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Abstract: We study the problem of computing the free space F of a simple legged
robot called the spider robot. The body of this robot is a single point and the legs
are attached to the body. The robot is subject to two constraints: each leg has a
maximal extension R (accessibility constraint) and the body of the robot must lie
above the convex hull of its feet (stability constraint). Moreover, the robot can only
put its feet on some regions, called the foothold regions. The free space F is the set of
positions of the body of the robot such that there exists a set of accessible footholds
for which the robot is stable. We present an efficient algorithm that computes F in
O(n?logn) time and O(n?a(n)) space for point footholds where a/(n) is an extremely
slowly growing function (a(n) < 3 for any practical value of n). We also present an
algorithm to compute F when the foothold regions are pairwise disjoint polygons
with n edges in total. This algorithm computes F in O(n?ag(n)logn) time using
O(n%ag(n)) space (ag(n) is also an extremely slowly growing function). These results
are close to optimal since ©(n?) is a lower bound for the size of F.

Key-words: Motion planning, legged robots, mobile robot, computational geom-
etry.
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Planification de trajectoires de robots & pattes

Résumé : Nous nous intéressons au probléme du calcul de l'espace libre F d’un
robot araignée. Un tel robot est un robot & pattes dont le corps est ponctuel et dont
les pattes sont attachées au corps. Ce robot est sujet & deux types de contraintes:
chaque patte a une élongation maximale R (contrainte d’accessibilité) et le corps
du robot doit étre situé au dessus de ’enveloppe convexe de ses points d’appui
(contrainte de stabilité). De plus, le robot ne peut poser ses pattes que dans certaines
régions du plan appelées zones d’appui. L’espace libre F est I’ensemble des positions
du corps du robot telles qu’il existe des points d’appui accessibles pour lesquels le
robot est stable. Nous présentons un algorithme pour le calcul de F, lorsque les zones
d’appui sont ponctuelles, de complexité en temps O(n?logn) et en espace mémoire
O(n%a(n)) ot a(n) est une fonction croissant extrémement lentement (a(n) < 3
pour toute valeur de n envisageable en pratique). Nous présentons également un
algorithme lorsque les zones d’appui sont polygonales. Si n est le nombre total
d’arétes des polygones, cet algorithme calcule F en temps O(n?ag(n)logn) et en
utilisant un espace mémoire O(n?ag(n)) (ag(n) est également une fonction croissant
extrémement lentement). Ces résultats sont presque optimaux puisque Q(n?) est une
borne inférieure pour la taille de F.

Mots-clé : Planification de trajectoires, robots & pattes, robotique mobile, géomé-
trie algorithmique.
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Figure 1: The spider robot.

1 Introduction

Although legged robots have already been studied in robotics [RR84, RR90], only a
very few papers consider the motion planning problem amidst obstacles [HNKU84,
HK91, BDDP95|. In [HNKUS84, HK91| some heuristic approaches are described
while, in [BDDP95] efficient and provably correct geometric algorithms are descri-
bed for a restricted type of legged robots, the so-called spider robots to be defined
precisely below, and for finite sets of point footholds.

Compared to the classic piano movers problem, legged robots introduce new
types of constraints. We assume that the environment consists of regions in the
plane, called foothold regions, where the robot can safely put its legs. Then the
legged robot must satisfy two different constraints: the accessibility and the stability
constraints. A foothold is said accessible to a placement (position of the body of
the robot) if it can be reached by a leg of the robot. A placement is called stable if
there exist accessible footholds and if the center of mass of the robot lies above the
convex hull of these accessible footholds. The set of stable placements is clearly the
relevant information for planning the motion of a legged robot: we call this set the
free space of the legged robot. A legged robot has at least four legs, three legs ensure
the stability of a placement and a fourth leg permits the motion of the robot.

A first simple instance of a legged robot is the spider robot. The spider robot
has been inspired by the Ambler, developed at Carnegie Mellon University [JW89].
The body of the spider robot is a single point: all its legs are attached to the body
and can reach any foothold at distance less than a constant R from the body (see
Figure 1). The problem of planning the motion of a spider robot in an environment
of point footholds has already been studied by Boissonnat et al. [BDDP95|. However
their method assumes that the set of footholds is a finite set of points and cannot
be generalized to more complex environments. This paper proposes a new method
to compute the free space of a spider robot based on a transformation between this

RR n~°3214



4 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

problem and the problem of moving a half-disk amidst obstacles. The algorithm is
simpler than the one described in [BDDP95] and the method can be extended to the
case of polygonal foothold regions. Once the free space has been computed, it can be
used to find trajectories and sequences of legs assignments as described in [BDDP95].

The paper is organized as follows: some notations and results of [BDDP95]| are
recalled in the next section. Section 3 shows the transformation between the spider
robot problem and the half-disk problem. We present in Section 4 an algorithm that
computes the free space of a spider robot for point footholds. Section 5 shows how
the algorithm can be extended to polygonal foothold regions.

2 Notations and previous results

We introduce some notations. In Sections 2, 3 and 4, S is a discrete set of distinct
point footholds {s1,..., s,} in the Euclidean plane. G denotes the body of the robot
and R is the maximal length of each leg attached to G. For convenience and without
loss of generality, we assume that G belongs to the plane containing the footholds
(G can be seen as the orthogonal projection of the body of the robot onto the plane
containing the footholds). The free space F is the set of all stable placements. A
placement is said at the limit of stability if it lies on the boundary of the convex
hull of the accessible point footholds. Notice that F is a closed set and contains
the placements at the limit of stability. Let §(F) denote the boundary of F and C;
denote the circle of radius R centered at s;. A is the arrangement of the circles C; for
1 <4 < n,i.e. the subdivision of the plane induced by the circles. This arrangement
plays an important role in our problem and we will express the complexity results
in term of |A|, the size of A. In the worst-case, |A| = ©(n?) but if k¥ denotes the
maximum number of disks D(s;, R) that can cover a point of the plane, it can be
shown that |A| = O(kn) [Sha91]. Clearly k is not larger than n and in case of sparse
footholds |.A| may be linearly related to the number of footholds. Let S' = IR/27Z.
Let CH(E) denote the convex hull of a set £, compl(E) the complementary set of £
and int(€) the interior of £. We say in the sequel that two objects properly intersect
if and only if their relative interiors intersect.

The algorithm described in [BDDP95] is based on the following observation: in a
cell T of A, the set of footholds that can be reached by the robot is fixed; the portion
of I' that belongs to F is exactly the intersection of I' with the convex hull of the
footholds that can be reached from I'. Therefore, the edges of §(F) are either circular
arcs belonging to A or portions of line segments joining two footholds; moreover a

INRIA



Motion Planning of Legged Robots 5

vertex of §(F) incident to two straight line edges is a foothold (see Figure 2). The
complexity of F has been proved to be |F| = ©(].A|]) [BDDP95].

Figure 2: An example of the free space of a spider robot.

The algorithm presented in [BDDP95| computes the free space F in O(|.A|log n)
time. It uses sophisticated data structures allowing the off-line maintenance of convex
hulls.

The algorithm described in this paper has the same time complexity, uses simple
data structures and can be extended to the case where the set S of footholds is a
set of polygonal regions and not simply a set of points. For simplicity, we consider
first the case of point footholds and postpone the discussion on polygonal footholds
to Section 5.

General position assumption

To simplify the presentation of this paper, we make some general position assump-
tions.

No two footholds lie at distance exactly 2R. This hypothesis is not really res-
trictive. Indeed, if the robot uses two such footholds, it is at the midle of the two
footholds and cannot move.

RR n-~ 3214



6 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

No three footholds have a circumscribing circle of radius R. Such a configuration
will be relevant only for a placement of the robot at the center of the circle and the
robot cannot move using such a position for its legs.

We also assume that the line joining two footholds is not exactly at distance R
from another foothold. This hypothesis forbids the boundary of F to contain edges
that degenerate into points.

All these hypotheses concern some special points of F, isolated points or singular
points on its boundary, and can be removed by a careful analysis.

3 From spider robots to half-disk robots

In this section, we establish the connection between the free space of the spider robot
and the free space of a half-disk robot moving by translation and rotation amidst n
point obstacles.

Theorem 1 The spider robot does not admit a stable placement at point P if and
only if there exists a half-disk (of radius R) centered at P that does not contain any
foothold of S (see Figure 3).

Proof: A placement of the spider robot is not stable if and only if the convex hull
of all the reachable footholds does not contain the body G of the robot. That is
equivalent to: there exists a closed half-disk of radius R centered at G which does
not contain any foothold (see Figure 3). O

Figure 3: A placement which is not stable.

INRIA



Motion Planning of Legged Robots 7

Figure 4: HD(P,0).

Definition 2 Let HD(P,0) be the half-disk of radius R centered at P (see Figure 4)
defined by:

(z —xp)*+ (y —yp)* < R?

(x —xzp)sinf — (y —yp)cosh <0

Definition 3 Vs; € S (1 <i < n) let us define:

H; = {(P,#) € R> x S' /| P € HD(s;,0)}

H=|JH
=1
C;i=C; xSt

H; will be called the helicoidal volume centered at s; (see Figure 5).

Notice the typographical distinction between the circle C; defined in JR? and the
torus C; defined in IR? x S'. For convenience, we will often identify S and the
interval [0, 27] of IR . This allows to draw objects of IR* x S! in IR® and to speak of
the f-axis. Il, denote the "plane" {(P,0) € IR? x S'/ 6 = 6y}.

Definition 4 We define the free space L of a half-disk robot moving by translation
and rotation amidst the set of obstacles S as the set of (P,0) € IR* x S' such that
the half-disk HD(P,0 4+ ) and S have an empty intersection.

Proposition 5 £ = compl(H).

Proof: V6 € S!, the set £LNIIy is the free space of the half disk HD(P, 6+ 7) moving
by translation only, amidst the obstacle s1,...,s,. Thus, £LNIIy is the complementary

RR n-~3214



8 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

Figure 5: Helicoidal volume H;.

set of the union of the n Minkowski’s sums s; © HD(O,0 + 7) = HD(s;,0) where O
is the origin of the reference frame. Therefore, we have:

Vo e S' LNy = compl( |J HD(s;,0))
1<i<n

and Definition 3 yields the result. O

Let pyy denote the mapping (called “orthogonal projection”): R x §' —
IR?,(P,0) — P.

Theorem 6 F = compl(p9(compl(H)))

INRIA



Motion Planning of Legged Robots 9

Proof: According to Theorem 1 and Definitions 2 and 4, F = compl(p//s(£)). The
result then follows from Proposition 5. O

Remark 7 compl(pje(compl(H))) x St is the largest "cylinder" included in H,
whose axis is parallel to the f-axis (see Figure 6). The basis of this cylinder is F.

Remark 8 Among the previously defined objects, notice which one are closed or
open sets. HD(s;,0) and H; are closed by definition, H is closed (union of closed

sets), £ is open (complementary of H), compl(F) is open (projection of £) and F is
closed (complementary of compl(F)).

an

|
I
I
[
|
|
[
I
/

compl(p/e(compl(E)))
Figure 6: compl(p9(compl(£))).

Remark 9 The results of this section do not depend on the fact that the footholds

are points. For more general foothold regions, we simply need to replace the helicoidal
volumes by their analogs. This will be done in Section 5.

RR n-~3214



10 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

4 Computation of F

In this section, we propose an algorithm to compute F based on Theorem 6.

A first attempt to use Theorem 6 may consist in computing £ and to project
its complementary on to the horizontal plane. The motion planning of a convex
polygonal robot in a polygonal environment has been extensively studied (see for
example [KS90, KST97]). Such algorithms can be generalized to plan the motion
of a half-disk. It should lead to an algorithm of complexity O(nAs(n)logn), where
As(n) is an almost linear function of n. The projection can be done using classical
techniques, such as projecting all the faces of £ and computing their union. Since
the complexity of the 3D object £ is not directly related to the complexity of its
projection, this approach do not provide a combinatorial bound on F. However,
assuming |F| = O(As(|.A|)) (which will be proved in this paper) the time complexity
the algortihm of Kedem et al. is O(n)s(n)logn + \;(|.A|) log? n).

In this paper, we present a direct computation of F. This approach provides
an upper bound on the size of F, namely |F| = O(As(|.A])). It also provides an
algorithm to compute F in O(\s(|A|)logn) time. As in [SS87] and contrary to
[KST97], the algorithm proposed here is sensitive to |.A| which is usually less than
quadratic. Another advantage of our direct computation, is to avoid the explicit
construction of the 3D object £ which is useless for our application. Our algorithm
manipulates only two dimensional arrangements or lower envelopes and we provide
a detailed description of the curves involved in the construction.

Let us now detail the computation of F in the case of point footholds. We know
that each arc of the boundary 6(F) of F is either a straight line segment belonging
to a line joining two footholds or an arc of a circle C; (see Section 2). The circular
arcs 6(F)NC; are computed first (Sections 4.1, 4.2 and 4.3) and linked together with
the line segments in a second step (Sections 4.4 and 4.5).

4.1 Computation of 6(F)N A

We compute the contribution of each circle Cj,, ig = 1,...,n, to 6(F) in turn. C;,
is the torus C;, x S'. We assume that Cj, is parameterized by u and C;, by (u, ).
Since F is a closed set, the contribution of C;, to §(F) is the difference between
the contribution of Cj, to F and the contribution of Cj;, to the interior of F. Accor-
ding to Theorem 6, F N C;, = compl(p/e(compl(H N Cy,))) and in general position
int(F) N Ciy = compl(p9(compl(int(H) N Ciy))). Let Z; denote H; N C;, (see Fi-
gure 7). Clearly, H N C;, = U;Z;. On the other hand, int(H) N Ciy = int(Uizi, Z:).
Indeed, int(H;,) N C;, = @ and, according to the general position assumption,

INRIA
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O3 +m

Oy +m Z;

61 +m

03

62

I —

Y
g

0 01 02 03 s 27

. 1 Ziy = Hig ﬂCiO Z; = H; N Cio

Figure 7: Intersection of H; with C;, for ||s;,si|| = V2R and /(%, 5igS;) = b = m/2.

for i # 1dg, int(H;) N Ci, = int(2;) (notice that int(H;) is the interior of H; in
IR? x S! but int(Z;) denotes the interior of Z; in S! x S1). It follows that F N C;,
= compl(p9(compl(U; 2;))) and int(F) N Ci, = int(compl(ps6(compl(Uiziz 2:))))-
Therefore,

6(F) N Ciy = compl(pre(compl(U;25))) \ int(compl(pe(compl(Uixio 23))))-

Thus, the contribution of C;, to §(F) comes from the computation of U;Z; and
Ui?/:iozi.

RR n-~3214



12 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

E'L
Zio >» < 0
<>

2

23

Y
S

. :Zio % :E::O

Figure 8: Contribution of Cj, to §(F) (0 < |s1sil < R, R < ||s2s:,] < V2R,
\/§R < “838,'0” < 2R).

Geometrically, compl(p,/g(compl(U; Z;))) is the orthogonal projection of the lar-
gest vertical strip X, included in U;Z;. Similarly, compl(p/e(compl(Uixzi,Z2i))) is
the projection, along a direction parallel to the #-axis, of the largest vertical strip
220 included in U;z;,2;. Thus, 6(F) N C;, is the vertical projection onto Cj, of the
vertical strip X, \ int(X;)) (see Figure 8).

In order to compute F efficiently, we need to compute the union of the regions
Z; efficiently. More precisely, we will show that the union of the regions Z; can be
computed in O(k;, log k;,) time where k;, is the number of helicoidal volumes H;
intersecting Cj,,.

INRIA



Motion Planning of Legged Robots 13

This is possible because the Z; have a special shape that allows to reduce the
computation of their union to the computation of a small number of lower envelopes
of curves drawn on C;, with the property that two of them intersect at most once.
The geometric properties of the Z; are discussed in Section 4.2 and, in Section 4.3,
we present and analyze the algorithm for constructing §(F) N C,.

4.2 Properties of the Z;

We study here the regions Z; = H;NC;,. For convenience, we will use the vocabulary
of the plane when describing objects on the torus C;,. For instance, the curve drawn
on the torus C;, with equation

ad+bu+c=0

will be called a line. The line v = ug will be called vertical and oriented according
to increasing 6. Lower and upper will refer to this orientation. The discussion below
considers only non empty regions Z;.

We introduce here a few notations. Let HC;(#) be the half-circle of the boundary
of HD(s;,0),i.e. HC;(8) = C;NHD(s;,0). Let r;(0) be the radius of C; that makes
an angle 6 with the z-axis, i.e. r;(6) = {s; + Mig/ X € [0, R|} where iy is the unit
vector whose polar angle is §. The boundary of H; is composed of the three following
patches:

T, = {(HC;(0),0) € R*x S'}
RE = {(r:i(0),0) € R* x S*}
R, = {(ri(0+n),0) € R*xS'}

Proposition 10 The region Z;, is the subset of Ci, defined by {(u,0) € S*x S/ 0 <
u < @+ w} and shown in dark grey in Figure 7.

Proof: For any ) € S' the intersection between H;, and the "plane" {(P,0) €
IR? x S*/ 0 = 6} is the half-disk HD(s;,, 0). O

Proposition 11 For i # iy, Z; is a connected region bounded by two vertical line
segments of length w, and two curved edges p; and p; that are translated copies of
one another. Specifically p;L =p; +(0,0,7).

Proof: Consider the two points of intersection between the circles C;, and C; (i #
ig). Let u = #; and u = 03 be the parameters of these two points using the natural

RR n-~3214



14 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

parameterization of Cj, (see Figure 9). The half circle HC;(0) intersects Cj, at
u = @3 (resp. at uw = 6;) for § € [01,61 + 7] (vesp. for 6 € [03,05 + 7]) (see
Figure 9). Hence, 7; N C;, consists of the two vertical line segments of length =
{(u,0) € {03} x [01,01 + 7|} and {(u,0) € {01} x [03,605 + 7|} (see Figure 7).

On the other hand, the definitions of R;" and R; clearly yield that R} =R, +
(0,0, 7). Therefore, the two curved edges p; = R; NCi, and p; = R N C;, are
translated copies of one another (see Figure 7). i

Figure 9: Definition of 0,60y and 03 (0 < ||s;,si|| < 2R).

When not necessary, we will not specify which one of p; or p; (resp. R; or R;)
is considered, and we will simply use the notation p; (resp. R;). In addition to the
previous notations, p; or p! will denote a portion of p;.

Proposition 12 Let p; and pg- be some connected portions of p; and p; respectively.
If pi or p;- is the graph of a function of 0 and if this function is defined over a
0-interval smaller than =, then p) and p;- intersect at most once.

Proof: Let (ur,fr) be a point of intersection between p; and p}; and I be the point
of the circle C;, with parameter u;. Since p} is a portion of the intersection between
Ci, and R;, I is a point of intersection between C;, and the diameter of HD(s;, ;).
Therefore, the line passing through s; and I has slope 6.

INRIA



Motion Planning of Legged Robots 15

By applying the same argument to p;-, we obtain that s; and s; belong to the
same straight line of slope 0;. Therefore, if p} and pg intersect twice, at (uy,fr) and
(ug,07), then 0r = 0;[r]. If p; or p; is defined over a ¢-interval smaller than 7, then
0r = 60;[27]. Furthermore, if p; or p’; is the graph of a function of 4, then (ur,07)
and (uy,0;) are equal. O

Proposition 13 If 2 R < ||si,s:|| < 2R, p; is the graph of a function of @ defined
over a 0-interval smaller than =.

Proof: If V2R < ||siys;| < 2R, 7;(0) (and also 7;(# + 7)) intersects C;, in at most
one point, which proves that p; is the graph of a function of #. Furthermore, the
#-interval where p; is defined is clearly smaller than 7. O

As a consequence of Propositions 12 and 13, if the distances ||s;,s;|| and ||s;,s;]|
belong to [v/2 R,2R) , p; and p; intersect at most once.

Proposition 14 If V2 R < ||s;s;]| < 2R, the line 6 = u+ % properly intersects Z;.
Furthermore, the lines 6 = u + 35 properly intersect neither p;“ nor p; .

Proof: Let (up,fp) be a point of p; and P the point of C;, with parameter up.
By definition, up = /(&, ﬁ) [27] and Op = /(&, ﬁ) [7] (see Figure 10). Let
v = Z(FT“:,JD—SZ) [27]. When v2 R < ||si;si|| < 2R, then v € [3,%F] and v = Z [n]
only when |[s;,s;]] = V2R and (up,fp) is an endpoint of p;. Thus, if (up,8p) is
not an endpoint of p;, 0p — up # F[n] because p — up = y[n]. Therefore, the lines
# = u & 7 intersect neither p nor p;, except possibly at their endpoints.

It remains to show that the line 6 = u + 5 properly intersects Z;. This follows
from the fact that the point of Ci; (02,62 + §), where 0y = /(&, 5;,5;) [2n], belongs
to the line @ = u + 7 and also to the relative interior of Z; if R < |[|s;,s;|| < 2R (see
Figures 7 and 11). O

Proposition 15 If 0 < ||s;,s:]] < R (resp. R < ||sisill < V2R), p; can be subdi-
vided into two (resp. three) sub-curves denoted pf, k € {1,2} (resp. k € {1,2,3}),
such that each piece is the graph of a function of 0 defined over a 0-interval smaller
than .

Proof:

Case 1: 0 < ||siysi]| < R.

Any radius of C; intersects Cj, at most once. Hence, p; is the graph of a function
of 9.

RR n-~3214



16 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

Figure 10: For the definition of P, up, 0p, 7.

Figure 11: Section of ‘H; and C;, by the "plane" H92+%.

pi is defined over a f-interval greater than 7 but smaller than 27. By splitting
this interval in two equal parts, we split p; in two sub-curves p! and p? which are
defined over a f-interval smaller than 7 (see 27 in Figure 8).

INRIA



Motion Planning of Legged Robots 17

Case 2 : R < ||si8i]l < V2R.

In that case, the f-interval where r;(6) (or r;(6 + 7)) intersects Cj, is smaller
than 7, which implies that p; is defined over a #-interval smaller than 7.

It may exist two points of intersection between r;(6) and Cj,. In order to overcome
this difficulty, we split r;(#) into two segments (of fixed lengths, independently of &)
as follows (see Figure 12). Let r;(01) be one of the two radii of C; that are tangent
to Cj,. Let T be the point where r;(67) and C;, are tangent and 7'(#) the point
of 7;(6) which is identical to T" when 6 = 6. Cutting r;(#) at T(#) defines two
sub-radii 7(6) and r/(#) that intersect C;, in at most one point each; without loss
of generality, let r/(#) denote the sub-radius not connected to s;. We define

R ={(ri(0),0)} R ={(ri(0 +m),0)}

Ry T ={(7(0),0)} R;™={(r}(0+m),0)}

The intersection of R} (i.e. R," or R;”) and C;, consists of one continuous curve
p?, which is the graph of a decreasing function of §. The intersection of R;' and
C;, consists of two continuous curves p} and p3, which are both graphs of increasing
functions of 8 (see Z; on Figure 8). O

Figure 12: For the definition of T, T'(0), 7}(9), r(9).

(2

As R;J” = R;_ +(0,0,7) and R;"L = R;'_ + (0,0, 7), pf+ and pf_ are translated
copies of one another by vector (0,0, 7). We denote ZF the sub-region of Z; below
pf+ and above pf_.

RR n-~ 3214



18 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

Proposition 16 If 0 < ||s;,s;|| < R, the line = u — 3 properly intersects Z} and
Z;_ Furthgfmore, the lines 0 = u + 5 properly intersect none of the edges p}+, p} ,
p; " and p; .

If R < |siysi]| < V2R, the line = u + 5 (resp. 0 = u — ) properly intersects
ZZ2 (resp. Zil and ZZ?’) Furthermore, the lines 6 = u £ 5 properly intersect none of
the edges sz, p}_, p12+, p?_, pg’+ and p?_.

Proof: The proof is similar to the proof of Proposition 14. Let (up,fp) de-
note a point of a curve pf. P is the point of C;, with parameter up and v =
Z(m,P—s;) [27]. We show that v # § [r], except possibly when (up,fp) is an
endpoint of p¥. As v = 0p — up[n], it follows that the lines §# = u + % intersect
neither pi-”' nor pf_, except possibly at their endpoints.

Case 1 : 0 < |[s;,5i|| < R.

v € (=%, %) for any P € Cj,. Thus, the lines § = u =+ 7 properly intersect neither
pi nor p; . Therefore, the same result holds for the sub-curves pfi of p;*L. Moreover
(see Figure 11), the point (6,6, — 5) € C;, belongs to the relative interior of Z;.
Therefore, the line § = u— 5 properly intersects Z;. It follows that the line § = u—3
properly intersects Z} and Z? because it properly intersects neither p;-" nor p; .

Case 2 : R < |sisi|| < V2R.

Let (up,,0p,) be the point connecting p} and p?, and (up,,fp,) be the point
connecting p? and p}. According to the construction of p}, p? and p3, the tangent
lines to C;, at P, and P» pass through s;. At most two tangent lines to Cj, pass
through s;, thus P; and P, are the only points of Cj, where v = ¥ [x]. Therefore,
the lines § = u & 7 properly intersect neither pF~ nor pft (k' =1,2,3). At last, the
points (61,01 — 5), (2,02 + ) and (03,03 — 5) of C;, clearly belong to the relative
interior of Z}, Z2 and Z} respectively. O

4.3 Construction of 6(F)NC;,

We have seen in section 4.1 that the contribution of a circle C;, to §(F) is given
by the computation of U;x;,Z; and U;Z;. Propositions 14 and 16 show that the
set of regions Z; can be split into two subsets Q; and Q9 as follows. As we know,
a region Z; (or ZF) is the region below p; (or p¥*) and above p; (or p¥7). For
convenience, if not specified, Z; (resp. p;) will denote either Z; or ZF (resp. p; or
pF). Qi (resp. Q) is the set of regions Z;, i # ip, such that the line § = u + %

(resp. § = u — %) intersects Z; but neither p;" nor p; . By Propositions 14 and 16,
the lines ¢ = u = 5 do not properly intersect the curves p;. Thus, for Z; € Qy, we
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can consider the curves p; in the domain {(u,6) € S* x [u + Z,u + 2]} and the
curves p; in {(u,0) € S* x [u — 5,u+ Z|}. The union of the Z; € € is therefore
computed as the region that lies below the upper envelope of the p?’ and above the
lower envelope of the p; . We compute similarly the union of the regions of €.

Let us analyze the complexity of the above construction. The k;, helicoidal vo-
lumes H; that intersect C;, can be found in O(k;,) amortized time once the De-
launay triangulation of the footholds has been computed which can be done in
O(nlogn) time [DD90, Tur91]. Since two curves p; and p; intersect each other
at most once (Propositions 12, 13, 15) the upper and lower envelopes can be compu-
ted in O(k;, log k;,) time and O(k;,a(ki,)) space where « is the pseudo inverse of the
Ackerman’s function [Her89]. The union of ©; and €5 can be done in O(k;,a(ki,))
time because each envelope is the graph of a function of u and two arcs of the two
envelopes intersect each other at most once. At this time, we have computed U;.;, Z;.

The computation of U;.;, Z; U Z;, can be done as follows. Let p;-'(') and p;  denote
the upper and lower edges of Z;,. As already observed, p?(; and p; are the line 6§ = u
and 6 = u — 7 (see Figure 7). We add to set Qg the region Z;,. The computation of
U; Z; can be performed, as described above, within the same time and space bounds
because Proposition 12 holds if only one of the two considered curved edges is a
graph of a function of # defined over a #-interval smaller than =.

According to Theorem 6, Remark 7 and Section 4.1, the contribution of Cj, to the
interior of F is int(compl(p/9(compl(Uixi, 2:)))), that is the interior of the projection
onto Cj, of the largest vertical strip EQO included in U;4;,Z;. This projection is
easily computed because the curved edges of U;;, Z; are monotone with respect to
u (see Figures 6, 8). The computation of the contribution of Cj, to the closure of
F, compl(p/s(compl(U; Z;))), is done similarly by projecting the strip %;,. These
computations yield the contribution of Cj, to §(F). Clearly, this step can be done
in O(ki, log ki,) time.

Moreover we label an arc of 6(F) either by ¢ if the arc belongs to the circle C; or
by (4, j) if the arc belongs to the straight line segment [s;, s;]. The labels of the edges
of 6(F) incident to Cj, can be found as follows, without increasing the complexity.
An arc of 6(F) N Cj, corresponds to a vertical strip ¥;, \ ¥} . An endpoint P of an
arc is either the projection of a vertical edge of the strip or the projection of a point
of intersection between two curved edges. In the first case, P is the intersection of
C;, with some C; and in the second case, P is the intersection of Cj, with some line
segment [s;, s;]. Hence, the labels of the edges of §(F) incident to Cj, can be found
at no extra-cost during the construction.
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Since A is the arrangement of the circles of radius R centered at the footholds,
> io—1 kiy = |A|. The above considerations yield the following theorem:

Theorem 17 We can compute §(F)N.A and the labels of the edges of 6(F) incident
to the arcs of 6(F) N A in O(|A|logn) time and O(|A|a(n)) space.

4.4 Computation of the arcs of §(F) issued from a foothold

The previous section has shown how to compute all the vertices of F that are incident
to at least one circular arc. It remains to find the vertices of F incident to two
straight edges. As we have seen in Section 2, for any cell T of A, the convex hull of
the footholds reachable from any point of I' coincides with FNI'. Therefore, a vertex
of F incident to two straight edges of §(F) is a foothold. Furthermore, considering
a foothold s;, in a cell T of A, s;, is a vertex of F incidents to two straight edges
O(F) if and only if s;, is a vertex of the convex hull of the footholds reachable
from s;,. The k] footholds contained in the disk D(s;, R) can be found in O(k;))
amortized time because we have already computed the Delaunay triangulation of the
footholds [DD90, Tur91]|. Thus, we can decide if s;, is a vertex of the convex hull
of these kj footholds in O(k] ) time and space. When s;, is a vertex of the convex
hull, we can also find the two edges of the convex hull adjacent to s;, in O(] ) time
and space. As the sum of the k for i € {1,...,n} is bounded by the size of A, we
obtain the following theorem:

Theorem 18 The footholds belonging to 6(F) and the labels of the arcs of 6(F)
issued from these footholds can be found in O(|.A|) time and space.

4.5 Construction of F

Theorem 19 The free space of the spider robot can be computed in O(|.A|logn) time
and O(|A|a(n)) space.

Proof: By Theorem 17, we have computed all the circular arcs of §(F) and the labels
of the edges of §(F) incident to them. By Theorem 18, we have computed all the
vertices of §(F) that are incident to two straight edges of §(F) and the label of these
two edges. It remains to sort the vertices of 6(F) that appear on the line segments
(si,s7). We only consider the line segments (s;, s;) such that the corresponding label
(¢,7) appears during previous computations. Then, we sort the vertices of §(F) that
belong to each such relevant line. Since [§(F)| = ©(].A|) [BDDP95], all these sorting

INRIA



Motion Planning of Legged Robots 21

can be done in O(|A|logn) time. It is then an easy task to deduce a complete
description of §(F). O

5 Generalization to polygonal foothold regions

5.1 Introduction and preliminaries

We consider now the case where the set of footholds is no longer a set of points but

a set S of pairwise disjoint polygonal regions bounded by n line segments eq, ..., e,.
Clearly, S is a subset of the free space F of the spider robot. Let F. denote the
free space of the spider robot using as foothold regions only the edges e, ..., e,.

Suppose that the spider robot admits a stable placement outside & with its feet
inside some polygonal footholds; then the placement remains stable if it retracts its
legs on the boundary of these polygonal regions. Hence, F = F. US. We show how
to compute Fe.

As observed in Remark 9, all we have done in Section 3 remains true if the
foothold regions are line segments provided that H; is replaced by H,; the generalized
helicoidal volume defined by (see Figure 13):

He, = {(P,0) € R* x S' | P € HD(s,0), s € e;}.

The helicoidal volume associated to a point site s; will be, up to the end, denoted
by Hs;.

Figure 13: Section of H,, by the "plane" II,.
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Similarly, we define the generalized circle C¢, as the set of points at distance R
from e;. Let A, denote the arrangement of the n generalized circles C,,...,Ce,.
Notice that |A.| = ©(n?).

Each arc of the boundary §(F,) of F, is either an arc of C¢,, corresponding to a
maximal extension of one leg, or an arc corresponding to placements at the limit of
stability of the spider robot. Similarly to what we did in Section 4, we compute first
the contribution of each C,; to §(F.) (Sections 5.2). Thereafter, we compute the
arcs of §(F,) that correspond to placements where the spider robot is at the limit of
stability (Section 5.3). At last, we show how to construct F, (and F) in Section 5.4.

5.2 Computation of §(F.) N A,

We compute the contribution to §(F.) of each generalized circles Ce, in turn. We
consider the contribution of Ce, to 6(Fe) for some ig € {1,...,n}. C, is composed
of two half circles and two straight line segments. In order to compute the contribu-
tion of C,, to 6(F.), we evaluate first the contribution of the half circles and then
the contribution of the straight line segments. For convenience, we will not compute
the contribution of the half circles to §(F.) but the contribution of the whole circles.
Similarly, we will compute the contribution of the whole straight lines supporting
the line segments of C, .

Let s;, and s;; denote the two endpoints of the line segment e;,, and let Cy; and
ngo denote the unit circles centered at s;, and s; respectively. Let l;, and I{ denote

the two straight line segments of C, , and L;, and L;O their supporting lines. We
show how to compute the contributions of Cs,, and L;, to 8(Fe); the contributions

of Cy and Lj can be computed likewise.
*0

Let Cs,) = Cs; X S Land £;, = L;, x S'. Basically, we compute §(F,) N Cs,, and
0(Fe)NLj,, as explained in Section 4.1, by computing U; (H,, NCs;, )5 Uizzio(He; NCs;, )s
Ui (He; NLsy) and Uj i (He; N L;,). The properties of the new regions 2., = He, NC sig
and Ve, = He, N L;, are different though similar to the properties of Z,, = H,, NCs,
described in Section 4.2. The analysis of Z,; and ), are subdivided into two parts:
first, we consider the line D; supporting e; and we examine the regions Zp, =
Hp; NCs;y, and Vp; = Hp; N Li, where Hp, is the generalized helicoidal volume
induced by D;:

Hp, = {(P,§) € R* x S/ P € HD(s,0), s € D;}.

Then, we deduce Z,, (resp. V) from Zp,, Z,, and Z, (resp. Vp,, Vs, = Hs, N L;,
and Y, ) where s; and s, are the two endpoints of e;. Thereafter, we compute the
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contribution of C, to §(F.) in a way similar to what we did in Section 4.3. The
following theorem sums up these results :

Theorem 20 We can compute 6(F.)NA. and the labels of the edges of 6(F,) incident
to the arcs of 6(Fe) N Ae in O(|Ac|ar(n)logn) time and O(|Ac|as(n)) space.

The proof of this theorem is detailed in Appendix A.

5.3 Arcs of §(F.) corresponding to the placements where the spider
robot is at the limit of stability

We now have to compute the edges of F. that do not belong to A.. The arcs of
6(Fe) N Ae correspond to placements at the limit of accessibility of the spider robot,
and reciprocally. Thus, other edges of F,. correspond to placements at the limit of
stability of the spider robot. We denote by S, the set of those edges. A placement
P of the spider robot is at the limit of stability if and only if there exists a closed
half-disk of radius R centered at P that does not contain any foothold except at least
two footholds located on the diameter of the half-disk such that P is between these
footholds. Thus, the edges of S, are supported by the curves drawn by the midpoint
of a ladder of length 2R moving by translation and rotation such that the ladder
touches the boundary of the foothold regions in two points but does not intersect the
interior of the foothold regions. Thus, edges of S, are supported by the projection
(onto IR?) of the edges of the boundary of the free space of the ladder moving by
translation and rotation amidst the foothold regions considered as obstacles, i.e. the
set of (P,#) € IR?> x S such that the ladder of length 2R, which has its midpoint
at P and makes an angle 6 with the z-axis, does not collide with the interior of the
foothold regions. According to [SS87], the edges of the boundary of the free space
of the ladder can be computed in O(|.A|logn) time and O(].A.|) space. Clearly,
the projection (onto IR?) of each edge can be computed in constant time. The
intersections between the projected edges do not need to be computed. Thus, we
can compute, in O(|A.|logn) time and O(|.A.|) space (using [SS87]), a set of curves
in IR? that support the arcs of §(F,) that correspond to placements at the limit of
stability of the spider robot. However, it remains to compute the portions of these
curves that belong to §(F.).

We introduce first some definitions and notations. The ladder has length 2R.
The relative interior of an e; is called a wall. An endpoint of an e; is called a corner
(when several walls share an endpoint, we define only one corner at that point). A
placement of the ladder is a pair (P,f) € IR? x S' where P is the location of the
midpoint of the ladder and 6 is the angle between the z-axis and the ladder. A
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free placement of the ladder is a placement where the relative interior of the ladder
does not intersect the walls. A placement of type corner-ladder is a placement of the
ladder such that the relative interior of the ladder touches a corner. A placement of
type wall-endpoint is a placement of the ladder such that an endpoint of the ladder
touches a wall. A placement of type corner-endpoint is a placement of the ladder such
that an endpoint of the ladder touches a corner. We now define k-contact placements
of the ladder.

A 1-contact placement is a free placement of type corner-ladder or wall-endpoint.
A 2-contact placement is either the combination of two 1l-contact placements or
a free placement of type corner-endpoint. A 2-contact placement is said of type
(corner-ladder, corner-ladder), (corner-ladder, wall-endpoint), (wall-endpoint, wall-
endpoint), or (corner-endpoint), in accordance to the types of placements involved
in the 2-contact placement. Given two walls (resp. a wall and a corner, two corners,
one corner), the set of 2-contact placements induced by these two walls (resp. the
wall and the corner, the two corners, the single corner) is called a 2-contact curve.
A 3-contact placement is either the combination of a l-contact placement, and a
2-contact placement, or is a free placement of type corner-endpoint such that the
ladder at that placement is parallel and has no common point with a wall ending at
the corner; that last type of 3-contact placement, denoted (corner-endpoint, //), is
considered in order that, any 2-contact curve ends at a 3-contact placement. Notice
that, reciprocally, any 3-contact placement is an endpoint of a 2-contact curve. The
types of the 3-contact placements are naturally defined by (corner-ladder, corner-
ladder, corner-ladder), (corner-endpoint, wall-endpoint)... A k-contact placement,
k > 3, is the combination of p 1-contact placements, ¢ 2-contact placements and r
3-contact placements such that p + 2¢ + 3r = k.

Now, we define a 2-contact tracing as the projection onto IR? of a 2-contact curve.
Similarly as above, we define the types of the 2-contact tracings. Notice that, to any
point P of a given 2-contact tracing K corresponds a unique placement (P,6) of the
ladder. It follows that, to any point P of a 2-contact tracing K corresponds a unique
pair (M, N) of points of contact between the ladder at (P, ) and the walls (when
P is an endpoint of K, a 3-contact placement corresponds to P. However (M, N)
is unique by continuity). Notice that M and N are equal when K is a 2-contact
tracing of type corner-endpoint. The points M and N are called the contact points
corresponding to P € K.

A 2-contact tracing is either a straight line segment, an arc of ellipse, an arc
of conchoid or a circular arc. Indeed, a 2-contact tracing of type (corner-ladder,
corner-ladder) is a straight line segment; a 2-contact tracing of type (corner-ladder,
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wall-endpoint) is an arc of conchoid (see Appendix B); a 2-contact tracing of
type (wall-endpoint, wall-endpoint) is an arc of ellipse; a 2-contact tracing of type
(corner-endpoint) is a circular arc (see figures below). As we said before, we can
compute all these 2-contact tracings in O(|.A.|logn) time and O(|.A.|) space [SS87],
it remains to compute the parts of these curves that belong to §(F).

We first show that only some portions of the 2-contact tracings correspond to
positions at the limit of stability of the spider robot. These portions are called
the relevant 2-contact tracings. Then, we prove that we do not have to take into
consideration the intersections between the relative interior of relevant 2-contact
tracings. We also show that, if a point A is an end-point of several relevant 2-
contact tracings, only two of them can support edges of S. in the neighborhood of
A. Then, we compute a graph whose edges are relevant 2-contact tracings and where
the degree of each node is at most two. Finally, given two vertices of 6(F.) N .A. that
are connected (along 6(F.)) by arcs that correspond to placements at the limit of
accessibility of the spider robot, we compute these arcs using the graph.

Asmentioned above, a placement P of the spider robot is at the limit of stability
if and only if there exists a closed half-disk of radius R centered at P that does
not contain any foothold except at least two footholds located on the diameter of
the half-disk, one on each side of P, these footholds are called cpntact points at
placement P. Thus, a point P of a 2-contact tracing K may be on an arc of 6(Fe)
that correspond to placements at the limit of accessibility of the spider robot only
if P is between the two contact points corresponding to P € K. The portions of
the 2-contact tracings for which that property holds are called the relevant 2-contact
tracings. The other portions are called the irrelevant 2-contact tracings. We now
show how to compute the relevant 2-contact tracings for each type of contact. (see
Figure 14). Let K denote a 2-contact tracing, let P € K and let M and N be the
two contact points corresponding to P € K.

Type (corner-endpoint):

K is a circular arc, and M and N coincide
with one endpoint of the ladder. Thus,
all the 2-contact tracings of type (corner-
endpoint) are wholly irrelevant.
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Type (wall-endpoint, wall-endpoint):
K is an arc of ellipse, M and N are
the endpoints of the ladder and thus,
P is between them. Thus, all the 2-
contact tracings of type (wall-endpoint,

wall-endpoint) are wholly relevant. Arc of ellipse

Ladder

Type (corner-ladder, wall-endpoint):

K is an arc of conchoid. If the distance
between the corner and the wall is greater
than R, then, K is wholly relevant.

Otherwise, if that distance is smaller than
R, then, the two relevant portions and the
irrelevant portion of K are incident to the
corner involved in the type of K.

< ———
Notice that if the corner is an endpoint of the wall, then K degenerates in a line
segment and the irrelevant portion of K is the portion which is not supported by the
wall (see Figure 14).
Type (corner-ladder, corner-ladder):
K is a line segment. If the distance bet-

ween the two corners is greater than R, \
then, K is wholly relevant; otherwise, the /ﬁ(\-\

portion of K which is relevant is the line

segment joining the two corners. \‘/\\,\ﬁﬁ

We show now that the intersections between the relative interiors of the relevant
2-contact tracings are not pertinent for the spider robot motion problem. We recall
that, if a vertex A of §(F,) belongs to A., then we know by Theorem 20 the labels of
the edges of §(F.) incident to A. Otherwise, if A ¢ A, then the two edges of §(Fe)
that end at A correspond to placements at the limit of stability of the spider robot.
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Figure 14: Relevant 2-contact tracings (thick curves) and irrelevant 2-contact tra-
cings (dashed thick curves).

Proposition 21 Any vertex A of 6(F.), such that A & Ae, is an endpoint of the
two relevant 2-contact tracings that support the edges of 6(F.) ending at A.

Proof: Since the two edges of 6(F.) that end at A correspond to placements at
the limit of stability of the spider robot, they are both supported by some relevant
2-contact tracings. Thus, we only have to prove that A is an endpoint of these two
relevant 2-contact tracings.

Let K1 and K9 be these two relevant 2-contact tracings and assume for a contra-
diction that A is not an endpoint of K; (nothing is assumed for A with respect to
Kq). Let L1 = (A,601) (resp. Ly = (A,02)) be the placement of the ladder that
correspond to A € K1 (resp. A € K3) and let M; and N; (resp. My and Nj) be the
corresponding contact points (see Figure 15). First, notice that L; # Ly. Indeed,
otherwise, L is at least a 3-contact placement and then, A must be an endpoint of
K1, which contradicts our assumption.
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By the definition of the relevant 2-contact tracings, A is between M; and Nj.
Moreover, A cannot be equal to M7 or N7 since A is not an endpoint of ;. It follows
that neither My nor Ny is equal to A, because otherwise L; would be a 3-contact
placement. Therefore A is strictly between M; and Ny, and strictly between Ms and
Nj. Thus, A is strictly inside the polygon (M7 M;yN1Ns).

On the other hand, since A does not belong to any C.;, the walls supporting
My, N1, My and Ny intersect the open disk D4 of radius R centered at A. Thus,
there exists four points M7, Ni, M} and N, on these walls and in Dy, that are close
enough to M7, N1, M, and N, respectively to ensure that A belongs to the interior
of the polygon (M{MjN{N3). Since the distances from A to M{, Ni, M| and Nj,
are strictly smaller than R, A belongs to the interior of F,. This contradicts our
assumption that A is a vertex of §(F.) and yields the result. O

-

>

N1

Figure 15: For the proof of Proposition 21.

Consider now the adjacency graph G of the relevant 2-contact tracings such that
two relevant 2-contact tracing are connected in G if and only if they have a common
endpoint (the intersections between the relative interior of the relevant 2-contact
tracings are not considered). Notice that, given the set of relevant 2-contact tracings,
G can simply be computed in O(].A.|logn) time. Now, given two vertices of §(F.)N.Ae
that can be joined by arcs of S, we want to be able to compute these arcs. For
computing these arcs, we cannot simply use the graph G because the degree of some
nodes of G may be arbitrary large (see Figure 16). We show in the next proposition
that we can deduce from G a graph G’ such that the degree of each node of G’ is at
most two and that G’ supports any portion of §(F.) which is the concatenation of
arcs of S, N A..
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Figure 16: An arbitrary number of relevant 2-contact tracings that have a common
endpoint.

We consider four hypotheses (H1,...,H4) that avoid to consider degenerate cases.
They are not essential but substantially simplify the proof of the following proposi-
tion. In order to ensure that the degree of each vertex of the free space of the ladder
is three, we make the three hypotheses H1, H2 and H3.

H1 The line segments e1, ..., e, compose the boundary of a set of non degenerated
polygons (i.e. no polygon is reduced to a line segment or to a point).

H2 The ladder does not admit any 4-contact placement.

H3 The arc of conchoid drawn by an endpoint of the ladder when its other endpoint
moves along a wall while the ladder remains in contact with a corner, is not
tangent to any other wall. According to Lemma 48 this hypothesis avoids
only degenerate cases.

H4 The ladder does not admit any 3-contact placement when its midpoint is located
at a corner.

Proposition 22 For any node A of G of degree k such that A € A., at most two
relevant 2-contact tracings can support 6(Fe) in a sufficiently small neighborhood of

A. Moreover, we can determine these at most two curves in O(klogk) time and
O(k) space.
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Figure 17: Wedge P;, AP, is in F, near A.

Proof: Let A ¢ A, a node of G of degree k, D 4 is the open disk of radius R centered
at A. We will distinguish two cases: A is or is not a corner.

A is a corner.

Let K1,...,K; be the relevant 2-contact tracings that end at A, and let L; =
(A, ¢;) be the placement of the ladder that corresponds to A € K;. We assume that
k > 2, otherwise Proposition 22 is trivial.

The 2-contact tracing &C; has to involve a least a different contact from the corner-
ladder contact in Aj; if this contact is a corner-ladder contact we define P, = P/ as
the corner (# A) defining this contact (notice that P, = P/ € D4 by Hypothesis H4);
if this contact is a wall-endpoint contact we define P; as the contact point between
this wall and the ladder at placement L;, since A ¢ A, the wall must intersect D 4
and we define P/ as a point in that intersection in a neighborhood of P;.

Fact: Vi # j, ¢ # j,
otherwise, placement L; = L; is a 3-contact with midpoint on a corner contradicting
Hypothesis H4.

Fact: A is a non-flat vertex of CH(A, Py, ..., Py) or belongs to the interior of Fe.
Assume that A € §(F.). Then, A lies on the boundary of CH(A, P,..., Py) be-
cause, otherwise, the P/ provide footholds such that the spider robot can move in a
neighborhood of A. Furthermore, A must be a non-flat vertex of CH(A, Py, ..., Py),
by Hypothesis H4.
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Assume that A does not belong to the interior of 7., and let P;, and P;, be the
two vertices of CH(A, P, ..., Py) such that P;,, A and P,, are consecutive along the
boundary of CH(A, P,...,P;). We will exhibit a stable placement for the spider
robot at any position P inside the intersection of the wedge P;; AP;, and a neighbo-
rhood of A. Let hy and hy be two points in the wedge P;; AP;, such that the wedges
P;, Ahy and ho AP;, have angle 3.

— If P is in the wedge P;, Ahs, and is close enough to A, the footholds A, P;, and
P}, yield a stable placement for the spider robot (see Figure 17).

— If P is in the wedge ha ARy, and is close enough to A, footholds A, P and P'iy
yield a stable placement for the spider robot.

— If P is in the wedge hy AP;,, and is close enough to A, footholds A, P/ and Piy
yields a stable placement for the spider robot.

Fact: K, i & {i1,i2}, cannot support an edge of 6(F.) incident to A.

We assume that A is a non-flat vertex of CH(A, Py,..., P;) because, otherwise,
A belongs to the interior of F, and the claim is obvious. A 2-contact tracing K;,
i & {i1,12}, cannot be an arc of ellipse because, otherwise, L; is a 3-contact placement
contradicting Hypothesis H4. Thus, K; can be either the segment AP; or an arc of
conchoid which is tangent to the segment AP; at A by Lemma 47. The point P;
strictly belongs to the wedge P;; AP,,, because we have shown that ¢; & {¢i,, @i, }-
Thus, K; is strictly inside the wedge P;, AP;, and thus inside Fe, in a neighborhood
of A. Therefore, K; cannot support §(F.), in a neighborhood of A.

Hence, by sorting the P; in polar order around A, we can determine, in O(k log k)
time, if A is a non-flat vertex of CH(A, Py, ..., Py), and if so, determine 41 and 7. If
A is a non-flat vertex of CH(A, P, ..., P), then, only K;, and K;, can support an
edge of 6(F) incident to A. Otherwise, A belongs to the interior of F, and none of
the 2-contact tracings K, ..., Ky can support an edge of §(F) incident to A.

A is not a corner.

Fact: There is only one relevant placement L with center in A.

Indeed, either A is in a wall, and the only possible orientation for the ladder is the
orientation of the wall, or A is not a foothold, and thus, if there is two distinct
relevant 2-contact placements at A, there exists four contact points Py, Py, P3, P,
such that |[AP;| < R and that the interior of CH(P;, Py, P3, Py) contains A. Since
A ¢ A., there exists four footholds P;, Py, Py, P; in D4 and in some neighborhoods of
Py, Py, Ps, Py, respectively, such that A belongs to the interior of CH(P{, Py, Ps, Py).
Thus, A ¢ 6(F.) which contradicts our assumption.

Fact: There are at most six 2-contact tracings incident to A.

Since the general position hypothesis H2 forbid k-contacts for &k > 3, A corresponds
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to a 3-contact placement. The three possible choices of two contacts among three
gives three 2-contact tracing intersecting in A and thus, six arcs incident to A.

Fact: There are three 2-contact tracings incident to A.

If the 3-contact placement L is of type (corner-endpoint, //), then there are only
three 2-contact tracings incident to A, that are two circular arcs and one line segment.
Otherwise, it comes from the general position hypotheses H1, H2 and H3 (designed
to ensure that property) that a 2-contact tracing cannot be valid on both side of the
3-contact, i.e. on one side of the 3-contact placement, the placements are not free.
We detail below that proof.

Fact: There are two relevant 2-contact tracings incident to A.

According to Hypothesis H4, at the 3-contact placement L, two contact points are
on the same side of A. Thus, only two of the three 2-contact tracings incident to A
are relevant.

Now, we prove that Hypotheses H1, H2 and H3 ensure that three 2-contact
tracings are incident to A, by considering in turn each possible type of the 3-contact
placement L = (A, ¢).

Type (wall-endpoint, wall-endpoint, wall-endpoint):
This type of 3-contact placement cannot
occur because the walls do not intersect
each others since the polygonal foothold
regions are pairwise disjoint, by assump-
tion.

ladder wall

Type (corner-ladder, corner-ladder, corner-ladder):

This type of 3-contact placement does not
appear because that contradicts Assump-
tion H2, that says that there is no 4-
contact placement.
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Type (corner-endpoint, //):
There are clearly three 2-contact tracings
incident to A, that are two circular arcs
and one line segment.

Type (wall-endpoint, corner-ladder, corner-ladder):
Let P, and P, denote the corners invol-
ved in the 3-contact placement, and let P/
be the point of the ladder that coincide
with P; when the ladder is at placement
L. The wall and the ladder at L are not
collinear by Hypothesis H2. Thus, trans-
lating the ladder in a direction parallel to
P, P, is possible in only one way if we for-
bid the ladder intersecting the wall. Thus,
only one 2-contact tracing of type (corner-
ladder, corner-ladder) ends at A.
According to Lemma 47, the conchoid drawn by P| when the ladder moves keeping
contact with P and the wall, is not tangent to the ladder at placement L, and
thus the ladder cannot move in both direction without intersecting one of the walls
incident to P (there is at least one wall incident to P, and not parallel to Py P, by
Hypothesis H1). Thus, only one 2-contact tracing of type (wall-endpoint, corner-
ladder) involving P; ends at A. That result applies symmetrically to the 2-contact
tracing involving Ps.
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Type (wall-endpoint, wall-endpoint, corner-ladder):
We denote by Py, e;; and e;, the corner
and the two walls involved in the 3-contact
placement.

According to Hypothesis H2, the two walls
are not both parallel to the ladder at L.

If the ladder at L is collinear to one wall,
then, by Hypotheses H1 and H2, there
exists another wall non parallel to the lad-
der and incident to the corner. Then,
there are three 2-contact tracings incident
to A that are, a line segment, an arc of

conchoid and an arc of ellipse.
We now suppose that neither e;, nor e;,

is parallel to the ladder at L. According
to Hypothesis H3 (which has been desi-
gned especially for that case), the lad-
der at placement L can move only in one
direction, remaining in contact with Py
and e;, without intersecting e;,. Thus,
only one 2-contact tracing of type (wall-
endpoint, corner-ladder) involving e;, ends
at A. Similarly, only one 2-contact tracing
of type (wall-endpoint, corner-ladder) in-

volving e;, ends at A.
It remains to prove that only one arc of the

ellipse drawn by the midpoint of the lad-
der keeping the contact with e;, and e;, is
valid. If e;, and e;, are parallel, the ellipse
degenerates to a line segment parallel to
e;, (and to e;,) and only one arc of the
ellipse, incidents to A, is valid. Now, we
assume that e;; and e;, are not parallel.
Let € > 0 small enough and L’ (resp. L")
be the placement of the ladder with orien-
tation ¢ + ¢ (resp. ¢ — ¢) in contact with
Py and e, .
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By Hypothesis H3, the ladder at either L'
or L" intersects e;,. Let t' (resp. t”) be
the translation parallel to e;, that map the
ladder at L' (resp. L") to the position in
contact with both e;; and e;,. The trans-
lations ¢ and t” have opposite directions
since exactly one of the ladder at L' and
L" intersects e;,. Thus, at most one of the r
ladder at t'(L') and t"(L") is free, because L
one has to intersect a wall incident to Py T
(which exists and is not of direction ¢ by
Hypothesis H1). Therefore, at most one
of the two arcs of ellipse incident to A is a

2-contact tracing.
Type (corner-endpoint, corner-ladder):

Clearly, only three 2-contact tracings end
at A that are either, a line segment, an arc
of conchoid and a circular arc, or two arcs
of conchoid and a circular arc.

Type (corner-endpoint, wall-endpoint):
In this case, it is also clear that, three 2-
contact tracings end at A, that are, a cir-
cular arc and, either an arc of conchoid
and an arc of ellipse, or two arcs of ellipse.

Now, consider the graph G and each node A in turn. If A € A., we disconnect
all the edges of G that end at A. Notice that for each such node A, we know, by
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Theorem 20, if A € §(F.) and, in such a case, the labels of the edges of §(F¢)
incident to A. If A ¢ A., we disconnect the edges ending at A except those (at
most two) that may support 6(F.) in a neighborhood of A (see Proposition 22). In
this way, we obtain a graph G’ such that the degree of each node is one or two. We
consider each connected component of this new graph as a curve. Let A be this set
of curves. We do not know if these curves are simple or not, but, in accordance with
the graph G’, they behaves like simple curves. Indeed, given any pair of points on
a curve K € A, there is one or two ways (depending if K is a closed curve or not)
to connect them on K in accordance with the graph G’. In the sequel, these curves
are called pseudo-simple. Then, according to Propositions 21 and 22, we get the
following theorem:

Theorem 23 We can compute, in O(|.A.|logn) time and O(|A.|) space, a set A of
pseudo-simple curves that support the edges of 6(F.) corresponding to placements at
the limit of stability of the spider robot. Moreover, any portion P of 6(F.) either
intersects Ae or belongs to a unique curve of A.

5.4 Construction of 7, and F

We can now construct F, and F. Let Ag(n) denote the maximum length of the
Davenport-Schinzel sequence of order k£ on n symbols and ag(n) = A\x(n)/n.

Theorem 24 Given, as foothold regions, a set of n non intersecting straight line
segments that satisfies Hypotheses H1, H2, H3 and Hj, we can compute the free
space Fe of the spider robot in O(|.Ac|lag(n)logn) time and O(|Ac|ag(n)) space.

Proof: By Theorem 20, we can compute the contribution of A, to §(F.) and the label
of the edges of §(F.) incident to them in O(|A¢|ar(n)logn) time and O(|A.|ag(n))
space. By Theorem 23, we can compute, in O(|.A.|logn) time and O(|.A.|) space, a
set A of pseudo-simple curves that support the edges of 6(F.) that do not belong
to Ae. Moreover, any portion P of §(F.) such that P N.A. = ) belongs to a unique
curve of A. Thus, by sorting all the vertices of §(F.)N.A. N A on the relevant curves
of A, we obtain all the edges of §(F.) that belong to a connected component of
6(Fe) intersecting A.. Indeed, for each vertex A € §(F.) N A. N A, we know, in a
neighborhood of A, the part of the curve of A that belongs to §(F.) because we can
simply determine, for each edge, a side of the edge that belongs to F.. Then, it is
an easy task to deduce all the connected components of §(F.) that intersect .A..

It remains to compute the connected components of §(F.) that do not intersect
A.. Each of these components must be a closed curve of A. Moreover, all the curves
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of A belong to F.. Thus, according to Theorem 23, any closed curve K of A that
does not intersect A, is either a connected component of §(F,) or is strictly included
in F.. Therefore, by considering, in addition, all the closed curves of A that do not
intersect A., we finally obtain a set ¥ of closed curves that contains §(F,) and such
that any curve of U is either a connected component of §(F.) or is strictly included
in F..

At last, as we can simply determine, for each curve of ¥, a side of the edge
that belongs to F., we can easily deduce from V¥ the free space F.. That concludes
the proof since all these computations can be done in O(|A.|ag(n)logn) time and
O(|A.|as(n)) space. 0

As we said at the beginning of Section 5, the free space of the spider robot using
as foothold regions a set of polygonal regions is obtained by adding these polygonal
regions to F.. This does not increase the geometric complexity of the free space nor
the complexity of the computation. Thus, we get the following theorem:

Theorem 25 Given a set of pairwise disjoint polygonal foothold regions with n edges
in total that satisfies Hypotheses H1, H2, H3 and H/, we can compute the free space
F of the spider robot in O(|.Ac|ag(n)logn) time and O(|Ac|asg(n)) space.

The function ag(n) is extremely slowly growing and can be considered as a
small constant in practical situations. This result is almost optimal since, as shown
in [BDDP95], Q(|.A.|) is a lower bound for the size of F.

6 Conclusion

We have seen in Theorem 19 that, when the foothold regions are n points in the
plane, the free space of the spider robot can be computed in O(|.A|logn) time and
O(]A|a(n)) space where a(n) is the pseudo inverse of the Ackerman’s function and .A
the arrangement of the n circles of radius R centered at the footholds. By [BDDP95]
the size of F is known to be ©(]A]). The size of A is O(n?) but, if k denotes
the maximum number of disks of radius R centered at the footholds that can cover
a point of the plane, it can be shown that |A| = O(kn) [Sha91]. Thus, in case of
sparse footholds, the sizes of A and F are linearly related to the number of footholds.
Moreover |F| is usually much smaller that |.A|, even when A has quadratic size.
When the foothold regions are n straight line segments or polygons with n edges
in total, the free space of the spider robot can be computed in O(|Ac|ag(n)logn) time
and O(|Ac|ag(n)) space. nax(n) = Ag(n) is the maximum length of the Davenport-
Schinzel sequence of order k on n symbols; A, is the arrangement of the n curves
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consisting of the points lying at distance R from the straight line edges. Notice that
a(n) = az(n) and also that the size of A, is O(n?).

It should be observed that, in the case of point footholds, our algorithm implies
that O(|.A|a(n)) is an upper bound for |F|. However, this bound is not tight since
|F| = ©(|.A]) [BDDP95]. In the case of polygonal footholds, our analysis implies
that O(|.Ae|ag(n)) is an upper bound of |F|. We let as an open problem to close the
(small) gap between this upper bound and the Q(].A.|) lower bound.

Once the free space F is known, several questions can be answered. In particular,
given two points in the same connected component of F, the algorithm in [BDDP95]
allows to compute a motion, i.e. a sequence of leg assignments that allow the robot
to move from one point to the other.
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A Proof of Theorem 20

We prove in this appendix the Theorem 20 stated in Section 5.2. We use the notations
introduced in Section 5.2. To avoid confusion, the objects, C;, C;, H;, Rfc, Z;, p;-t,
associated to a point site s; are denoted by Cs,, Cs,, Hs,, R;E, Zs,, pffi. We analyze
the regions Z; in Section A.1. We examine in Section A.2 the regions int('Hei)ﬁCSiO.
Then, in Section A.3, we show how to compute the contribution to §(F.) of all the
circles (of radius R) centered at the endpoints of the e;. At last, we study the regions
Ve, and show how to compute the contribution of the line segments of the Cg; to
8(Fe), in Section A 4.

A.1 Properties of the Z,,

We study here the regions Z;, = He, NCs, . We use for the torus s, the vocabulary
introduced in Section 4.2. As we said above, we study first the regions Zp, =
Hp, N C%. For convenience, we identify in the sequel the slope of a straight line D;
with the angle 7; between the (oriented) z-axis and D;; ; is defined modulo 7. We
assume, for the sake of simplicity, that the regions Z., and Zp, under consideration
are not reduced to the empty set.

Proposition 26 If s;, ¢ D;, Zp, is a connected region bounded by two vertical line
segments of length 7, and two curved edges pJISi and pp,. which are symmetrical with
respect to the lines 6 = v; and 0 = v; + 7 (see Figures 18 and 19).

Proof: Since s;, € D;, Zp, is bounded by two vertical line v = u; and v = wu»
where u; and u9 are the parameters on the circle C’sio of the two points I; and I at
distance R from D; (see Figure 20). Let s be a generic point of D; and s; (resp. s2)
be the point of D; at distance R from I; (resp. I3). Let Z; denote the intersection
between the torus Cs;  and the helicoidal volume H, associated to s.

Zp, is the union of the regions Z, s € D;. As Z; is connected (see Proposition 11)
and continuous with respect to s, Zp, is connected.

For any s # s1 (resp. s # s2) the circle of radius R centered at s does not
contain I; (resp. Iy), thus Z,, (resp. Z,,) coincides with Zp, on the line v = uy
(resp. w = ug). Therefore, Zp, is a region bounded by two vertical line segments of
length 7 (see Proposition 11).

The region Zp, is symmetrical with respect to the line # = 7 because the
Minkowski’s sum of HD(O,~; + #) and D; is equal to the Minkowski’s sum of
HD(O,~; — 0) and D;. Since ~; is defined modulo 7, pa and pp, are also sym-
metrical with respect to the line § = ; + . O
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Figure 19: Zp, and the relative positions of C&;O and D; that correspond.
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Proposition 27 If D; does not intersect Cs,,, the line 0 = u+ 5 properly intersects
the region Zp, but neither its upper nor its lower edges pa and pp, (see Figure 18).

Proof: We use here the notations of the previous proof.

Let I (resp. I,) denote the point of intersection distinct from I; (resp. I2)
between Cf, and the circle of radius R centered at s1 (resp. s2) (see Figure 20).
Let uj (resp. uj) be its parameter on Cj, . By the definition of s; and Iy, the lines
(s1I1) and D; are orthogonal; therefore, (s;,I]) and D; are also orthogonal. The
same argument shows that (s;,I5) and D; are orthogonal. It follows that Ij = I}
and u) = ub.

On the other hand, since D; does not intersect Csio, the angle Z(Il—si;,fl—sl)) is
greater than 7/2 and therefore ||s; 51| > V2 R. Similarly, |[s; 52| > v2R. The
region Zp, contains 2, (resp. Z,) which contains the line § = u + § for  in the
interval [u,u}] (resp. [u),us]) (see Proposition 14). Since u} = u), Zp, contains
the line @ = u + § for u € [u1, us]. Furthermore, for u = u; (resp. u = ug) this line
intersects the vertical edge of Z;, (resp. Zs,) (see Proposition 14) which coincides
with the vertical edge of Zp, (see the previous proof). O

Proposition 28 If D; intersects C’sio such that s;, ¢ D;, the line 6 = u— 3 properly
intersects the region Zp, but neither its upper nor its lower edges pa and pp, (see
Figure 19).

Proof: We use the notations of the two last proofs.

Since D; intersects Cj, , the angle Z(Il—s,g,Il—sl)) is smaller than 7/2 (see Fi-
gure 20). Thus, ||s;s1]| < V2 R and the same holds for ||s;,s2||. Therefore, for any
point s on the line segment [s15s], ||siy5]| < V2 R.

As we know, Zp, is defined for u € [uy,us]. Consider any u* € [u1,us] and the
corresponding point I on C, . There exists s on the line segment [s182] such that
the circle of radius R centered at s pass through I. Thus, one of the two vertical
edges of Z, lies on the line u = u*. Furthermore, since ||s;,s|| < v/2 R, that vertical
edge of Z; is intersected by the line = u — 5 (see Proposition 16). This edge is
contained in Zp, (because Zs C Zp,), therefore, we have shown that Yu € [u1,us],
the point (u,u — 5) belongs to Zp,. The result follows because Zp, is bounded by

the lines v = w1 and u = wus. O
Proposition 29 If s;, € D;, Zp, is the region shown in Figure 21. The line 0 =

u — 5 belongs to the relative interior of Zp,. The curves pa and pp. belong to the
lines=u, 0 =u+m, 0=—u+2vy, 0 =—u+2v +m.
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Figure 20: For the proofs of Propositions 26, 27 and 28.
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Figure 21: Zp, when s;, € D;.

Proof: For any 6 € S, Hp, N1, intersects Cs;,- Moreover, according to Figure 22,
for any 6 € [v;,v; + 5] and for any u € [2v; — 6,60 4 7], the point (u,6) belongs to
(Hp; N1Ilp) NCs,, and so belongs to Hp, NCs, . It follows that the boundary of Zp,
is supported by the lines § = v — 7 and 6 = —u + 2v; when 0 € [y;,7; + 5.
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Zp, is symmetrical with respect to the line § = ~; (see the proof of Proposi-
tion 26). Moreover, 7; is defined modulo 7, which gives the characterization of Zp,.

For any 6 € S, the point of Cs,, corresponding to the parameter 6+ /2 belongs
to the half-disk HD(s;, 0) (see Figure 22). Moreover, the point of Cs, corresponding
to the parameter (6 + 7/2,60) belongs to the relative interior of Hp,. Therefore, the
line # = u — 5 belongs to the relative interior of Zp, (see Figure 21). O

Figure 22: For the computation of Zp, and Zj when s;, € D;.

We now study Z.,. Let s; and s; be the two endpoints of e; and let D; denote
the line supporting e;. The following proposition state that the boundary of Z, is
made of pieces of the boundaries of Z;,, Z, and Zp,. we recall that pi, pg‘:i and pi

denote the upper and the lower edges of Zp,, Z,, and Z,, respectively.

Proposition 30 For any i € {1,...,n}, Cs;, can be split into a few wvertical strips
such that the region Z.; is bounded from above and from below by an arc of p%i, pi
or pi. Moreover, on each strip, the line 0 = u + § or 6 = u — 5 properly intersects
Ze; but neither its upper edge nor its lower edge.

Proof: Let D) be the half straight line starting at s; and passing through s!. Let
Hp; be the helicoidal volume induced by D;:

Hp, ={(P,0) e R> x §'/ P € HD(s,9), s € D;}
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Figure 23: V60 € [;,7; + 7|, Hp NIy coincides with Hp, NIl on Cs,.

and let Z D! be intersection between H D! and Cg, 0" We show how to deduce ZD: from
Zp, and Z . Then, we prove the propOSItlon for Zp instead of Z.,. That will yield
the result because Z,; can be deduced from Z D! and s} in the same way we deduce
ZDr from Zp, and Z I Z,, =0, then ZDr ZD and Propositions 27, 28 and 29
y1e1d the result. We suppose in the sequel that Zs, # 0. Furthermore, we assume
that s; # s;,; we treat this simple case at the end.

We set a few notations. Until now, 7; denoted the angle (defined modulo )
between the z-axis and D;. We consider here that v; = Z(Z, sz_}sz) [27]. Let ug, ug,
v1 and vy be the parameters of the points I, Iy, Jq, Jo defined on the circle Csio as
follow (see Figure 23): I; and Iy are the two points at distance R from D;; J; and
Jy are the two points of intersection between Csio and Cs,;; I1, Ji, Jo and I are
consecutive on Csz-o- The region Z;, is defined for u € [v1,vq]. If s,y & D;, Zp, is
defined for u € [u,us] and otherwise, Zp. is defined for u € S. Notice that [vy, vo]
is included in [ug, us].

We show now that Zp coincides with Zp, or Z,, on some regions of St x St
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Figure 24: V0 € [y; — 7, 7;], Hp N1l coincides with H,, NIy on Cs,.

- For 0 € [vi,7i + 7], Hp; N1y coincides with Hp, N1ly on C; (see Figure 23).
Therefore, Zp: coincides with Zp, for (u,0) € [v1,v2] X [73,7 + 7] (see Fi-
gure 25).

- For 0 € [y; — 7,7, Hpr NIy coincides with H,, NIy on Cs, (see Figure 24).
Therefore, Zp; coincides with Z;; for (u,0) € [v1, v2]x[vi—, 7] (see Figure 25).

- If 5i, & D;, then, in [ug,vi] x S* (k € {1,2}), Zp: coincides either with Zp, or
with the empty set, depending of the relatives poslitions of D! and s;. Precisely,
Zpr coincides with Zp, in [ug,vg] X S if and only if I is at distance R from
D! (see Figure 23).

- Similarly, if s;, € D;, then, in S\ [v1,v3] X S, Zp/ coincides with Zp. if
si, € D} and coincides with the empty set otherwise. '

It follows that the computation of Z,; and Zp, provides in constant time Zp;. Fur-
thermore, Propositions 27, 28 and 29 yield the result for the vertical strips [u1,v1]x S*
and [ve, u2] x St if s;, & D; (see Figure 25), and for S* \ [v1,va] x S otherwise.

It remains to show the result for [v1, v2] x S*. We claim that the boundary of Zp
is composed of pieces of the boundaries of Zp, and Z;,. Indeed, the considerations
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above yield that, for (u, ) € [v1,v2] X {7Vi,7 + 7}, Zpr coincides with Zp, and also
with Zs,. Thus, for (u,0) € [v1,vs]x{vi,vi+7}, Zp, and Z,, coincide (see Figure 25).
Therefore, the lines § = «; and # = ~;+7 do not support any piece of the boundary of
zZ D!- The claim follows. If the distance between s;, and s; is smaller than V2 R, then
we subdivide [vy,v2] x S! into two or three vertical strips according to the subdivision
of pg‘:i we have considered in Proposition 15. Let Ui x S' be one of these strips. We
recall that Zfi denotes the part of Z included in Uy x S! and that pff and pf:
denote its upper and lower edges (k = 1, 2 or 3). For convenience, if ||s;,5:|| > V2 R,

we set Uy = [v1,v9), 28 = Z,, and pt* = pE. We know by Propositions 14 or 16

that the portion of the line § = u + %1(or 0 = u— Z) included in Uy x S* belongs
to Zf Thus, this portion of line belongs to ZD; because Zfi C Z, C ZD;. That
means that, in the strip Uy x ST, the line § = u+7% (or § = u— 3) properly intersects
Zpr but neither its upper edge nor its lower edge (see Figure 25).

‘We consider now the case where s; = Sio- Then, according to Figure 22, Zp,
clearly coincides with Zp, for (u,0) € [v; — 5,7 + 5| x S' and coincides with Zs,
for (u,0) € [vi + 5,7 + 37”] x S1. Thus, Propositions 10 and 29 yield the result.

Similarly, Z., can be deduced from Z D! and Zs; , which yields the result. O

Lemma 31 Let (ur,0r) be a point of pp. (resp. pEi) and I be the point of the
circle CS~;0 with parameter ur. The point Ap (resp. Br) at distance R from I in the
direction 01 (resp. 01 + ) belongs to D; (see Figure 26).

Proof: If D; is the line of slope 6; passing through I the result is obvious. We
assume now that D, is not the line of slope ; passing through I.

If (ur,0r) € Pp,, then 3s € D; such that (ur,0r) € p;. That means that I
belongs to the radius r(0; + m) of HD(s,0r) because p, = R, NC;, (see the proof
of Proposition 11). Hence, s belongs to the straight line segment [T A;]. If s # Ay the
half-disk robot HD(I, 01 + ) properly intersects the straight line D; and so (ur, )
belongs to the interior of Zp,. Hence, s = A; and so, A; belongs to D;.

If (uy,0r) is a point of pa, the same arguments show that B belongs to D;. O

Proposition 32 Two curves pgi and pzj (or, pp, and Pp; ) intersect at most twice.
Proof: According to Lemma 31, a point on pa (resp. pBi) corresponds to a point

on D;. Furthermore, at most two points on pa (resp. pBi) correspond to the same
point Ay € D; (the two points of intersection between C’sio and the circle of radius
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Yi+ 7

Vi

Figure 25: ZDé and the relative positions of C’sio, D; and s; that correspond

(lsiosill = V2 R).

R centered at Aj). Thus, three points on pBi (resp. pp,) define D;. Therefore, if

there exists three points of intersection between pa and ij (resp. pp, and ij),
then D; = Dj. O

Proposition 33 Two curves pa and PD; intersect at most four times.

Proof: Let (us,0;) be a point of intersection between pa and Pp;> and I be the
point of the circle Csio with parameter uy. Lemma 31 yields that [ is the midpoint of
a straight line segment of length 2R having one end point on D; and the other on D).
The curve drawn by the midpoint of a ladder keeping one endpoint on D; and the
other on Dj is an ellipse. On the other hand, I belongs to the circle Cs, . An ellipse
and a circle intersect at most four times, thus there is at most four different locations
for I. Moreover, (ur,0r) is entirely defined by I because uy is the parameter of I on
Cs,, and I define the position (and orientation) of the ladder and so specify 6; (see
Lemma 31). Thus, the curves pa and pB]_ intersect at most four times. O
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Figure 26: A; belongs to D;.

Proposition 34 Two curves pff), and pé'; intersect at most siz times.

Proof: Let (ur,f7) be a point of intersection between pp, and pg'i,, and I be the
point of the circle Cy; with parameter u;. Consider the curve that is the set of
points at distance R from I on the line (Is;), when I describe the circle Cs, . This
curve is a circular conchoid (see Appendix C).

According to the proof of Proposition 12, s; belongs to the line of slope 67 passing
through I. Thus, the point A at distance R from I in the direction 67 belongs to the
circular conchoid defined above. Besides, A; belongs to D; (see Lemma 31). Thus,
A is a point of intersection between D; and the circular conchoid defined above.
There is at most six points of intersection between a straight line and a circular
conchoid (see Appendix C), and A; define entirely (ur,fr). Therefore, the curves
pp, and psij intersect at most six times. Similarly, two curves pBi and ,0;5. intersect
at most six times. O

A.2 Properties of the regions int(#.,) NC;,
If s;, does not belong to the line segment e;, int(He, )ﬂCsiO is clearly equal to int(Z,,).
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If s;, belongs to e; but is not one of its endpoints, then, according to Figure 22,
int(He,) N Cs,, coincides with int(2;) for (u,0) € S'\ {-%,%} x S! and coincides
with the empty set for (u,0) € {-5, T} x St

We now consider the case where s;, is an endpoint of e;. Let sgo be the other
endpoint of e; and v;, = /(Z, Q? )- According to Figure 24, int(H.,) N Cs,, clearly
coincides with int(He, N Cs, ) = int(Ze,) for (u,0) € (vip — 5.7 + 7) ¥ S1 and
int(He;) N Cs,, coincides with the empty set for (u,0) € [vi, + 5,70 + 37 x St

Therefore, U;int(H,,) N Cs;, is equal to Uiigint(2Ze;) U mt(ZeiO N ([Vio — 54 %i0 +
51 x S1)). Hence, the computation of U;int(He,;) NCs, comes from the computation
of U; i Ze; and of Z%.

A.3 Construction of §(F.) N C,

S"O

Let A\gx(n) denote the maximum length of the Davenport-Schinzel sequence of order
k on n symbols and ax(n) = Ag(n)/n.

Sections A.1 and A.2 allow us to compute the contribution of the circle Cs; = to
6(Fe) in the same way we proceeded in Section 4.3.

The k;, helicoidal volumes H,, that intersect Ce, can be found in O(k;,) time once
the arrangement A, of the C., have been computed in O(|.A¢|logn). Thanks to Pro-
positions 30, 32, 33 and 34, durlng the computation of the union of the regions 2.,
any two curves involved in the upper and lower envelopes of the curves pg' and p;
intersect at most six time. Thus, the computation can be done in O(A7(k;,) log ki, )
time and O(Ag(ki,)) space |[Her89]. Thanks to Section A.2, the computation of
Uitnt(He,) N Cs, can be done within the same time and space bounds.

Since A, is the arrangement of the C,, for ¢ € {1,...,n}, and A is the set of
circles of radius R centered at the endpoints of each straight line segment e;, the
generalization of Section 4.3 yields the following theorem:

Theorem 35 We can compute 6(F.)N.A and the labels of the edges of 6(F) incident
to the arcs of 6(Fc) NA in O(|Ac|laz(n)logn) time and O(|Ac|as(n)) space.

A.4 Contribution of the straight line segments of C., to §(F.)

We now compute the contribution of the straight line segments of Ce,, to 8(Fe), for
some ig € {1,...,n}. We recall some notations: [;, denotes one of the two straight
line segments of Ce; , Li, its supporting line, Li, = Li, X St and Ve, = He, N Liy;
D; denotes the line supporting e;, Yp, = Hp, N L;, and ~; is the angle between the
(oriented) z-axis and D;. Notice that ;, is also the angle between the x-axis and

RR n-~3214



50 Jean-Daniel Boissonnat & Olivier Devillers & Sylvain Lazard

L;,. L;, is a cylinder but for convenience we will use the vocabulary of the plane
when describing objects on it.

As usual, we compute §(F,) N L;, by computing U;(He, N Li,) and U;(int(He,) N
L;,). As in Section 4.1, we can express U;(int(H,;) N L;,) in term of Y,.: clearly,
int(He; )N Liy = 0;if D; and L;, are two parallel lines at distance R, then int(H.,)N
Li, = 0; otherwise, int(H;) N Li;, = int(e;), for i # ip. For the sake of simplicity,
we assume in the following that L;, and D; for ¢ # i are not two parallel lines.
Then, U;(int(He;) N Liy) = int(UszigYe;)- It follows that the contribution of L;, to
0(Fe) comes from the computation of U; Ve, and Uiz, Ve,

We study first Vs = HsNL;, for s € RQ, after which we examine Vp, = Hp,NL;,.
Then, we deduce Y, from Vp,, Vs, and Yy where s; and s/ are the endpoints of e;. We
assume, for the sake of clarity, that the régions Vs, Yp, and Y., under consideration
are not reduced to the empty set. Notice in the sequel the typographical difference
between o (resp. ga) that are edges of Vs (resp. Vp.) and pT (resp. p%i) that are
edges of Z; (resp. Zp,).

Proposition 36 The region Ys is a connected region bounded by two vertical line
segments of length w, and two curved edges of and o] which are translated copies of
one another. Specifically o = o5 + (0,0, 7).

Proof: The proof of Proposition 11 can easily be extended here (see Figure 27).
Notice that when s € L;,, the extension of the proof of Proposition 11 still holds but
the curves o and p; are not continuous (see Figure 28). O

Proposition 37 For any s & L;,, the line 8 = ~;, or 0 = v;, + 7 properly intersects
Ys. Furthermore, the lines 0 = v;, and 0 = ~;, + 7 intersect neither g nor g .

Proof: Since s ¢ L;,, the half-disk HD(s,~;,) or HD(s,;, + ) properly intersects
the line L;, (if the distance between s and L;, is exactly R, then neither HD(s,i,)
nor HD(s,v;, + m) properly intersects L;, but this case is irrelevant because then
Vs is reduced to a vertical segment of length 7). The first claim of the proposition
follows.

The edges o are the intersection between L£;, and the portions R of the boun-
dary of H,. Thus, the line § = v;, or § = ;, + 7 intersects gf or g if and only if
the diameter of half-disk HD(s,~;,) or HD(s,;, + ) intersects the line L;,. As the
slope of Ly, is i, and s & Ls,, the lines 6 = v;, and 6 = ~;, + 7 intersect neither o/
nor 9y . O

Now, we study the regions Vp,. First, we state the following proposition which
is obvious:
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Figure 27: Section of ‘H,,, Hp and Hp, by the "plane" IIy.

Proposition 38 The region Vp,, s equal either to Ly X [viy — 5,%, + 5] or to
Liy X [Yio + 5+ %0 + 3.

Proposition 39 For i # ig, Vp, is a connected region bounded by two vertical line
segments of length 7, and two curved edges QB,- and op. which are symmetrical with
respect to the lines 0 = ~; and 0 = ~; + 7.

Proof: The proof of Proposition 26 can easily be extended here (see Figure 27). O

Proposition 40 The two curves 9351, can be subdivided into four sub-curves denoted

g’})f (k € {1,2}) such that gﬁ_’ and g’f): are symmetrical with respect to the lines
0 =i and 0 = v; + w, and such that the line 8 = ~;, (resp. 6 = 7, + 7) properly
intersects the region bounded from above by g}j"; (resp. gzD";) and from below by QE

(resp. Q2D_i) but does mot properly intersect these two curves.

Proof: If i = ip, the line § = 7;, or 6 = ~;, + 7 is strictly included in Vp, (see
Proposition 38), which yields the result.
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If i+ # ip, then D; and L;, intersect by hypothesis. Let I be the point where
they intersect and let I; and Iy be the two points of L;, at distance R from D; (see
Figure 27). The points I; and I play symmetrical roles and similarly, v;, is only
defined modulo 7 in S*. According to the choice of I1, I and ;, in Figure 27, it
comes that, in IR? x St, [IT1] x {vi,} € Hp, and [II5] x {7i, + 7} € Hp,. Thus,
[II] x {7, } € Yp,; and [II3] X {7vi, + 7} € Vb, because the line segments [I/;] and
[II] belong to L;,. On the other hand, as YVp, is included in [I1I5] x S?, we can
subdivide the curves gi into QE: defined in [IT;] x S* and g%)ii defined in [I13] x St.
According to Proposition 40, the result follows. O

Let s; and s; be the endpoints of the straight line segment e; supported by D.

Proposition 41 For any i € {1,...,n}, L;, can be split into a few vertical strips
such that the region Y., is bounded from above and from below by an arc of g%i, gi

or gi. Moreover, on each strip, the line 8 = ~;, or 0 = v;, + 7 is included in Y.

Proof: If neither s; nor s; belongs to L;, then a straightforward extension of the
proof of Proposition 30 can be applied here, according to Propositions 37, 38 and 40
(see Figure 27). Otherwise, if s; € L;, for example, we need to notice that, on the
strip Uy, x S* we deal with in the proof of Proposition 30 (here Uy, is equal either to
[IJ1] or to [IJ3]), the lines § = ;, and 6 = ~;, + belongs to Js,; precisely these lines
are equal to Q;t_ and g, on these strips (see Figure 28. Then, the straightforward
extension of the proof of Proposition 30 holds here. O

Proposition 42 If s; and s; are two points that are not both on L;,, then, the
curves gffi and g;';, intersect at most once. Otherwise, g;*; and gi may have at most
two common connected part.

Proof: Assume first that s;  L;,. Then, the curves Q;E are defined onto #-intervals
smaller than 7. Indeed, o (resp. g.) is the intersection between R (resp. R;;)
and L;,, and the radius r;(0) (resp. r;(6 + 7)) intersects the line L;, on a f-interval
smaller than 7 because s; € L;,. Now, the proof of Proposition 12 can easily be
extended here.

If s; and s; are both on L;,, then, according to Figure 28 the result is obvious.
O

Lemma 43 Let (I,0;) € L;, x S* be a point of op, (resp. gEi). The point Ay (resp.
By ) at distance R from I in the direction 0; (resp. 01 + 7) belongs to D;.
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Yip T 7

Yip A

Figure 28: Y and the relative positions of Cy and L;, that correspond (s € L;;).

Proof: The proof is the same as the proof of Lemma 31. O

Proposition 44 Two curves ga and Q%j intersect at most twice.

Proof: Two curves ga and gBj (or, 0p, and QB],) intersect at most twice because
the proof of Proposition 32 can be applied here. Since a straight line intersects an
ellipse at most twice, the proof of Proposition 33 yields the result. O

Proposition 45 Two curves g%i and gg'i. intersect at most four times.

Proof: The proof is similar to the proof of Proposition 34. Here, the maximum
number of intersection between Q%i and g;'; is the maximum number of intersection
between a straight line and a conchoid which is four (see Appendix B). O

The computation of §(F.) N L;, can be done in the same way as in Section 4.3.
Here, the two sets €21 and €2y introduced in Section 4.3 are induced by the lines
0 = v, and 0 = ~;, + 7 instead of 0 = u £+ 7/2.

According to Section A.3 and to Propositions 42, 44 and 45, the contribution
of L;, to 6(F.) can be computed in O(As(ki,) log(ki,)) time and O(A¢(ki,)) space.
Therefore, if B denotes the arrangement of straight line segments of A, it comes the
following theorem:
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Theorem 46 We can compute 6(F.)NB and the labels of the edges of 6(F.) incident
to the arcs of 6(Fe) N B in O(|A¢|as(n)logn) time and O(|Ac|as(n)) space.
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B Conchoids

A conchoid is the curve drawn by the endpoint P of a straight line segment [PQ)] of
length L when @ moves along a fixed straight line D and when the line PQ contains
a fixed point O (see Figure 29).

Figure 29: Conchoid.

Let H be the orthogonal projection of O onto D and h = ||OH||. We give a
parametric equation of the conchoid in the orthonormal reference frame (H,7, ) (see
Figure 29). Let (X,Y) denote the coordinates of P in this reference frame. Let «
denote the angle /(7, Cﬁ’) We have:

{ X = Lcos(a) — &
Y = Lsin(«)

Considering ¢ = tan(a/2), we obtain:
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ht* — 2Lt3 + 2Lt — h
2t(1 + t2)

2Lt
142

A straight line and a conchoid intersect at most four times because any equation
aX 4+ bY + ¢ = 0 yields a polynomial of degree at most four in ¢.

Lemma 47 The line segment [PQ)| is tangent to the conchoid at P if and only if
P=0.
Proof: The system above yields:

hé
sin?(a)

{ X = —Lasin(a) +
Y = Lacos(a)

The line segment [PQ)] is tangent to the conchoid at P if and only if % = cot(a).
We have:

X cot(@) = —tane) + o) = = (14 )
—_ = — n —_ = .
y e ama Lsin?(a) cos(a) cona sin(a) cos(a) Lsin(«)
As sin(@) = 2 if and only if P = O (see Figure 29), the claim is proved. O

Lemma 48 Given two straight lines D1 and D2, and a line segment [Py P3| of length
L such that P, € Dy and Py € Dy, there exists at most one point O on [Py P;] such
that the conchoid K1 induced by D1, O and L is tangent to Dy at P». We can decide if
such a point O ezists and, in case, compute its position, in constant time. Moreover,
the conchoid Ko induced by Dy, O and L is tangent to Dy at Py (see Figure 30).

Proof: Consider without loss of generality, Dy supported by the z-axis; let (X,Y")
denote the coordinates, in the frame described above, of the point P, on the conchoid
induced by D, O and L, and let s denote the slope of Dy. The conchoid induced
by D1, O and L that is tangent to Dy at P, must verify that Y /X = s. Thus,

L cos(a)

—Lsin(a) + Sn?(a)
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K1

Figure 30: For the Lemma 48.

It comes h in term of L, « and s. Thus, for Dy, Dy, P; and P, fixed, O comes as
the intersection (if existing) of the line segment [P; P,] and of the horizontal straight
line of equation (Y = h). Therefore, there exists at most one such a point O and,
we can decide if it exists and, in case, compute its position, in constant time.
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We show now, that the conchoid K3 induced by Dy, O and L is tangent to D; at
Py (see Figure 30). Indeed, assume for a contradiction that Ky is not tangent to Dy
at P;. We show that, in any neighborhood of P, there exists a point P;" € Dy such
that the line segment [Py Py] of length L, that contains O, intersects Ds. That will
yield the claim. Since P; € Ky, K9 properly intersects Dy at P;. Thus, there exists,
in any neighborhood of Pi, a point P; € D; such that the line segment, of length
L passing through O and touching Dj, contains P;. Therefore, the line segment,
of length L passing through O and touching D; at Py, intersects Dy. That implies
that K; intersects Do and contradicts our assumption. O

C Circular conchoids

A circular conchoid is the curve drawn by the endpoint P of a straight line segment
[PQ] of length L when @ moves along a fixed circle C' and when the line PQ contains
a fixed point O (see Figure 31). Let O; and R denote the center and the radius of
C.

Figure 31: Circular conchoid (when L = R).
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We give a parametric equation of the circular conchoid in the orthonormal refe-
rence frame (01,7, ]) (see Figure 31).

Let (X,Y) denote the coordinates of P in this reference frame. Let « denote the
angle /(7, Cﬁg), ¢ the angle /(7 OW) and h the Euclidean distance between O and
0. We have:

X = Rcos(¢) + Lcos(a)
Y = Rsin(¢) + Lsin(a)
where cos(a) (resp. — cos(a)) is equal to

—Rcos(¢) _ —Rcos(9)
VRZc0s2(¢) + (h — Rsin(¢))?  /RZ+ h? — 2hRsin(9)

when O belongs (resp. does not belong) to the half straight line ending at @ and
passing through P. Similarly, sin(«) (resp. —sin(«)) is equal to
h — Rsin(¢) B h — Rsin()
VRZcos2(¢) + (h — Rsin(¢))2  /R%+ h? — 2hRsin(9)

when O belongs (resp. does not belong) to the half straight line ending at @ and
passing through P.
With ¢ = tan(¢/2), we obtain:

X = 1it2 (R(l—t2)¢%>
v 1it2 <2Rt L Lha +t;)(t; 2LRt>
where:
f(t)=R*+ 1% - f’jﬁi

A straight line and a circular conchoid intersect at most six times because any
equation aX + bY + ¢ = 0 yields a polynomial of degree at most six in ¢.
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