding epipolar lines for the pair (i, k) are obtained as 7;(1;,17),n =
1,2,3 for any I; not equal to I7. They intersect at the epipole e;. Similarly, the three
corresponding epipolar lines for the pair (7, j) are obtained as 7;(17,1x),n = 1,2,3 for
any [ not equal to /. They intersect at the epipole e; ;.

Algebraically, this implies that the three determinants det(G}'), n = 1,2, 3 are equal to
0. Another constraint implied by propositions 3 and 4 is that the 3 x 3 determinants formed
with the three vectors in the nullspaces of the G?,n = 1,2, 3 (resp. of the G**' | n = 1,2, 3)
are equal to 0. It turns out that the applications 7, ¢ = 1,2,3 satisfy other algebraic
constraints which are also important in practice.

Let us assume for simplicity that ¢ = 1 and show that the application 77, noted 7
satisfies 9 algebraic constraints of degree 6 which are defined as follows. Lete,,n =1,2,3
be the canonical basis of R? and let us consider the four lines T (ex,,ex;), T (er,, ;).
T (ek,,e1,) and T (ey,, e, ) Where the indexes k9 and I3 (resp. ks and [3) are different. For
example, if ko = k3 = 1 and Iy = I3 = 2, the four lines are the images in camera 1 of the
four 3D linesT'y AT's, Ay AT3, 'y A Agand Ay A Ag.

These four lines can be chosen in nine different ways satisfy an algebraic constraint
which is detailed in the following theorem (proved in [FM95b]):

Theorem 2 The bilinear mapping 7 satisfies the 9 algebraic constraints of degree 6:
| T(ekzveks)T(ekzaels)T(elzvels) || T(ek27eks)T(elwek:s)T(elzvels) | -
‘ T(elw eka)T(ekzvels)T(elw ela) H T(ekzveks)T(elzvekz.)T(ekzvely,) |: 0 (9

Referring to figure 6, what this theorem says is that if we take four vertical columns of the
trifocal cube (shown as dashed lines in the figure) arranged in such a way that they form a
prism with a square basis, then the expression (9) is equal to 0. Representing each line as
T koks, €IC ..., We can rewrite equation (9) as:

| T ook T kots T ints || T okoks T gk T dats | = | T igks T kots T iz || T okoks T doks T kot |[= 0
(10)

RR n°3221
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The same kinds of relations hold for the other two principal directions of the cube
(shown as solid lines of two different widths in the same figure):

Theorem 3 The bilinear mapping 7 satisfies also the 18 algebraic constraints of degree
6:

| Tkz-ksTkz-l3Tl2-ls H Tkz-ksle-ksTl2-13 | - | TlQ-k:sTkQ-lsle-ls H Tkz-ksTlQ-ksTkz-ls |: 0
(11)

and:

| Tk2k3-Tk2l3-lels- || Tk2k3-Tl2k3-Tl2l3- | - | Tl2k3-Tk2ls-lel3- H Tkzks-Tl2k3-Tkzls- |: 0
12)

Note that these 27 constraints, and the 5 constraints implied by propositions 3 and 4
are not algebraically independent but they must be taken into account when estimating the
trifocal tensor as will be demonstrated in the experimental part of this paper.

3.4 Recovering a coherent set of fundamental matrices from the trifocal ten-
sors

We can then show that the epipolar geometry between the three views, i.e. the fundamental
matrices, can be recovered from the 7;,7 = 1, 2, 3 and that these fundamental matrices are
coherent, i.e. they satisfy equations (4).

Proposition 5 The two fundamental matrices F;; and F;;, can be recovered uniquely from
7.

Proof : We can recover the two fundamental matrices F;; and F;;, from 7; since for each
of them we know the two epipoles and three corresponding epipolar lines, see propositions
3and4. O

The missing link is F ;5. In order to recover it, the simplest is to compute 7; as explained
in theorem 4 and apply the same technique as above.

The question of computing 7; from 7;, j # 4 has already been addressed partially in
[SW95, AS96]. We give a somewhat simpler result here through the following theorem:

Theorem 4 The relation 7; is obtained from 7;,4 # j, from the following relations:

6™ 6™ @™ = (G x Gl L6l x 6l 6™ x 6]

INRIA



A nonlinear method for estimating the projective geometry of three views 15

where Gf(m), k,m = 1,2,3 (resp. ij(m)) is the mth column vector of matrix G¥ (resp.
Gf) and the \,,, n = 1, 2,3 are given, for example, by \y =| T 31T 22T 32 || T 31T 23T 33 |,
A =TT oaTae || T3T2sTaz|land A3 =| T31T 22T 32 || T31T 21T .33 |

A similar result can be obtained for changing from 7; to 7.

Pr(Ai 0 6;) =1 Pi(As A ©;) =1}

Py(Te A A = 8

Figure 7: The lines 77 (resp. [;}), n = 1,2,3 in the nullspaces of the matrices G (resp.
G?') are the images of the three projection rays of camera <. Hence, they intersect at the epi-
pole e;,; (resp. ek ;). The corresponding epipolar lines in camera ¢ are obtained as 7; (17, Ix)
(resp. Z;(15,17)) for I, # I} (resp. 1; # 17).

The important point to note here is that the resulting set of fundamental matrices is
coherent, i.e. they satisfy equations (4).

The perspective projection matrices of the three views can then be recovered uniquely,
for example through the results of Luong and Viéville, [LVV94].

3.5 The trilinearities

So far, we have been working only with lines. It is easy to derive algebraic relations between
corresponding pixels which are necessary conditions for triples of points to be in correspon-
dence. By considering the three points e, £ = 1,2, 3, we can in each image 7 consider the
three lines represented by m; X e, thereby generating three groups of nine trilinear re-
lations in the coordinates of the three pixels m;, e.9. m! 7;(m; x ey, my x e,) For a

RR n°3221



16 0. Faugeras, T. Papadopoulo

fixed view i, it is easy to convince oneself that only four of these nine relations are linearly
independent, since the three vectors m x e,,, m = 1,2, 3 are linearly dependent. Thus we
can talk of the set of the 12 trilinear relations and of the three groups (one per view) of four
trilinear relations. Note that since each group corresponds to a view and we have seen in
proposition 4 that the three trifocal tensors are not algebraically independent, the trilinear
relations between groups are algebraically dependent. The study of this dependence was
done for example in [FM95b].
We also showed there the following proposition:

Proposition 6 A triple of image points (m, mg,m3) is in correspondence iff the coordi-
nates satisfy the four trilinear constraints of any of the three groups.

As shown by Hartley and Shashua, the trilinear constraints can be used to transfer points
from to views to the third. More precisely, if m; and my, are two corresponding pixels in
views j and k, i.e. satisfying the epipolar constraint, then the twelve lines defined in image
i by the twelve trilinear constraints intersect at a single point my.

We mentioned above that this process failed with the fundamental matrixes in two cases.
It is easy to show that this does not happen in the case of the trilinear constraints. In detail:
We saw previously that if the point M is in the trifocal plane, its image in one of the cameras,
for example mg, cannot be predicted from its images m; and my in the other two cameras.
The traces of this plane in the three retinal planes are the three trifocal lines ¢;, : = 1,2, 3.
But the trilinear relations can be used to compute the position of m3 on this line. To show
this, let us assume that m; = a; el,g—l-bl €13, My = ay 6273+b2 €1,M3 = ages3 +b3 €32
are on the trifocal lines. We now prove the following proposition:

Proposition 7 The restriction of any of the 12 trilinearities to the trifocal plane is either
identically 0 or proportional to ayagas + b1bobs.

We saw in section 3.1 that if the optical centers of the three cameras were aligned, it was
not possible to transfer a point, say from views 2 and 3 to view 1, because the two epipolar
lines were identical. This problem does not occur if we use the trifocal tensor 7 ;.

Indeed, let ms and mg be two pixels in images 2 and 3 satisfying the epipolar constraint.
Let I and I3 be two lines going through the points my and ms, respectively. Then, under
the condition of the next proposition, the line 7 (15, 13) intersects the epipolar line of m,
in image 1, which is identical to the epipolar line of mg, at the point m; corresponding to
(mg, mg).

Proposition 8 Let my and mg be two points in images 2 and 3 such that my and mg
satisfy the epipolar constraint. Let /5, I3 be two lines going through the points m, and msg,
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respectively, and such that [, k£ = 2, 3 does not go through the epipole e ;. Then, the point
of intersection my of the line 77 (ly, 13) with the epipolar line in image 1 of mo (which is
identical to the epipolar line of m3) is well defined and is the point in image 1 corresponding
to the pair mg, ms).

These two propositions are the reasons why it is better to use the trifocal tensor than the
fundamental matrices when three views are available.

In the next section, we turn to the problem of estimating the trilinear from point and
line correspondences in such a way that the result is guaranteed to satisfy all the algebraic
constraints described in propositions 3 and 4 and in theorems 2 and 3. We will call these
constraints the trilinear constraints.

3.6 Minimal parameterization of the trifocal tensors

Let us see how the constraints described by the 9 equations (10) can be used to parameterize
the trifocal tensors with 18 parameters.

To do so, we choose two of the constraints of (10), for example ks = 1o =1, k3 = I3 =
2and ky = Iy = 2, k3 = I3 = 3. Notice that 7 .99 is the only vector that appears in both
constraints. In general, the three vectors T .23, T .32 and T .33 are linearly independent, so
that 7.99 can be expressed in the basis they form: T .99 = a1T .93 + asT .30 + a3T .33
Equation (10) then implies that «; + a3 = 0 It is then easy to parameterize the set of
the vectors T .99 that verify the constraint given by ko = lo = 2, k3 = I3 = 3. T .99 =
K [—pg p g, where K is the matrix [T o3 T 32 T 33]. Reporting this value of 7 .55 in the
constraint given by &k, = Iy = 1, k3 = I3 = 2, we obtain a polynomial equation P of total
degree 4, and of degree 2 in p and q.

The trifocal tensor can thus be parameterized by 18 parameters. Since there is a global
scale factor, we can fix for example the first coordinate of ‘7.1 to be 1. All the vectors 7T .11,
T 12, T .21, T 23, T .32 and T .33 are thus described by 17 parameters. Adding p as the 18th
parameter gives a parameterization of the trifocal tensor. Indeed, then 7" .95 can recovered
using the polynomial P. Then, as shown in [FM95a], 7 .13 and 7T .31 can be recovered up
to a scale factor by the formula (7 .12 X (T .22 X (T .23) X (T .33 X T.32))) X (T .23 X
(T.22 X (T.12) X (T.Ql X Tu))) and (T.Ql X (T.22 X (T.gz) X (T.33 X T23))) X
(T 32 X (T22 X (T21) x (T12 X T 11))), respectively. Each of the remaining scale
factors can be recovered using the constraints given by ks = 2, k3 =1, Iy = 3, I3 = 2 and
ko =1, ks =2, Iy =2, I3 = 3, respectively.

It is important to note that, since we have to solve the polynomial P to recover the
trifocal tensor, each vector of 18 parameters gives in fact two trifocal tensors. Both these
two tensors are valid: i.e. they verify all the constraints of trifocal tensors. Thus, there is,
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in general, no way to distinguish between those and both have to be considered: only some
extra information can be of some help.

4 Methods of estimation

We now assume that we have a set of three corresponding images from which triplets of cor-
responding points (one point per image) have been extracted. In this section, we study how
the estimation of the trifocal tensor can be done in such a way that the trilinear constraints
can be taken into account.

As for the fundamental matrix [ZDFL95], estimating the trifocal tensor is done in two
steps. First, we obtain an initial estimate 7;, that does satisfy the trilinear constraints and
second, starting from this estimate, we find a new estimate T that is close to ﬁo and satis-
fies all the trilinear constraints. Once this is done, the resulting tensor can be parameterized
as shown in section 3.6 and non-linear minimization can be used to refine it with respect to
the image data.

4.1 Initial estimate

It is well known [Har94a, Sha95] that an approximation to the trilinear tensor can be esti-
mated linearly. To do so, we neglect the trilinear constraints and take all the 27 coefficients
of the trifocal tensor as unknowns.

We consider pairs of points in each image. Every such pair defines a line and, of course,
pairs of corresponding points give corresponding lines in the three images. We then use eq.
(7) to get the following equation:

which shows that each triplet of corresponding lines provides two linear equations in the
coefficients of 7;. Consequently, as soon as 14 line matches are available (if they are in
general position), the trifocal tensor can be estimated using equations (13). In practice,
we have much more line matches and we use singular value decomposition to get the least
squares solution of the system generated by equations (13). Of course, the coordinates of
points and/or lines have to be scaled properly [Har95] in order to get good numerical results.
The result of this step is a tensor 7;, that gives good estimates for the projection of a line in
image ¢ given its projections in images j and k.
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4.2 Enforcing the constraints

As we will see in section 5, due to the uncertainty on the positions of the points in the
images, the tensor 7;, does not in general satisfy the trilinear constraints. Thus, in order to
obtain a trifocal tensor that can be parameterized by 18 parameters, we have first to enforce
the trilinear constraints.

To do so, we have developed a minimization scheme based on those constraints. To
describe it, we define two different sets of constraints. The first set, S1, consists of the 3
algebraic constraints that state that the ranks of the matrices G}', n = 1... 3 are zero. The
second one, S, consists of the 9 algebraic constraints described by formula (11).

As we will see in section 5, imposing these constraints only is enough to impose all the
other constraints described in section 3.3. Let us call p, the vector of the 27 coefficients
of the trifocal tensor 7;. As for T, p is defined up to a global scale factor. To avoid
this problem, we add the constraint that ||p|| = 1. The core of the minimization is a least-
squares minimization of the algebraic equations of set So with respect to p. This can be
done easily by linearizing those equations and applying a Newton step. If we call C;(p),
the vector of the values of the Ss-constraints at p and J,(p) the Jacobian matrix of those
constraints with respect to p, this step can be written as:

Jo(p)dp = —Cs(p), (14)

where dp is the unknown and represents the increment to apply to p in order to obtain a
refined estimate p + dp. Since Js is a 9x27 matrix, we know that this linear system is
at most of rank 9 (actually it can be shown that it is in general of rank 8 and that there is
a linear relation relating all those constraints), so that the system (14) has infinitely many
solutions: of those, we select the one that is of minimal norm. To avoid steps that will
increase the values of the constraints and to make the minimization slightly more efficient,
the new point is not taken as just p + dp but is merely the point on the segment [p, p + dp]
that minimizes the sum of the squares of the values of the Cy constraints.

Notice that because each of the constraints C is globally homogeneous (of degree 6),
we know (using the Euler relation) that the rows of Jy should be orthogonal to p when
the constraints are satisfied. Because of this, the step dp remains in the tangent plane at
p to the sphere defined by ||p|| = 1, which means that this iteration step is compatible
with that constraint (i.e. ||p + dp|| =~ 1 since ||dp|| is usually small, which means that the
minimization keeps p away from the singularity p = 0). Of course, ||p|| = 1 is imposed at
the beginning of every new iteration.

Unfortunately, this step alone is not sufficient to impose the S; constraints and practi-
cally, we have noticed that after an initial improvement the scheme stays usually trapped
into a local minimum from which it does not escape. Thus, before it is considered any
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new configuration p is first modified to enforce the S;-constraints. As for fundamental
matrices, this is done by taking the singular value decomposition of each of the G, and

reconstructing it from the decomposition after having set its smallest singular value to be
zero.

4.3 Non-linear refinement of the trifocal tensor

Let us call ij the line joining the points j and & in image 4. Furthermore, we note L* the
set of all the lines of image 7 and d(m, L) the Euclidean distance of the point m to the line
L. Using these notations, it is easy to describe a new criterion C' that is reminiscent of the
one that is commonly used for estimating the fundamental matrices:

C= > > dG, Ti(Liy, Liy)) + d(k, Ti(Liy, LE)), (15)

1€{1,2,3} L;’.keLi

where i’ and " are such that {i,4’,"} = {1,2,3}. Unlike the criterion optimized with the
linear method, this criterion does not privilege any of the views and gives the same weight
over each feature of the views.

Since we now have a tensor that satisfies the constraints of section 3.3, it can be para-
meterized as described in section 3.6. This vector of parameters can be used to optimize C
using a Levenberg-Marquardt method. But in order to do so, we still have to solve one small
problem: remember that each vector of parameters is not giving one but two trifocal tensors
that cannot be distinguished in general. But we have now access to some new information,
the points and lines in the three images, and those can be used to select the proper trifocal
tensor. To do so, we just select the tensor that gives the smallest value for the criterion C'!

5 Experimental results

In order to compare the inherent merits of each method, we have conducted a set of expe-
riments with three triplets of real images referred to as Triplet 1, Triplet 2, and Triplet
3. One example of each image is shown in figure 8. Each triplet contains about 30 point
matches that are used to estimate the trifocal tensor. Those points were obtained using an
interactive tool and are thus of good quality (reasonable accuracy, of the order of .5 pixels,
and no false matches). In order to test the robustness of the various algorithms to pixel noise,
we have also rounded to the closest integer value the pixels coordinates for the second and
third triplets which are referred to as Triplet 2’ and Triplet 3.

With each of these data sets, we have used several different methods to estimate the
three trifocal tensors 771, T and T 5 that are associated to the triplet of views:
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Figure 8: One image excerpted of each triplet used for the experiments. In each case, the
point matches used for the experiments are shown. Notice that the first of these triplets
is actually a triplet of mosaics made from different pictures. Starting from top to bottom
and from left to right these experimental sets are called Triplet 1, Triplet 2 and Triplet 3
respectively.
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e One of the trifocal tensors 7;, ¢ = 1..3 is computed using the linear algorithm
[Sha94a, Har94b] and the formula of theorem 4 is used to obtain the two other trifocal
tensors. This set of experiments is called Lin;.

e The second case is similar to the previous one but the constraints were enforced as
described in section 4 before applying the change of view. This set of experiments is
denoted by Cst; hereafter.

e In the third case, we estimate the three trifocal tensors independently using the linear
algorithm. This set of experiments is called Data.

e The last case uses the full strategy described in section 4: One of the trifocal tensors
T, i = 1.3 is computed using the linear algorithm, then the constraints on its
coefficients are enforced and the resulting tensor is used as the starting point in a non-
linear optimization procedure. This set of experiments is called NonLin; hereafter.

For each of these cases, we have used various different criteria to assess the quality
of the resulting tensors from two different points of view: the coherence of the epipolar
geometry in the three views and the fidelity to the data. The quintessence of these results is
presented in the next three sections.

5.1 Constraints

The first measure of the quality of the trifocal tensors is to see how well the constraints of
section 3.3 are verified. To do so we display in table 1, the sum of the squares of the norma-
lized value of the 27 criteria for each of the experiments. By normalized, we mean that the
squared value of the criterion is divided by the sum of the squares of the two components
that are involved in the constraint: each constraint being of the form x + y = 0, we display

2 . .
the value of (“;L% . The table clearly shows that our reprojection scheme that uses only a

e+

subset of 9 of the trilinear constraints is in fact enforcing all of them (row Cst ).

5.2 Coherence of the trifocal geometry

To test the coherence of the epipolar geometry, we have used the constraints described in
Eg. (4). To do so, the three fundamental matrices that are needed are computed from the
trifocal tensor using the method described in [SW95]. The six epipoles are then compu-
ted from those matrices. For each of the four estimation techniques and for each triplet of
views, we show two types of results: first the angle, in degrees, of the two vectors repre-
senting the epipole and the corresponding trifocal line (in fact 90 degrees minus the angle).
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Triplet 1 | Triplet 2 | Triplet 2’ | Triplet 3 | Triplet 3’
Lin; | 14.6 4.9 13.4 10.9 15.5
Lin; | 14.6 0.69 5.6 4.4 9.8

Cst; | 1.2e727 | 5.1e72" | 5.0e=28 1.8e728 | 4.2¢727

Table 1: This table shows a measure of how well the constraints described in section 3.3
are verified. As shown by the third row, the values after reprojection can be safely regarded
as being zero. The first and the second rows show the results for linear methods. For the
results of the second row, the linear estimate that gives the best error has been selected.
These two rows clearly show that linear methods are leading to values that are far from
being null. Results for the experiment NonLin; are not shown here as the constraints are
trivially satisfied since we use a parameterization of the trifocal tensor.

Triplet 1 Triplet 2 Triplet 2° Triplet 3 Triplet 3’
Angle | Dist. Angle | Dist. Angle | Dist. Angle | Dist. Angle | Dist.
0.2 1.5 0.03 0.6 0.01 0.3 21.5 15.2 2.3 4.5
Data 1.7 4.7 0.01 0.06 0.06 1.2 1.7 11.2 0.9 1.2
0.1 8.1 04 04 0.05 0.5 1.6 14.1 1.1 4.7
0.1 45. 0.01 0.2 0.04 1.6 0.6 0.7 3.4 16.3
Lin; 0.4 1.1 0.01 0.1 0.02 0.6 0.6 4.3 0.8 1.0
0.3 18. 0.0 0.02 0.01 0.3 0.9 344 0.5 4.7
0.0 2.1e7 11| 0.0 3.7¢ 131 0.0 2.6e 12 | 0.0 2.1e7 11 [ 0.0 1.2¢ 11
Csty 0.0 8.9¢712 | 0.0 3.1e713 | 0.0 8.3e71* | 0.0 1.0e7 ! | 0.0 2.3e712
0.0 2.1e713 | 0.0 3.6e715 | 0.0 1.9e7'2 | 0.0 1.6e~ ' | 0.0 6.3e712
0.0 4.0e72 0.0 3.7¢ 11 [ 0.0 38710 0.0 2.1e713 1 0.0 5.1e 12
NLin; | 0.0 1.6e7 ! | 0.0 3.3e711 | 0.0 3.1e710 | 0.0 5.3e713 | 0.0 1.1e712
0.0 2.4e712 1 0.0 8.1e712 | 0.0 9.9¢~ | 0.0 1.7¢713 | 0.0 2.0e~12

Table 2: This table shows various measurements of how well the trifocal geometry is satis-
fied. For each experiment, there are three rows, each of which represents one of the three
constraints of Eq. (4).

For example, in the first constraint of equations (4), the angle is between the 3-D vectors
ey 3 and Fioeq 3. Second, we show the distance, in pixels, between the epipole and the
corresponding trifocal line. For the same example as before, it is the distance between the
point ey 3 and the line ¢5. The results shown in rows Cst; and NLin; clearly show the
importance of enforcing the constraints on the coefficients of the tensors.
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Triplet 1 Triplet 2 Triplet 2° Triplet 3 Triplet 3’
Average | Max. | Average | Max. | Average | Max. | Average | Max. | Average | Max.
1.4e73 | 0.7 1.6e=3 | 0.5 79¢3 | 1.8 43¢e~* [ 02 2.2¢73 | 2.2
Data | 4.3e % | 0.1 4373 |12 1.8¢ 72 | 54 23¢e % |01 7.0e 3 | 83
38 3% |24 |47¢e % |02 23e % | 44 l4e 3 | 1.6 1.5e73 | 1.2
1.4e73 | 0.7 1.6e=3 | 05 79¢3 | 1.8 43¢~* [ 02 2.2¢73 | 2.2
Lin, 0.30 127. | 9.7¢73 | 2.6 4.9¢-2 | 12. 1.3¢e71 | 99 4.7¢72 | 27
1.54 620. | 4.3¢3 | 1.1 26e 2 |55 35¢ 1 | 250 |03 170
5.7¢=2 | 21. 1.6e=3 | 05 79e3 | 1.8 99¢=2 | 38 0.16 105
Lin; 43¢~ | 0.1 9.7¢73 | 2.6 4.9e2 | 12. 1.1e72 | 55 6.8¢73 | 4.0
1.07 555. | 4.3¢73 | 1.1 26e 2 | 5.5 14e 3 | 1.6 1.5¢73 | 1.2
1.1e72 | 4.7 1.5e=3 | 0.4 33¢e72 |78 9.6e—* |05 79e73 | 7.8
Cst; 1.9¢e73 | 1.0 59¢3 | 1.8 1.2e72 | 3.2 1.7e73 | 14 1.6e~% | 1.3
4.1e72 | 26. 5.6e~* | 0.2 4.1e73 |09 1.5e73 | 14 1.0e72 | 9.3
1.2¢e72 | 7.3 1.8¢73 | 0.6 1.6e=2 | 4.5 1.2¢73 | 0.6 4273 | 2.7
Cst; 3.3¢e73 |28 31e % |08 22e72 | 6.9 71e * |03 2.4e=3 | 1.7
1.8e72 | 11. 38* |01 2.3e7% |06 1.2¢e73 | 0.8 33e73 | 2.7
283 0.9 55¢—% | 0.1 71e3 | 1.6 33e% |01 6.8¢—% | 0.2
NLin; | 3.1e7® | 1.4 6.9¢* | 0.2 8873 | 2.0 1.7e7* | 0.1 5.6e~* | 0.4
6.7¢3 | 3.1 6.6e—* | 0.1 2573 | 0.4 2.4e~* | 0.1 81le* | 0.3
223 [ 1.0 55¢ % |0.1 3.4e 3 |08 32 % |01 6.8¢c % |02
NLin; | 2.3e % | 1.8 6.9¢* | 0.2 72e% | 1.5 1.6e % | 0.1 56e % | 0.4
2.2e73 | 0.7 6.6e—* | 0.1 2.5¢e7% | 0.5 23¢e~* | 0.1 81le* |03

Table 3: Prediction errors in pixels for all experiments. The average error is small for all
methods even though the linear methods sometimes fail miserably and more importantly,
unpredictably, for a few matches, as shown in the column showing the maximum error. The
rows labelled Lin;, Cst; and NLin; display the best results for each of the three classes of
algorithms.

5.3 Fidelity to the data

Table 3 shows all the error measurements, in pixels, that were obtained for each different
method and for each triplet of views. For each experiment and for each view of the triplet,
for each image ¢ two different errors are shown: those are respectively the average and
maximal distance d(j, 7:(L%,, Li;)). As shown in the table, the nonlinear methods are
much more robust and reliable, bringing the errors down for all correspondences.
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6 Conclusion

We have proposed a new of describing the trifocal tensors between three views based on the
elegant Grassmann-Cayley formalism and shown that it shed new light on their structure.
In particular, we have shown that the tensors could be parameterized minimally and simply
with 18 parameters thanks to a set of algebraic constraints on the coefficients of the tensors.
We have then proposed a nonlinear method for estimating the tensors from points and lines
correspondences that makes full use of their algebraic structure and shown on some real
triplets of images that the results obtained using the new method are superior to those obtai-
ned by previously published linear methods according to three different and complementary
criteria.
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